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SUMMARY

Bovine leptospirosis is a bacterial disease that affects bovine herds, causing economic 

losses due to reproductive problems, which require expensive treatments. The main source 

of transmission for cattle is still uncertain, but it has been described that small wild 

mammals can play an important role in the transmission cycle by being maintenance hosts 

for the pathogenic species of the bacterium and spreading it through urine. In this study, we

characterize possible risk areas for bovine leptospirosis in the state of Veracruz, Mexico; 

based on the geographical distribution of small wild hosts of Leptospira sp. reported in 

Mexico in addition with climatic, geographic, land use and human activities variables, and 

validated risk map with bovine seroprevalence data. We used a generalized linear 

regression model to understand the association between the appearance of bovine 

leptospirosis seroprevalences and the favorability of wild hosts of Leptospira sp. as well as 

environmental variables. The parameterized model explains 13.58% of the variance. The 

seroprevalence in cattle showed a negative relationship with elevation, geographic length 

and human population density, and a positive relationship with environmental favorability 

for the bats reservoirs and favorability for at least one rodent and opossum reservoir. The 

variation in seroprevalence is mainly explained by a longitudinal gradient (10.4% of the 

variance) and the favourability for bats (3.0% of the variance). Describing the possible risks

of seroprevalence in an important and neglected livestock geographical region, we 

contribute to the selection of areas of strategies for diagnosis and prevention of this relevant

disease.

Keywords: Biogeography, cattle,  risk mapping , spatial epidemiology, wildlife.  
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INTRODUCTION

Bovine leptospirosis is a re-merging zoonotic disease with worldwide reports, whose 

highest incidence is recorded in tropical and subtropical areas (Adler & de la Pena 

Moctezuma, 2010; Costa et al., 2015). The causative agents of the disease are bacterias in 

the form of spirochetes of the Leptospira genus, within which the existence of at least 64 

species is recognized along with over 300 serovars (Picardeau, 2017; Vincent et al., 2019).  

The appearance of this disease  depends on the interaction between the infectious agent, the

hosts (humans, domestic and / wild animals) and the environment, thus, its handling require

a One Health perspective (Bierque et al., 2020; Grimm et al., 2020; Loureiro et al., 2020).

In domestic animals, mainly in bovines, leptospirosis is characterized for producing 

reproductive problems such as abortions, stillbirths, and infertility, but it also leads to low 

production of milk and sometimes death of the adult animal (Delooz et al., 2018). The wild 

mammals, specifically rodents, marsupials and bats are considered hosts of pathogenic 

Leptospira species (Allan et al., 2018; Dietrich et al., 2015; Vieira et al., 2018). Wild 

animals may be possibly able to transmit bacteria to other hosts through contact with tissue 

or infected urine (Boey et al., 2019; Cordonin et al., 2020; Ko et al., 2009) or through the 

soil or water, depending on the conditions that prevail for bacteria to survive in the 

environment (Costa et al., 2015; Thibeaux et al., 2018). There is speculation that wild 

animals might play an important role as a source of infection for cattle, mainly when this is 

raised in extensive systems.  

In recent years, the spread of infectious diseases such as the leptospirosis has integrated 

diverse tools from some other branches that strengthen pioneering fields such as health 

geography and spatial epidemiology (e.g. Jara et al., 2019). Health geography is the branch 
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of biogeography whereby epidemiology is linked to ecology with a view to study and 

understand the distribution patterns of infectious, emerging and/or endemic diseases

(Escobar & Craft, 2016). These sort of models has led to a better understanding of a variety

of transmission and distribution behaviors of diseases over large geographical areas as well 

as to the possibility to identify and quantify the key factors underpinning the presence and 

or emergency of disease (Brewer et al., 2020). From a cartographic point of view, such 

models offer the possibility of generating risk maps with a high level of potential for its use

when it comes about the design of surveillance programs and the fight against diseases

(Johnson et al., 2019; Peterson, 2008).

Via the Leptospirosis Burden Epidemiology Reference Group (LERG), the World Health 

Organization recommends the development and use of technological tools to generate risk 

maps in regions where data is not existent or scarce (Dhewantara et al., 2020; WHO, 2010).

