References
Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., & Kay, S. A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. science, 293 (5531), 880-883. doi:10.1126/science.1061320
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., . . . Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37 (Web Server issue), W202-208. doi:10.1093/nar/gkp335
Bart, R., Chern, M., Park, C. J., Bartley, L., & Ronald, P. C. (2006). A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods, 2 , 13. doi:10.1186/1746-4811-2-13
Bendix, C., Marshall, C. M., & Harmon, F. G. (2015). Circadian Clock Genes Universally Control Key Agricultural Traits. Molecular Plant, 8 (8), 1135-1152. doi:10.1016/j.molp.2015.03.003
Chaudhury, A., Dalal, A. D., & Sheoran, N. T. (2019). Isolation, cloning and expression of CCA1 gene in transgenic progeny plants of Japonica rice exhibiting altered morphological traits. PloS one, 14 (8), e0220140. doi:10.1371/journal.pone.0220140
Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., . . . Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 18 (8), 926-936. doi:10.1101/gad.1189604
Farre, E. M., Harmer, S. L., Harmon, F. G., Yanovsky, M. J., & Kay, S. A. (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Current Biology, 15 (1), 47-54. doi:10.1016/j.cub.2004.12.067
Fornes, O., Castro-Mondragon, J. A., Khan, A., van der Lee, R., Zhang, X., Richmond, P. A., . . . Mathelier, A. (2020). JASPAR 2020: update of the open-access database of transcription factor binding profiles.Nucleic Acids Research, 48 (D1), D87-d92. doi:10.1093/nar/gkz1001
Gendron, J. M., Pruneda-Paz, J. L., Doherty, C. J., Gross, A. M., Kang, S. E., & Kay, S. A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences, USA, 109 (8), 3167-3172. doi:10.1073/pnas.1200355109
Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics, 27 (7), 1017-1018. doi:10.1093/bioinformatics/btr064
Green, R. M., & Tobin, E. M. (1999). Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proceedings of the National Academy of Sciences, USA, 96 (7), 4176-4179. doi:10.1073/pnas.96.7.4176
Hayama, R., Yokoi, S., Tamaki, S., Yano, M., & Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 422 (6933), 719-722. doi:10.1038/nature01549
Izawa, T. (2007). Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. Journal of Experimental Botany, 58 (12), 3091-3097. doi:10.1093/jxb/erm159
Izawa, T., Mihara, M., Suzuki, Y., Gupta, M., Itoh, H., Nagano, A. J., . . . Nagamura, Y. (2011). Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell, 23 (5), 1741-1755. doi:10.1105/tpc.111.083238
Johansson, M., & Staiger, D. (2015). Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany, 66 (3), 719-730. doi:10.1093/jxb/eru441
Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., & Nakamichi, N. (2016). Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.Plant Cell, 28 (3), 696-711. doi:10.1105/tpc.15.00737
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., & Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science, 286 (5446), 1960-1962. doi:10.1126/science.286.5446.1960
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., & Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant & Cell Physiology, 43 (10), 1096-1105. doi:10.1093/pcp/pcf156
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., & Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development, 135 (4), 767-774. doi:10.1242/dev.008631
Komiya, R., Yokoi, S., & Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 136 (20), 3443-3450. doi:10.1242/dev.040170
Lei, Y., Lu, L., Liu, H. Y., Li, S., Xing, F., & Chen, L. L. (2014). CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 7 (9), 1494-1496. doi:10.1093/mp/ssu044
Liu, C., Qu, X., Zhou, Y., Song, G., Abiri, N., Xiao, Y., . . . Yang, D. (2018). OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice.Plant, cell & environment, 41 (3), 630-645. doi:10.1111/pce.13135
Liu, W., Xie, X., Ma, X., Li, J., Chen, J., & Liu, Y. G. (2015). DSDecode: A Web-Based Tool for Decoding of Sequencing Chromatograms for Genotyping of Targeted Mutations. Molecular Plant, 8 (9), 1431-1433. doi:10.1016/j.molp.2015.05.009
Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J., & Wagner, D. R. (2001). ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway.Plant Cell, 13 (6), 1293-1304. doi:10.1105/tpc.13.6.1293
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25 (4), 402-408. doi:10.1006/meth.2001.1262
Locke, J. C., Kozma-Bognar, L., Gould, P. D., Feher, B., Kevei, E., Nagy, F., . . . Millar, A. J. (2006). Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Molecular Systems Biology, 2 , 59. doi:10.1038/msb4100102
Lu, S. X., Webb, C. J., Knowles, S. M., Kim, S. H., Wang, Z., & Tobin, E. M. (2012). CCA1 and ELF3 Interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiology, 158 (2), 1079-1088. doi:10.1104/pp.111.189670
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., . . . Liu, Y. G. (2015). A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Molecular Plant, 8 (8), 1274-1284. doi:10.1016/j.molp.2015.04.007
McClung, C. R. (2014). Wheels within wheels: new transcriptional feedback loops in the Arabidopsis circadian clock. F1000Prime Rep, 6 , 2. doi:10.12703/p6-2
Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H. R., . . . Coupland, G. (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.Dev Cell, 2 (5), 629-641.
