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Abstract. The present paper demonstrates the analysis of cylindrical shock waves in a
rotating isothermal flow of a non-ideal gas with the impact of the axial magnetic field. We
obtain some special class of similarity solutions to the considered problem by using the
Lie group of transformations. We assume that the density is uniform in the undisturbed
medium, whereas the axial and azimuthal components of the fluid velocity and magnetic
field are supposed to vary. By employing the invariant surface conditions, we obtain the
generators of the Lie group of transformations. As per the choice of arbitrary constants
arising in the expressions for the generators, we obtain four cases of possible solutions.
Among all the cases, the similarity solutions are obtained only in three cases. The
first and second cases relate to the power and exponential law shock path, respectively,
while the third case shows a special case of the power-law shock path. We solve the
case of the power-law shock path numerically. Behind the shock front, the distributions
of flow variables are analyzed graphically to elucidate the effects of variation in values
of the non-ideal parameter, Alfven-Mach number, ambient azimuthal velocity exponent
and adiabatic exponent. All the computational work has been performed by using the
software package “MATLAB”.

1. Introduction

During the past decades, the study of shock waves has received much consideration in
the literature because of its applications in several fields, namely plasma physics, astro-
physics, nuclear science, space science, aerodynamics, and geophysics, etc. Even medical
science is being no longer untouched by the applications of shock waves. Nowadays, the
shock waves are being used in kidney stone treatment. In brief, the shock wave can be
characterized as a disturbance that propagates at a velocity which is much higher than the
sound speed. Shock waves are well-known in the interstellar medium because of their huge
variety in supersonic motions and energetic events such as photo-ionized gas, collisions
between fast-moving clumps of interstellar gas, star and galaxy formation, the evolution
of planets, supernova explosions, stellar winds, etc. To analyze and understand the evo-
lution of various nebulae and internal motion in stars is the problem of great interest in
astrophysics. In the past few years, the analysis of shock wave in rotating supersonic and
transonic astrophysical fluid flows and black hole accretion has grabbed the remarkable
attention of researchers and scientists. The rotations of planets and stars significantly af-
fect the process occurring in their outer atmospheres due to which the question related to
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the explosions in rotating gas atmospheres is of definite astrophysical interest. The cylin-
drical shock wave propagation in a gaseous substance produced by the rotation of a solid
body was studied by Chaturani [1]. The spherical shock waves moving in a non-uniform
rotating interplanetary medium with increasing energy was studied by Nath et al. [2].
Vishwakarma and Nath [3] investigated the propagation of cylindrically symmetric shock
waves in a rotating dusty gas by considering the effects of heat conduction and radiation
heat flux and obtained the similarity solutions to the considered problem. In the context
of the study of shock waves in rotating ideal gas, the works of Vishwakarma and Nath [4],
Vishwakarma and Vishwakarma [5], Hishida et. al [6], Ganguly and Jana [7], Levin and
Skopina [8] and Nath [9] are worth mentioning.

Because of the extreme temperature, the gas does not follow the ideal gas law. So,
one must consider the effects of a non-ideal gas. As the shock waves’ strength increases,
the effect of non-ideal gas becomes more significant and must be incorporated in the
experimental and theoretical investigations. Moreover, Zhao et al. [10] reinforced the
fact that shock waves show richer behavior in non-ideal gas than that predicted by the
ideal gas model. Chauhan et al. [11] described the behavior of the shock wave in an ideal
relaxing gas with dust particles. Many researchers analyzed the propagation of the shock
waves in non-ideal gas. Ranga Rao and Purohit [12] discussed the self-similar flows of a
non-ideal gas in their work. A complete classification of shock waves in van der Waals
fluid was discussed by Zhao et al. [10]. Some other remarkable literature about the shock
wave propagation in rotating non-ideal gas can be seen in [13]-[15].