This, in order to predict, prevent, detect or intervene in the presence of leptospirosis and 

limit its impact, within One Health context (Durski et al., 2014). Even so, these 

approximations shall be interpreted and validated with available information for the area of 

study so as to be able to deliver interpretations and reliable predictions (WHO, 2010). Thus,

leptospirosis risk maps have been generated globally (Torgerson et al., 2015), nationally

(Nuñez-Gonzalez et al., 2020; Sanchez-Montes et al., 2015; Zhao et al., 2016) and at a 

more regional level (Gracie et al., 2014; Jara et al., 2019). The latter have had a high 

interest rate since such maps correspond to the actions of unit on many occasions, on an 

epidemiological level. Even though the use of this approach has been spreading in the last 

number of years, studies that include wild hosts information are few for the majority of the 

affected zones by the disease.
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Concerning Mexico, leptospirosis has been described in humans (Sanchez-Montes et al., 

2015; Zuñiga-Carrasco & Caro-Lozano, 2013), domestic (Carmona-Gasca et al., 2011; 

Zarate-Martinez et al., 2015) and wild animals (Ballados-Gonzalez et al., 2018; Espinosa-

Martinez et al., 2015; Gutierrez-Molina et al., 2019; Torres-Castro et al., 2018, 2020). 

Human cases, just as the incidences in domestic and wild animals, are more frequent in the 

Southeast states of the country, which include: Tabasco, Yucatan and Veracruz (Ballados-

Gonzalez et al., 2018; Pappas et al., 2008). The state of Veracruz is, among these, the main 

producer of bovine cattle of the country with an annual production of 479,077.518 tons of 

meat on the hoof and an inventory of  4,306,215 (SIAP, 2018), situation that could be 

threatened due to the leptospirosis (Allan et al., 2018). At this juncture, the main purpose of

our study was to develop risk maps based on the environmental favorability for the main 

wild Leptospira sp. host species; a risk index was elaborated for the state of Veracruz 

through an analytical framework of the species distribution models, the function of 

favorability and fuzzy logic, same that were validated with seroprevalence data form 

bovine animals. Obtained results serve to improve the design of leptospirosis epidemiologic

surveillance programs as well as for stimulating the development of directional hypothesis 

on the role small mammals can play in the transmission of bacteria to the bovine animal in 

this region, and potentially in other tropical regions where cattle is an important business 

driver. 

MATERIAL AND METHODS

Study area

The study area corresponds to the southeastern coastal state of Veracruz, Mexico, with a 

total area of 72,410.05 km2 (3.7% of Mexico). Half of the state is covered by natural 
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vegetation (grassland, woodland and jungle), however it is estimated that the remaining 

territory has been destined for agriculture, and urban areas (INEGI, 2017). It is considered 

that tropical and subtropical climates dominate the state from the sea level to about 1000 

masl. Warm and humid, temperate and cold (in the mountains) complete the huge mixture 

of climates in this diverse state (INEGI, 2020; see also Figure 1).

For analytical purposes, a regular grid with 1km x 1km squares (n=78,612) was developed. 

This grid was used for spatially explicit modelling; both the initial species distribution 

models for wildlife hosts and the risk factor analyses carried out in a second step (see 

below). Thus, all the information handled in this study (wild host distribution data, 

ecogeographical predictors and Leptospira sp. seroprevalence in cattle herds) was 

transferred to this grid by using zonal statistics and join information by location in QGIS vs

3.10 (QGIS Development Team, 2020). The use of grids solves a large part of the spatial 

autocorrelation problems derived from sampling bias or observation spatial clustering

(Romero et al., 2019).

Occurrences for potential wild hosts of Leptospira sp.

Five bat species (Artibeus jamaicense, Artibeus lituratus, Chiroderma villosum, Desmodus 

rotundus and Pteronotus parnelli), two rodents (Mus musculus and Rattus rattus) and two 

opossums (Didelphis marsupialis and Didelphis virginiana) were identified in previous 

studies, using serological approaches, isolation and/or genomic sequencing, as potential 

reservoirs of Leptospira sp. in Mexico (Ballados-González et al., 2018; Gutiérrez-Molina et

al., 2019; Krijger et al., 2019; Ruiz-Piña et al., 2002; Vado-Solís et al., 2002; Valbuena-

Torrealba & Pefaur-Vega, 2015). Thus, they were the wild species considered in this study. 

The raw information on distribution for these species was downloaded from GBIF April, 
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2020 (Global Biodiversity Information Facility, 2020). For a given species, a grid square 

was considered as “presence” when at least one occurrence was recorded in GBIF (see 

Table 1).