Murakami, M., Tago, Y., Yamashino, T., & Mizuno, T. (2007). Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant & Cell Physiology, 48 (1), 110-121. doi:10.1093/pcp/pcl043
Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8 (19), 4321-4325. doi:10.1093/nar/8.19.4321
Nagel, D. H., & Kay, S. A. (2012). Complexity in the wiring and regulation of plant circadian networks. Current Biology, 22 (16), R648-657. doi:10.1016/j.cub.2012.07.025
Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N. H., & Sakakibara, H. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.Plant Cell, 22 (3), 594-605. doi:10.1105/tpc.109.072892
Nemoto, Y., Nonoue, Y., Yano, M., & Izawa, T. (2016). Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant Journal, 86 (3), 221-233. doi:10.1111/tpj.13168
Niwa, Y., Ito, S., Nakamichi, N., Mizoguchi, T., Niinuma, K., Yamashino, T., & Mizuno, T. (2007). Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant & Cell Physiology, 48 (7), 925-937. doi:10.1093/pcp/pcm067
Park, M. J., Kwon, Y. J., Gil, K. E., & Park, C. M. (2016). LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. BMC Plant Biology, 16 (1), 114. doi:10.1186/s12870-016-0810-8
Sanchez, S. E., & Kay, S. A. (2016). The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harb Perspect Biol, 8 (12). doi:10.1101/cshperspect.a027748
Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I. A., & Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 93 (7), 1219-1229. doi:10.1016/s0092-8674(00)81465-8
Shim, J. S., Kubota, A., & Imaizumi, T. (2017). Circadian Clock and Photoperiodic Flowering in Arabidopsis: CONSTANS Is a Hub for Signal Integration. Plant Physiol, 173 (1), 5-15. doi:10.1104/pp.16.01327
Song, Y. H., Shim, J. S., Kinmonth-Schultz, H. A., & Imaizumi, T. (2015). Photoperiodic flowering: time measurement mechanisms in leaves.Annual Review of Plant Biology, 66 , 441-464. doi:10.1146/annurev-arplant-043014-115555
Sun, C., Chen, D., Fang, J., Wang, P., Deng, X., & Chu, C. (2014). Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell, 5 (12), 889-898. doi:10.1007/s13238-014-0068-6
Tsuji, H., Taoka, K., & Shimamoto, K. (2011). Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology, 14 (1), 45-52. doi:10.1016/j.pbi.2010.08.016
Wang, F., Han, T., Song, Q., Ye, W., Song, X., Chu, J., . . . Chen, Z. J. (2020). Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing.Plant Cell . doi:10.1105/tpc.20.00289
Wang, Y., Yuan, L., Su, T., Wang, Q., Gao, Y., Zhang, S., . . . Xie, Q. (2019). Light- and temperature-entrainable circadian clock in soybean development. Plant, cell & environment . doi:10.1111/pce.13678
Wang, Z. Y., & Tobin, E. M. (1998). Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 93 (7), 1207-1217.
Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., . . . Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 40 (6), 761-767. doi:10.1038/ng.143
Yang, Y., Peng, Q., Chen, G. X., Li, X. H., & Wu, C. Y. (2013). OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Molecular Plant, 6 (1), 202-215. doi:10.1093/mp/sss062
Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., . . . Sasaki, T. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 12 (12), 2473-2484. doi:10.1105/tpc.12.12.2473
Zhang, C. C., Yuan, W. Y., & Zhang, Q. F. (2012). RPL1, a gene involved in epigenetic processes regulates phenotypic plasticity in rice.Molecular Plant, 5 (2), 482-493. doi:10.1093/mp/ssr091