The magnetic field has vital roles in the dynamics of the related medium. Shock waves
with the effects of the magnetic field might be useful in the description of phenomena in
astrophysics. The magnetic field extends over the universe and is very useful in the study
of oceanography, hypersonic aerodynamics and atmospheric sciences, etc. The shock prop-
agation with the effect of the magnetic field forms a problem of great interest to scientists
and researchers in several branches of science, particularly, in the study of the coronal
heating problem. In the last few decades, various studies have been done to investigate
the problem of strong shock waves in ideal and non-ideal magnetogasdynamics. Pullin et
al. [17] studied the convergence of cylindrically symmetric shock waves within ideal mag-
netohydrodynamics by employing a finite volume, shock-capturing numerical technique.
Singh and Arora [18] used the Lie group method to study the problem of cylindrical shock
wave propagation in non-ideal magnetogasdynamics. Towards the study of strong shock
waves in magnetogasdynamics, the works of Arora [16], Singh and Arora [19], Singh et al.
[20], Radha and Sharma [21], and Hunter and Ali [23] are worth mentioning.

Problems of physical interest are often illustrated as the mathematical models in terms
of non-linear partial differential equations. Many complex physical phenomena related
to several scientific applications, namely astrophysics, fluid mechanics, plasma physics,
nuclear physics, chemical physics, space plasma can be well modeled by non-linear PDEs.
Thus, to study and to find out the numerical or analytical solutions of the non-linear PDEs
is of great importance. One of the most effective methods to find similarity solutions of
non-linear PDEs is the Lie group method. This method is based on the study of their
invariance with respect to a one-parameter Lie group of transformations. Once we get to
know the Lie group of transformations, under which the PDEs remain invariant, we can
construct a solution that is invariant under the transformations. The basic concept of the
Lie group of transformations can be found in [24, 25]. The latest literature on the Lie
groups and its applications in several fields can be seen in the works of Logan and Perez
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[26], Hydon [27], Singh and Arora [18], Singh et al. [20], Sharma and Arora [28] and Jena
[29].

In the present article, by employing the Lie group method, we obtain similarity solutions
to the problem of one-dimensional cylindrical shock wave propagation in a rotating non-
ideal gas with the effect of the axial magnetic field. Here, the flow is considered to be
isothermal rather than adiabatic. The assumption of isothermal flow is physically realistic
when the radiation heat transfer effects exist implicitly as described in [30, 31, 32]. We
determine the infinitesimal generators of the Lie group of transformations, having the
arbitrary constants. The various choices of these constants give four cases of possible
solutions. Among all the possibilities, only three cases admit the similarity solutions. In
the first and third cases, the shock path follows the power law, whereas in the second
case shock path follows the exponential law. The first case with the power-law shock
path is worked out in detail. Distributions of the flow variables behind the shock front
are analyzed graphically to elucidate the effects of variation in the values of the non-
ideal parameter, Alfven-Mach number, ambient azimuthal velocity exponent and adiabatic
exponent. The present work extends the work of Nath and Singh [33] by taking a non-
ideal gas, whereas they have considered ideal gas in their work. Thus, our work is more
realistic corresponding to the physical phenomena. To the best of the authors’ knowledge,
no one has solved the problem under consideration by the Lie group method, which makes
this work different from earlier work done.

2. Equations of motion with R-H conditions

The system of fundamental equations governing unsteady, one-dimensional and cylin-
drically symmetric isothermal flow of a rotating non-ideal gas under the effect of axial
magnetic field is given by [33]:

ρt + uρr + ρur +
ρu

r
= 0,

ut + uur +
1

ρ
(pr + µhhr)−

v2

r
= 0,

ht + uhr + hur +
hu

r
= 0, (2.1)

vt + uvr +
uv

r
= 0,

wt + uwr = 0,

Tr = 0,

where t and r are the independent variables describing the time and distance from the axis
of symmetry, respectively; ρ, p, h, u, v and w are the gasdynamical quantities representing
the density, pressure, axial magnetic field, radial component, azimuthal component and
axial component of the fluid velocity ~q in the cylindrical coordinates (r, θ, z), respectively;
µ and T are the magnetic permeability and temperature, respectively. The letter sub-
scripts denote the partial derivatives with respect to the indicated variable. We consider
the following equation of state and internal energy (e) for the non-ideal gas:

p =
ρRT

1− bρ
, e =

p(1− bρ)

(γ − 1)ρ
, (2.2)
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where γ, b and R represent the adiabatic exponent, the van der Waals excluded gas volume
and the gas constant, respectively. Let the shock front r = R(t) propagate with velocity
D = dR/dt in the medium specified by