Spatial explicit models

For each wild species, we followed a two-step modelling procedure: i) delimitation of 

geographical extent for species distribution modelling, and ii) modelling environmental 

favourability and transferability to overall Veracruz. As the extent of the geographical 

background has substantial effects on the outputs of species distribution models (e.g 

Acevedo et al., 2017; Barve et al., 2011), we delimited an adequate territory to study 

species distribution (one per species) by a first model in which the third-degree polynomial 

of the latitude and longitude (trend surface analysis) was considered as predictors (Acevedo

et al., 2012). The geographical extent for distribution modelling was represented by the 

squares which, after carrying out the first model, had a predicted suitability higher than the 

minimum value assigned to a presence (for further details see Acevedo et al., 2012). This 

procedure allowed us to study the distribution range within the area that is accessible for 

the species and is aimed to provide more explanatory models (e.g. Acevedo et al., 2017).

As a second step, and within the area selected for each species, we determined the 

environmental drivers for each species in basis on occurrence points in which the species 

has been recorded, using generalized linear models (binomial distribution and logit link 

function; GLM; Hosmer & Lemeshow, 1989). For modelling purposes, we considered all 

presences and randomly selected ten-times the number of presences as background. We 

forced this intermediate level of prevalence to avoid statistical artefacts known to produce 

results biased to the larger group in GLM (Hosmer & Lemeshow, 2000). The model was 
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parameterized using an 80% random sample of the species data (training dataset) and 

internally evaluated against the remaining 20% of the data (validation dataset). Twenty-

nine variables, related with climate, land uses, topography and human activities were 

considered as predictors (see Table 2), all of them commonly used in spatial explicit 

modeling as potential drivers of wildlife distribution from local to large spatial scale

(Hortal et al., 2010). To avoid multicollinearity-related problems, we quantified within a 

stepwise procedure the variance inflation factor (VIF) on the training datasets to exclude 

those predictors VIF>3 from the analyses prior to modelling (Zuur et al., 2009). The 

selected predictors after controlling for VIF were considered in the GLM and the most 

parsimonious model (final model) was selected following a forward-backward stepwise 

procedure based on Akaike’s information criteria (AIC; Akaike, 1974). 

Predictive performance of each final model was assessed on the evaluation datasets in 

terms of discrimination and reliability (e.g. Jiménez-Valverde et al., 2013; Pearce & 

Ferrier, 2000). Discrimination capability was quantified by the area under the receiver 

operating characteristic plot (AUC; see Lobo et al., 2008) that was computed using 

“ROCR” R package (Sing et al., 2005). Reliability of the predicted probabilities obtained 

from the final models (P) was estimated by exploring the calibration plot and H-L 

associated statistic (Lemeshow & Hosmer 2000). Calibration plots were constructed using 

“ggplot2” R package (Wickham, 2009) by plotting the proportion of occupied evaluation 

sites against the predicted probability of presence (for the ten equally sized probability 

intervals).

The P-values obtained from GLM were included in the favourability function (Acevedo & 

Real, 2012; Real et al., 2006): F = [P/(1–P)] / [(n1/n0) + (P/(1–P))], were n1 is the number 

of presences and no the number of absences in the training dataset. The favourability 
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function provides a measure of the degree to which local environmental conditions lead to a

local probability higher or lower than that expected at random (F), being this random 

probability defined by the overall prevalence of the species in the training dataset. So, using

the favourability function those localities with environmental conditions that favour the 

presence of the taxa (F>0.5) can be easily distinguished from those with detrimental 

characteristics (F<0.5) for its presence. The inherent quality of the favourability function of

being expressed in relation to the species’ prevalence enables direct comparison and 

combination when several of them are involved in the analytical design, as in this study. 

For example, this is needed when using models from different event prevalence as a basis 

for defining endemic areas for a diseases or exposure risk for a given disease (e.g. Boadella 

et al., 2010; Olivero et al., 2017), which cannot be built based on P because these are higher

in common than in rare species, so the values for the former would prevail over those for 

the latter.  

Risk indices and risks mapping

Using fuzzy logic operations on F values we estimated two different risk indices for flying 

(bats) and terrestrial wild host (rodents and opossums) (see also Boadella et al., 2010; 

Romero et al., 2019):  i) minimum favourability (minF) per square for all involved species 

within each group (bats and rodents/opossums), and ii) maximum favourability (maxF) per 

square for all involved species within each group. The first one accounts for areas 

simultaneously favourable for all species and therefore the risk is defined by the presence 

of a broad community of Leptospira sp. potential hosts. The second index accounts for 

areas in which at least one of the species achieved a high favourability. The consideration 
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of these two risk indices allows to disentangle the potential role of small mammals in the 

bacteria circulation in the cattle farms. 