ρ0 = constant, p0 = constant, h0 = h0(r), u0 = 0, v0 = v0(r), w0 = w0(r),
(2.3)

where suffix ‘0’ indicates the flow just ahead of the shock front; h0, v0 and w0 are the
functions of r, and ρ0 and p0 are the appropriate constants. If u, v, w, ρ, p and h denote
the values of the flow variables just behind the shock front, then, the Rankine Hugoniot
(R-H) conditions for the strong shock are given as follows [33]:

u = (1− β)D, ρ =
ρ0

β
,

p =

[
1− β +

(
1− 1

β2

)
M−2

A

2

]
ρ0D

2, (2.4)

h =
h0

β
, v = v0, w = w0,

where MA =
√

ρ0D2

µh02
is the Alfven-Mach number. The density ratio β = ρ0

ρ
(0 < β < 1) is

obtained by the following cubic equation:

β3 − β2

[
2b+ γ(1−M−2

A )− 1

(γ + 1)

]
+ β

[
γ − 2 + b

(γ + 1)

]
M−2

A +
bM−2

A

(γ + 1)
= 0, (2.5)

where b̄ = bρ0 is the non-ideal parameter. Also, we have

v = B̂r, (2.6)

where B̂ is the angular velocity of the non-ideal medium at the distance r from the axis
of symmetry. The components of the vorticity vector ~Ω = 1

2
Curl~q are given by

Ωr = 0, Ωθ = −1

2

∂w

∂r
, Ωz =

1

2r

∂(rv)

∂r
, (2.7)

where ~Ω = Ωrêr + Ωθêθ + Ωz êz. Across the shock front, the jump conditions for the
components of vorticity vector are given as follows [8, 9]:

Ωθ =
Ωθ0

β
, Ωz =

Ωz0

β
. (2.8)

3. Similarity Analysis

We consider that for the system of PDEs (2.1), there exists a Lie group of transformation
for which the governing system of PDEs reduces into the system of ODEs. We derive the
symmetry group of the system (2.1) in order to obtain the similarity solutions such that the
system (2.1) remains invariant under this group of transformations. The one-parameter
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(ε) Lie group of transformation [24, 25, 26] is given as follows:

t∗ = t+ εφ(u, v, w, ρ, p, h, r, t), r∗ = r + εψ(u, v, w, ρ, p, h, r, t),

u∗ = u+ εU(u, v, w, ρ, p, h, r, t), v∗ = v + εV (u, v, w, ρ, p, h, r, t), (3.1)

w∗ = w + εW (u, v, w, ρ, p, h, r, t), ρ∗ = ρ+ εS(u, v, w, ρ, p, h, r, t),

p∗ = p+ εP (u, v, w, ρ, p, h, r, t), h∗ = h+ εH(u, v, w, ρ, p, h, r, t),

where φ, ψ, U, V,W, S, P and H are the generators, which are to be found out in such a
manner that the system (2.1) and the shock conditions (2.4) remain invariant under the
Lie group of transformations (3.1). Here, we assume the entity ε is small enough such
that its square and higher power terms can be neglected. The motivation of such a group
is that it allows us to reduce the number of independent variables by one in the given
system of PDEs (2.1) and, therefore, to transform it into the system of ODEs.

Further, we introduce the symbols r1 = t, r2 = r, u1 = ρ, u2 = u, u3 = h, u4 = v, u5 =
w, u6 = p, and pij = ∂ui

∂rj
, where i = 1, 2, 3, 4, 5, 6 and j = 1, 2. The system of equations

(2.1) can be written as

Gc(rj, ui, p
i
j) = 0, c = 1, 2, 3, 4, 5, 6. (3.2)

The above system is said to be constantly conformally invariant under the Lie group of
transformations (3.1), if there exist constants αca(c, a = 1, 2, 3, 4, 5, 6), such that

ZGc = αcaGa, (3.3)

for all smooth surfaces ui = ui(rj), where the Lie derivative Z is defined by

Z = ξjr
∂

∂rj
+ ξiu

∂

∂ui
+ ξipj

∂

∂pij
, (3.4)

with ξ1
r = φ, ξ2

r = ψ, ξ1
u = S, ξ2

u = U, ξ3
u = H, ξ4

u = V, ξ5
u = W, ξ6

u = P , and

ξipj =
∂ξiu
∂rj

+
∂ξiu
∂uc

pcj −
∂ξlr
∂rj

pil −
∂ξlr
∂un

pilp
n
j (n = 1, 2, 3, 4, 5, 6, l = 1, 2) (3.5)

being the generalized derivative transformation. Using Eq. (3.4) in Eq. (3.3), we obtain

∂Gc

∂rj
ξjr +

∂Gc

∂ui
ξiu +

∂Gc

∂pij
ξipj = αcaGa. (3.6)

After putting the value of ξipj from (3.5) into Eq. (3.6), we get a polynomial in pij. We

equate the coefficients of pij and pilp
n
j on both sides, and obtain a system of first-order

linear PDEs in terms of the generators ψ, φ, S, U, P,H, V and W . The obtained system is
known as the system of determining equations, which we solve further to determine the
generators of Lie group of transformations (3.1). From Eqs. (2.1)1 and (3.6)(c = 1), the
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determining equations are obtained as follows:

Sρ − φt − uφr = α11, Su − ρφr = α12, Sh = α13, Sp = 0,

Sv = α14, Sw = α15, −ψt + uSρ − uψr + ρUρ + U = uα11 −
p

ρ
α16,

uSu + ρUu + S − ρψr = ρα11 + uα12 + hα13, uSh + ρUh =
µh

ρ
α12 + uα13, (3.7)

uSv + ρUv = uα14, uSw + ρUw = uα15, uSp + ρUp =
α12

ρ
+ (1− bρ)α16,

St + uSr + ρUr +
Uρ

r
+
uS

r
− uρψ

r2
=
uρ

r
α11 −

v2

r
α12 +

uh

r
α13 +

uv

r
α14.

From Eqs. (2.1)2 and (3.6)(c = 2), the determining equations are obtained as follows:

Uρ = α21, Uu − φt − uφr = α22, Uh −
µh

ρ
φr = α23, Uv = α24,

Uw = α25, Up −
φr
ρ

= 0, uUρ +
1

ρ
Pρ +

µh

ρ
Hρ = uα21 −

p

ρ
α26,

uUu − ψt − uψr +
1

ρ
Pu +

µh

ρ
Hu + U = ρα21 + uα22 + hα23,

uUh +
1

ρ
Ph +

µh

ρ
Hh −

µh

ρ
ψr +

µ

ρ
H − µh

ρ2
S =

µh

ρ
α22 + uα23, (3.8)

uUv +
1

ρ
Pv +

µh

ρ
Hv = uα24, uUw +

1

ρ
Pw +

µh

ρ
Hw = uα25,

uUp +
1

ρ
Pp −

1

ρ
ψr +

µh

ρ
Hp −

1

ρ2
S =

1

ρ
α22 + (1− bρ)α26,

Ut + uUr +
1

ρ
(Pr + µhHr)−

2vV

r
+
v2

r2
ψ =

uρ

r
α21 −

v2

r
α22 +

uh

r
α23 +

uv

r
α24.

From Eqs. (2.1)3 and (3.6)(c = 3), the determining equations are obtained as follows:

Hρ = α31, Hu − hφr = α32, Hh − φt − uφr = α33, Hv = α34,

Hw = α35, Hp = 0, uHρ + hUρ = uα31 −
p

ρ
α36, uHv + hUv = uα34,

uHu + hUu +H − hψr = ρα31 + uα32 + hα33, uHw + hUw = uα35, (3.9)

− ψt + uHh − uψr + hUh + U =
µh

ρ
α32 + uα33, uHp + hUp =

1

ρ
α32 + (1− bρ)α36,

Ht + uHr + hUr +
uH

r
+
hU

r
− uh

r2
ψ =

uρ

r
α31 −

v2

r
α32 +

uh

r
α33 +

uv

r
α34.
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From Eqs. (2.1)4 and (3.6)(c = 4), the determining equations are obtained as follows:

Vρ = α41, Vu = α42, Vh = α43, Vu − φt − uφr = α44, Vw = α45,

Vp = 0, uVρ = uα41 −
p

ρ
α46, uVu = ρα41 + uα42 + hα43, uVw = uα45, (3.10)

uVh =
µh

ρ
α42 + uα43, −ψt + uVv − uψr + U = uα44, uVp =

1

ρα42

+ (1− bρ)α46,

Vt + uVr +
vU

r
+
uV

r
− uv

r2
ψ =

uρ

r
α41 −

v2

r
α42 +

uh

r
α43 +

uv

r
α44.