Finally, we performed a risk analyses in order to identify the main factors explaining 

variations in Leptospira sp. seroprevalence in cattle farms. Seroprevalence values for 306 

herds (widely distributed in the study area; see Figure 1) were obtained from Cruz Romero 

et al. (2013). These authors provide seroprevalence values per herd and, thus, it provides an

independent data for validating the risk indices as actual indicators of risk. 

The risk analyses were performed at herd level (previously transferred to our territorial 

units for modelling purposes). The four risk indices previously described and related with 

wildlife were considered as predictors. In the case of those related to bats and due to the 

high movement capability of these species (Ceballos, 2014; Esbérard et al., 2017) we 

characterized each sampled 1km x 1km square with the F values within a buffer 10 km 

radious. In addition to risk from wildlife, topography (elevation and slope), geography 

(latitude and longitude), human activity (population density) and cattle density (SIAP, 

2018), were also considered as predictors for their potential to explain variability in 

seroprevalence. All potential risk factors were centered and standardized by subtracting the 

mean and dividing by standard deviation, prior the modelling. Leptospira sp. 

seroprevalence (log transformed) was the response variable and was modelled with a GLM 

(normal distribution and identity link function). The final model was obtained following a 

stepwise backward procedure based on AIC. VIFs of the predictors retained in the final 

model were checked, as well model assumptions by the visual exploration of the residuals

(Zuur et al., 2009). The final model was transferred to overall study area in order to 

represent the predicted seroprevalence in basis to the main risk factors.
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RESULTS

The number of localities selected after step 1 are shown in Table S1 (Supplementary 

Material). VIF analyses excluded for the environmental models some predictors (Table S1).

The results of the statistical models used to explain the distribution range of the selected 

species in basis to environmental predictors are summarized in Table S2 (Supplementary 

Material). Predicted favourability for each species is represented in Figure S1 

(Supplementary Material). Models achieved a high predictive performance according to 

AUC (>0.7) and calibration plots (see Figure S2 in Supplementary Material). 

Fuzzy logic operations allowed to combine specific favourability maps in order to estimate 

risk indices, independently for each group of species (Figure 2). Risk indices for each wild 

host group showed equivalent spatial pattern. It is characterized by achieving higher values 

in Centre and South of Veracruz, mainly in the western mountainous systems and in 

marshlands close to the Gulf of México (Figure 2). The model parameterized for explaining

variations in Leptospira sp. seroprevalence in cattle explained 13.58% of the variance. The 

stepwise procedure selected a model with five predictors (see Table 3), all of them achieved

VIF<3. The seroprevalence in cattle showed a negative relation with elevation (marginally 

significant), geographical longitude and population density (marginally significant), and a 

positive one with minF for bats and maxF for rodents and opossums, being the latter 

marginally significant. Figure 3 shows the relationships between seroprevalence and 

predictors retained in the final model with statistically significant relationships. Variation in

seroprevalence is mainly explained by a longitudinal gradient (accounting for 10.4% of the 

variance) and the minF index for bats (accounting for 3.0% of the variance). The predicted 

pattern of cattle Leptospira sp. seroprevalence according to this model is shown in Figure 4.
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DISCUSSION

The approach in this study allowed the drafting of various risk indexes for the Leptospira 

sp. base on the information on distribution of potential wild hosts and along the line of the 

analytical framework of species distribution models. Such indexes were incorporated in 

models so as to explain and predict the relative risk associated to the exposure to 

Leptospira sp. on bovine herds and its spatial variation. The model undertaken here 

revealed a significant role of small mammals, especially of bats previously highlighted as 

potential reservoirs for this pathogen. In addition to this, it explained the level of 

seroprevalence in combination with the geographic latitude in bovine livestock herds 

distributed along the state. Expected spatial patterns with higher index of seroprevalence 

were located in the central part of the state of Veracruz where areas specifically designated 

for livestock and farming  prevail and the main water sources and important state cities are

(INEGI, 2017).