From Eqs. (2.1)5 and (3.6)(c = 5), the determining equations are obtained as follows:

Wρ = α51, Wu = α52, Wh = α53, Wv = α54, Ww − φt − uφr = α55,

Wp = 0, uWρ = uα51 −
p

ρ
α56, uWu = ρα51 + uα52 + hα53, uWv = uα54,

uWh =
µh

ρ
α52 + uα53, −ψt + uWw − uψr + U = uα55, (3.11)

uWp =
1

ρα52

+ (1− bρ)α56, Wt + uWr =
uρ

r
α51 −

v2

r
α52 +

uh

r
α53 +

uv

r
α54.

From Eqs. (2.1)6 and (3.6)(c = 6), the determining equations are obtained as follows:
p

ρ
φr = α61, α62 = 0, α63 = 0, α64 = 0, α65 = 0,

(1− bρ)φr = 0, (1− bρ)Pρ −
p

ρ
Sρ +

p

ρ
ψr −

P

ρ
+

p

ρ2
S = uα61 −

p

ρ
α66,

(1− bρ)Pu −
p

ρ
Su = ρα61 + uα62 + hα63, (1− bρ)Ph −

p

ρ
Sh =

µh

ρ
α62 + uα63, (3.12)

(1− bρ)Pv −
p

ρ
Sv = uα64, w − p

ρ
Sw = uα65,

(1− bρ)(Pp − ψr)−
p

ρ
Sp + (1− bS) =

1

ρ
α62 + (1− bρ)α66,

(1− bρ)Pr −
p

ρ
Sr =

uρ

r
α61 −

v2

r
α62 +

uh

r
α63 +

uv

r
α64.

After solving the systems of determining equations (3.7)-(3.12) simultaneously, the gen-
erators of the Lie group of transformations (3.1) are obtained as follows:

φ = kt+ d, ψ = (α22 + 2k)r,

S = 0, U = (α22 + k)u, (3.13)

P = 2(α22 + k)p, H = (α22 + k)h,

V = (α22 + k)v, W = (α55 + k)w,

where α22, α55, k and d are the arbitrary constants.

4. Similarity solutions

As per the choice of arbitrary constants in the expressions for the infinitesimal gen-
erators, given by Eq. (3.13), possible four cases of solutions are obtained, and they are
described as follows:
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Case 1: k 6= 0 and (α22 + 2k) 6= 0.

Here, we generate new variables r̃ and t̃ given as below:

r̃ = r, t̃ = t+
d

k
. (4.1)

Now, the new set of generators in terms of r̃ and t̃ after dropping the tilde sign are
obtained from Eq. (3.13) as

φ = kt, ψ = (α22 + 2k)r,

S = 0, U = (α22 + k)u, (4.2)

P = 2(α22 + k)p, H = (α22 + k)h,

V = (α22 + k)v, W = (α55 + k)w.

The invariant surface conditions [26] are given as follows:

φρt + ψρr = S, φut + ψur = U, φpt + ψpr = P, (4.3)

φht + ψhr = H, φvt + ψvr = V, φwt + ψwr = W.

On solving Eqs. (4.3) and (4.2), we obtain the following forms of the flow variables:

ρ = Ŝ(y), u = tδ−1Û(y), p = t2(δ−1)P̂ (y), (4.4)

h = tδ−1Ĥ(y), v = tδ−1V̂ (y), w = t(α55+k)/kŴ (y),

where δ = (α22+2k)
k

. The functions Ŝ, Û , P̂ , Ĥ, V̂ and Ŵ depend only on the similarity
variable y, which is given by

y =
r

tδ
. (4.5)

Let y = 1 denotes the basic position of the shock front, then, the shock path R(t) and
the shock velocity D are given by

R(t) = tδ, D = δtδ−1. (4.6)

It is obvious from the above equation that the shock path obeys the power law. At y = 1
the flow variables from Eq. (4.4) are given as follows:

ρ|y=1 = Ŝ(1), u|y=1 = tδ−1Û(1), p|y=1 = t2(δ−1)P̂ (1), (4.7)

h|y=1 = tδ−1Ĥ(1), v|y=1 = tδ−1V̂ (1), w|y=1 = t(α55+k)/kŴ (1).

The invariance of the shock conditions (2.4), yields the following forms of ρ0, h0, v0 and
w0:

ρ0 = ρ∗, h0 = h∗r−θ, v0 = v∗rλ1 , w0 = w∗rλ2 , (4.8)

where

λ1 = −θ =
δ − 1

δ
=

α22 + k

α22 + 2k
, λ2 =

α55 + k

α22 + 2k
. (4.9)

Here, ρ∗, h∗, v∗, w∗, θ, λ1 and λ2 are constants, and the following relation holds:

λ1 = −θ =
ρ∗v∗

2

µh∗2
. (4.10)
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The following equation gives the value of angular velocity in the undisturbed medium:

B̂0 = v∗rλ1−1, (4.11)

where λ1 = 1 shows that angular velocity is constant. The components of the vorticity
vector in the undisturbed medium vary as follows:

Ωr0 = 0, Ωθ0 = −w
∗λ2

2
rλ2−1, Ωz0 =

(λ1 + 1)v∗

2
rλ1−1. (4.12)

In this case, the condition for MA to be constant is given as

2δ + 2δθ − 2 = 0. (4.13)

Now, from Eqs. (2.4), (4.7) and (4.8), the boundary conditions for the functions Ŝ, Û , P̂ , Ĥ, V̂

and Ŵ are given as:

Ŝ(1) =
ρ∗

β
, Û(1) = (1− β)δ,

P̂ (1) =

[
1− β +

(
1− 1

β2

)
M−2

A

2

]
ρ∗δ2, (4.14)

Ĥ(1) =
δ
√
ρ∗

√
µMAβ

, V̂ (1) = v∗, Ŵ = w∗.

Here, λ1 = λ2 is necessary to use for obtaining the similarity solutions. Using Eqs. (4.4),
(4.6) and (4.8), we can re-write the flow variables as given below:

ρ = ρ0S(y), u = DU(y), p = ρ0D
2P (y), (4.15)

√
µh =

√
ρ0DH(y), v = DV (y), w = DW (y),

where S = Ŝ(y)
ρ∗
, U = Û(y)

δ
, P = P̂ (y)

ρ∗δ2
, H =

√
µĤ(y)√
ρ∗δ

, V = V̂ (y)
δ

and W = Ŵ (y)
δ

. Substituting

Eq. (4.15) into Eq. (2.1), and using Eqs. (4.5) and (4.6), we have the following system
of ODEs in terms of S, U, P ,H, V and W which on suppressing the bar sign becomes:

(U − y)S ′ + SU ′ +
SU

y
= 0,

(δ − 1)

δ
US + (U − y)SU ′ + P ′ +HH ′ − V 2S

y
= 0,

(δ − 1)

δ
H + (U − y)H ′ +HU ′ +

HU

y
= 0,

(δ − 1)

δ
V + (U − y)V ′ +

V U

y
= 0, (4.16)

(δ − 1)

δ
W + (U − y)W ′ = 0,

(1− b̄S)SP ′ − PS ′ = 0,

where the prime represents the differentiation with respect to the similarity variable y.
The non-dimensional components of the vorticity vector, χr = Ωr

D/R
, χθ = Ωθ

D/R
, χz = Ωz

D/R
,
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are given from Eqs. (2.7) and (4.15) as follows:

χr = 0,

χθ =
1

2

λ1W

(U − y)
, (4.17)

χz =
V

2y(U − y)

[
(U − y)− y

(
λ1 +

U

y

)]
.

Using Eqs. (4.14) and (4.15), the boundary conditions are obtained as follows, after
suppressing the bar sign:

S(1) =
1

β
, U(1) = 1− β,

P (1) =

[
1− β +

(
1− 1

β2

)
M−2

A

2

]
, (4.18)

H(1) =
1

MAβ
, V (1) =

v∗

δ
, W (1) =

w∗

δ
.

The system of equations (4.16) and Eq. (4.17) along with the boundary conditions (4.18)
can be solved numerically to obtain the solutions for the present case.

Case 2: k = 0 and α22 6= 0.

This case leads to the following forms of the generators in Eq. (3.13):

φ = d, ψ = α22r, S = 0, U = α22u, (4.19)

P = 2α22p, H = α22h, V = α22v, W = α55w.