The results of the model showed a moderate level of expected seroprevalence of bovine 

leptospirosis in the state of Veracruz (Figure 4) and such findings partially differ from 

previous studies (Zarate-Martinez et al., 2015). These authors studied seven herds of the 

central zone of the state of Veracruz and had results with seroprevalences of 10 to 89%. 

Differences between previous prevalence and modeled values may be further detailed 

herein, at least partially given the fact that these include a higher number of strains of those 

used in our study (Cruz-Romero et al., 2013). This fact will support the idea that each 

region possess native serovars, many of them unknown when no insulations nor 

classifications were made  in the majority of the cases (Carmona-Gasca et al., 2011; Delooz

et al., 2018; Vincent et al., 2019). On the other hand, risk indexes that may derived for each

group of Leptospira sp. wild, land and air hosts evidenced an equivalent spatial pattern 
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(Figure 2), at least in terms of showing a reduced favorability in the northern part of the 

state and highlighting the local patterns of greater favorability in the central zone. Even 

though spatial biases that may contain the GBIF data, might have had influence (e.g. Beck 

et al., 2014), results of internal validation, mainly the relation with the seropositivity 

indexes in bovine animals, suggest that the bias had no relevance. Moreover, indicators 

shown higher values in urban areas and water bodies where the presence of these species 

had not been reported. The foregoing makes sense in connection with its requirements of 

food and water, and on the other side, as a significant source of pathogens that subsequently

can mobilize hosts and geographical areas (see Dobigny et al., 2015; Grimm et al., 2020; 

Schneider et al., 2018).

Geographical longitude and minimal favorability for concerned bats species were the most 

important factors explaining the spatial variation in the seroprevalence in bovine herds 

(Figure 3). Favorability for bats species that were described as reservoirs, identify the zones

that possess environmental characteristics that favor the presence of these species. Such 

favorable zones, in this case the five species, are areas that will have a high abundance of 

bat species (e.g Weber & Grelle, 2012). This set – up enables a scenario in which the 

potential for establishing interactions among wild species and herds, are elevated. With the 

foregoing, the risk of transmission and levels of expected exposure (Ballados-Gonzalez et 

al., 2018; Dietrich et al., 2015). Conversely, geographical longitude is a gradient that mark 

big environmental contrasts within the state; to the east with the Gulf of Mexico, while in 

the west presents tow mountain ranges (Sierra Madre Oriental & Sierra Madre del Sur). 

This gradient markup has a high explanatory capacity in our model, given the fact that it 

might be possibly representing purely spatial inertia that can have the studied pattern 

(seroprevalence) such as the environmental particularities that might constrain differences 
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in the handling of cattle, in possible points of interaction with wild hosts and even in the 

bacteria survival to temperature or pH in the environment (Schneider et al., 2018; Thibeaux

et al., 2018). More studies are needed so as to determine the processes behind the 

longitudinal gradient so marked in the levels of seroprevalence that has been observed in 

this research. In this respect, determination of interactions (contacts) among domestic and 

wild reservoirs, both, based on studies of monitoring of points and/or individuals marked 

and the analysis of molecular epidemiology, may result very illuminating (e.g. Triguero-

Ocaña et al. in press). 

In turn, favorability for rodents and opossums that may act as hosts also contributed to the 

risk of exposure when retained in the model (e.g.  (Allan et al., 2018; Krijger et al., 2019). 

The above permits to infer a possible transmission between bovine animals and rodents 

when being present in studies of the same pathogenic Leptospira sp. in both hosts (Allan et 

al., 2018). As Krijger et al. (2020) mentions, the rodents can be considered as indicator 

species of Leptospira sp. in the environment, and therefore these could present a hazard for 

the cattle. Hence, said outcome demonstrates once again, the importance of studying the 

epidemiological relation between wild and bovine hosts, not only at a serovariety or illness 

level but also at the level of circulating Leptospira species and validating findings through 

genomic classification.

This research represents a great step forwards in veterinary medicine to understand the 

behavior and geographic distribution of bovine leptospirosis at the serovariety level or more

effectively at the level of the Leptospira specie. It is crucial to know the circulating 

leptospiras species in wild and bovine animals that interact on a specific area and to be able

to deeply observe the risks that may occur. The information presented herein has a keen 

interest for its ability to stimulate the development of directional hypothesis over the factors
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that explain the seroprevalence patterns in bovine cattle, situation that will promote further 

new studies to gain more in – depth knowledge concerning the Leptospira sp. epidemiology

in domestic and wild animals, and mainly, in the interface between these. Apart from that, 

the carried-out risk assessment provides useful information for the development of 

prevention plans and disease control, based on the risk [sic] through which a more effective

fight against the malaise could be reached. 
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Figure legends

Figure 1.- A) Location of the study area, Veracruz state (Mexico), and distribution data 

obtained for B) bats and C) terrestrial mammals (rodents and opossums) considered in this 

study due to their potential in Leptospirosis maintenance (see text for details). D) 

Seroprevalence of Leptospirosis in 316 cattle herds that was considered for validating risks 

mapped in this study (data obtained from Cruz-Romero et al., 2013).

Figure 2.- A) Minimum favourability for bat species, B) Maximum favourability for bat 

species, C) Minimum favourability for rodent and opossum species, D) Maximum 

favourability for rodent and opossum species.

Figure 3.- Relationships between predicted Leptospira sp. seroprevalence in cattle herd 

from Veracruz, México, and the most relevant risk factors namely geographical longitude 

and minimum favourability (minF) for the selected bat species.

Figure 4.- Predicted Leptospira sp. seroprevalence in cattle herds from Veracruz, Mexico, 

according to the model showed in Table 3. Main risk factors were latitudinal gradient and 

favourability for selected bat species that were described as reservoirs.
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SUPLEMENTARY 

Figure S1.- Host species favourability. Bats: A) Artibeus jamaicensis, B) Artibeus 

lituratus, C)Chiroderma villosum, D) Desmodus rotundus, E) Pteronotus parnellii; 

Rodents: F) Mus musculus, G) Rattus rattus; and Opossums: H) Didelphis marsupialis, I) 

Didelphis virginiana.

Figure S2.- Calibration plots showing relationships between predicted probability of 

occurrence from the models and the observed proportion of evaluation localities occupied 

by each species. Summary of the statistical tests used to validate the models: AUC values 

and Hosmer–Lemeshow goodness-of-fit statistic values. Significance codes: P < 0.001: 

***, P < 0.01: **, P < 0.05: *, n.s.: non-significant. 
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Tables

Table 1.- List of the small mammals considered in this study. Raw distribution data 

obtained from GBIF and their transference to the territorial units considered for modelling 

is provided (raw/territorial units). A brief description of the role of the species in 

Leptospira sp. epidemiology and associate reference/s is also shown.

Group Specie Distribution data Leptospirosis carrier evidences Reference

Occurrences squares

Bats Artibeus 

jamaicensis

1148 189 Identificado en estados del 

sureste de México.

(Torres-Castro et 

al., 2020)

Artibeus 

lituratus

250 69 Reportado en el estado de 

Veracruz, México.

(Ballados-González

et al., 2018)

Chiroderma 

villosum

45 22 Identificado en estados del 

sureste de México 

(Torres-Castro et 

al., 2020)

Desmodus 

rotundus

606 151 Reportado en el estado de 

Veracruz, México.

(Ballados-González

et al., 2018)

Pteronotus 

parnellii

199 73 Identificado en estados del 

sureste de México

(Torres-Castro et 

al., 2020)

Rodents Mus 

musculus

104 46 Reportado con alta frecuencia de 

presencia en el estado de 

Veracruz, México

(Gutiérrez-Molina 

et al., 2019)

Rattus rattus 53 20 Reportado con alta frecuencia de 

presencia en el estado de 

Veracruz, México.

(Gutiérrez-Molina 

et al., 2019)

Opossums Didelphis 

marsupialis

217 114 Detección de anticuerpos anti 

leptospira en estados del sureste 

de México.

(Ruiz-Piña et al., 

2002)
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Dedelphis 

virginiana

198 97 Detección de anticuerpos anti 

leptospira en estados del sureste 

de México.

(Ruiz-Piña et al., 

2002)
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Table 2.- Variables used to model the distribution of small mammals (see Table 1) in 

Veracruz, Mexico. 

Code Variable

Climate*

BIO1

BIO2

BIO3

BIO4

BIO5

BIO6

BIO7

BIO8

BIO9

BIO10

BIO11

BIO12

BIO13

BIO14

BIO15

BIO16

BIO17

BIO18

BIO19

Land use$

LU1

Mean annual temperature (°C)

Mean diurnal range temperatures (°C)

Isotermality (BIO2/BIO17)(*100)

Seasonal temperatures (°C)

Maximum temperatures of the warmest month (°C)

Minimum temperatures of the coldest month (°C)

Annual temperatures range (BIO5–BIO6) 

Mean annual temperatures of the wetter quarter

Mean annual temperatures of the dry quarter

Mean annual temperatures of the warmest quarter

Mean annual temperatures of the coldest quarter (°C)

Annual precipitation (mm)

Precipitation of the wettest month (mm)

Precipitation of the driest month (mm) 

Seasonal precipitation (coefficient of variation) (mm) 

Precipitation of wettest quarter (mm)

Precipitation of dry quarter

Precipitation of warmest quarter

Precipitation of coldest quarter

Agriculture (surface occupied by the land use, %)
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LU2

LU3

LU4

LU5

LU6

LU7

Topography*#

ELEV*

PEND#

Human activities#

POB

Woodland (surface occupied by the land use, %)

Water bodies (surface occupied by the land use, %)

Grassland (surface occupied by the land use, %)

Savana (surface occupied by the land use, %)

Jungle (surface occupied by the land use, %)

Urbane (surface occupied by the land use, %)

Elevation (m.a.s.l.)

Slope (%)

Human population (habitants km-2)

Data  sources:  #  Portal  de  geoinformación  de  la  pagine  del  Comisión  Nacional  para  el

Conocimiento  y  Uso  de  la  Biodiversidad (CONABIO,  2020).

http://www.conabio.gob.mx/informacion/gis/ (Accessed April 2020), $Instituto Nacional de

Estadística  y Geografía  (INEGI,  2020) https://www.inegi.org.mx/datos/ (Accessed April

2020), and *WorldClim—Global Climate Data available. Described in: Fick, S. E. and R. J.

Hijmans. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas.

International  Journal  of  Climatology  (2017).  In:  http://www.world  clim.org/  (Accessed

April 2020)
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Table 3.- Summary of the results of the general linear model used to identify the main risk

factors explaining the pattern of Leptospira sp. seroprevalence in cattle farms in Veracruz,

México. Estimates are provided for standardized predictors.  minF  for bats represents the

minimum  favourability  that  is  achieved  for  all  (selected  bat)  species  and  maxF the

maximum favourability that they (now selected rodents and opossums) achieve. Both are

considered as risk indicators related with wildlife.

Factors Estimate (SE) t-value p-value

(intercept) 0.83 (0.07) 11.943 <0.001

Elevation -0.15 (0.09) -1.768 0.078

Human population -0.12 (0.08) -1.507 0.132

Geographic longitude -0.59 (0.09) -6.109 <0.001

minF for bats 0.42 (0.13) 3.342 <0.001

maxF for rodents and 

opossums

0.22 (0.14) 1.604 0.110

SUPLEMENTARY 
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Table S1.- Number of localities selected for species and environmental predictor models

Species Training 
dataset

Model

Bats Artibeus 
jamaicensi
s

1648 -1.24 + 0.09*BIO3 - 0.51*BIO7 + 0.01*LU1 + 
0.04*LU7 + 0.03*BIO15 - 0.13*LU5 - 0.01*LU2 + 
0.07*PEND

Artibeus 
lituratus

604 -3.27  +  0.15*BIO3  -  0.46*BIO7  +  0.01*LU1  +
0.03*LU7 - 6.06*LU5         

Chiroderm
a villosum

220 -4.85 -11.96*LU2 + 3.08e-01*PEND - 3.06e - 
02*LU6 + 4.81e-03*BIO18 + 1.88e-04*POB

Desmodus
rotundus

1312 -4.24 + 0.0004524*POB + 0.11*BIO3 + 0.03*LU7 - 
0.29*BIO7 + 0.01*LU1

Pterinotus
parnelli

641 1.70 - 1.02*BIO7 + 1.764e-01*BIO3 + 5.46e-
04*POB + 8.21e-03*LU1 + 4.45e-02*BIO15 - 
2.05*LU5 - 1.85e-02*LU6 - 3.34e-02*LU2   + 
1.44e-01*PEND + 2.68*LU7        

Rodents Mus 
musculus

401 -6.35 + 0.0006545*POB + 0.09*LU7 + 0.06*BIO3 - 
0.02*LU6 - 0.0097463* LU4

Rattus 
rattus

176 4.01 + 2.057e-03*POB + 4.529e-02*LU7 + 2.039e-
02*LU1 - 4.05 LU2 - 4.850e-01*BIO7 + 1.587e-
01*BIO3         

Opossum
s

Didelphis 
marsupiali
s

994 5.104e-01 + 2.90e-04*POB - 0.41*BIO7 + 1.01e-
02*LU1 + 3.81e-02*LU7 + 7.44e-02*BIO3 + 
2.09*LU5 - 8.38e-03*LU6        

Didelphis 
virginiana

848 -2.07 +0.0004527*POB + 0.05*LU7 - 0.01*LU6 - 
0.33*BIO7 + 0.09*BIO3 - 0.02*LU2 + 
0.0060103*LU1         

Table  S2.- Logistic  regression  models  and  corresponding  statistics  for  each  species.

Variable codes as in Table 2. Significance codes: P < 0.001 :***, P < 0.01 :**, P < 0.05: *.
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β parameter  coefficient  and  its  standard  error  SE,  Wald Wald  test  statistics,  Sig.

significance.  

Variable
Code

Artibeus jamaicensis Artibeus literatus Chiroderma villosum Desmodus rotundus Pterinotus parnelli

B SE Wald Sig B SE Wal
d

Sig B SE Wald Sig B SE Wald Sig B SE Wald Sig

Intercept -1.24 1.62 -0.77 n.s -3.27 2.34 -1.39 n.s -4.85 1.10 -4.40 *** -4.24 1.68 -2.52 * 1.70 2.81 0.60 n.s

BIO3 0.09 0.02 3.28 ** 0.15 0.03 3.84 *** 0.11 0.02 4.50 *** 0.17 5e-2 3.29 ***

BIO7 -0.52 0.08 -6.48 *** -0.46 0.11 -3.98 *** -0.29 0.07 -3.97 *** 1.02 0.16 -6.28 ***

BIO15 0.03 0.01 3.69 *** 4e-02 1e-2 2.99 **

BIO18 4e-3 2.e-
3

2.40

LU1 0.01 2e-3 4.34 *** 0.01 3e-3 3.07 ** 0.01 0.002 3.48 *** 8e-3 4e-3 1.72 n.s

LU2 -0.02 0.01 -2.55 * -12 1180 -0.01 n.s -3e-2 1e-2 -2.57 *

LU5 -0.14 0.14 -0.99 n.s -6.06 343 -0.01 n.s -2.05 1e2 -0.01 n.s

LU6 -3e-2 1e-2 -2.25 * -1e-2 6e-3 -2.67 **

LU7 0.05 0.01 3.59 *** 0.03 0.01 2.04 * 0.03 0.009 4.06 *** 2.68 4e2 0.006 n.s

PEND 0.07 0.03 2.34 * 3e-1 1e-1 2.81 ** 0.14 5e-2 2.60 **

POB 1e-4 1e-4 1.60 n.s 4e-4 1e-4 3.38 *** 5e-4 2e-4 1.91 n.s

Variable
Code

Mus musculus Rattus rattus Didelphis marsupialis Didelphis virginiana

B SE Wald Sig B SE Wal
d

Sig B SE Wald Sig B SE Wald Sig

Intercept -6.35 2.51 -2.52 * -4.01 6.45 -0.62 n.s 0.51 2.04 0.250 n.s -2.07 2.16 -0.95 n.s

BIO3 0.06 0.04 1.71 n.s 1e-1 1e-1 1.49 n.s 7e-2 3e-2 2.41 * 0.09 0.03 3.07 **

BIO7 -4e-1 2e-1 -1.63 n.s -4e-1 9e-2 -4.39 ** -0.33 0.10 -3.37 ***

LU1 2e-2 9e-3 2.14 * 1e-2 3e-3 3.00 ** 0.006 0.003 1.65 n.s

LU2 -4.05 4e2 -8e-3 .n.s -0.02 0.01 -1.75 n.s

LU4 -9e-3 6e-3 -1.51 n.s

LU5 -2.09 1e2 -0.01 n.s

LU6 -0.02 0.01 -1.81 n.s -8e-3 56e-
3

-1.63 n.s -0.01 0.006 -2.25 *

LU7 0.09 0.25 0.37 n.s 4e-2 1e-2 2.28 * 3e-2 1e-2 2.97 ** 0.05 0.01 3.36 ***

POB 6e-4 2e-2 2.31 * 2e-3 9e-4 2.28 * 2e-4 9e-5 3.16 ** 4e-4 0.0001 2.35 *
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