Integrating Eqs. (4.3) together with Eqs. (4.19), we obtain the flow variables as follows:

ρ = Ŝ(y), u = eδtÛ(y), p = e2δtP̂ (y), (4.20)

h = eδtĤ(y), v = eδtV̂ (y), w = e
α55
d
tŴ (y),

where δ = α22

d
. The similarity variable y, shock path R(t) and shock velocity D are

described as

y =
r

eδt
, R(t) = eδt, D = δeδt. (4.21)

From the above equation, we observe that the shock path is exponentially varying. For
the present case, the forms of ρ0, h0, v0 and w0 are given by

ρ0 = ρ∗, h0 = h∗r−θ, v0 = v∗rλ1 , w0 = w∗rλ2 , (4.22)

where

θ = −1, λ1 = 1, λ2 =
α55

α22

. (4.23)

In this case, MA remains constant for all values of δ. At y = 1, the flow variables are
written as follows:

ρ|y=1 = Ŝ(1), u|y=1 = eδtÛ(1), p|y=1 = e2δtP̂ (1), (4.24)

h|y=1 = eδtĤ(1), v|y=1 = eδtV̂ (1), w|y=1 = e
α55
d
tŴ (1).
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From Eqs. (2.4), (4.22) and (4.24), we have the following boundary conditions for the

functions Ŝ, Û , P̂ , Ĥ, V̂ and Ŵ :

Ŝ(1) =
ρ∗

β
, Û(1) = (1− β)δ,

P̂ (1) =

[
1− β +

(
1− 1

β2

)
M−2

A

2

]
ρ∗δ2, (4.25)

Ĥ(1) =
δ
√
ρ∗

√
µMAβ

, V̂ (1) = v∗, Ŵ = w∗,

where λ1 = λ2 is necessary for obtaining the similarity solutions. From Eqs. (4.20)-(4.22),
the flow variables are obtained as follows:

ρ = ρ0S(y), u = DU(y), p = ρ0D
2P (y), (4.26)

√
µh =

√
ρ0DH(y), v = DV (y), w = DW (y),

where S = Ŝ(y)
ρ∗
, U = Û(y)

δ
, P = P̂ (y)

ρ∗δ2
, H =

√
µĤ(y)√
ρ∗δ

, V = V̂ (y)
δ

and W = Ŵ (y)
δ

. Substituting

Eqs. (4.26) into Eqs. (2.1), and using Eqs. (4.21), we get the system of ODEs, after
dropping the bar sign as follows:

(U − y)S ′ + SU ′ +
SU

y
= 0,

US + (U − y)SU ′ + P ′ +HH ′ − V 2S

y
= 0,

H + (U − y)H ′ +HU ′ +
HU

y
= 0,

V + (U − y)V ′ +
V U

y
= 0, (4.27)

W + (U − y)W ′ = 0,

(1− b̄S)SP ′ − PS ′ = 0,

where the prime represents the differentiation with respect to the independent variable y.
The non-dimensional components of the vorticity vector for this case are obtained from
Eqs. (2.7) and (4.26) as follows:

χr = 0,

χθ =
1

2

W

(U − y)
, (4.28)

χz = − V

(U − y)
.
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Using Eqs. (4.25) and (4.26), the boundary conditions after suppressing the bar sign are
obtained as follows:

S(1) =
1

β
, U(1) = 1− β,

P (1) =

[
1− β +

(
1− 1

β2

)
M−2

A

2

]
, (4.29)

H(1) =
1

MAβ
, V (1) =

v∗

δ
, W (1) =

w∗

δ
.

The system of equations (4.27) and Eq. (4.28) together with boundary conditions (4.29)
can be solved numerically to obtain the solutions for this case.

Case 3: k 6= 0 and α22 = 0.

We define new variable r̃ and t̃ as follows:

r̃ = r, t̃ = t+
d

k
.

So, the new set of generators in terms of r̃ and t̃ after dropping the tilde sign are obtained
from Eq. (3.13) as

φ = kt, ψ = 2kr, S = 0, U = ku, (4.30)

P = 2kp, H = kh, V = kv, W = (α55 + k)w.

On integrating Eq. (4.3) together with the Eq. (4.30), we obtain the following forms of
the flow variables:

ρ = Ŝ(y), u = tÛ(y), p = t2P̂ (y), (4.31)

h = tĤ(y), v = tV̂ (y), w = t
α55+k
k Ŵ (y),

where the similarity variable y, shock path R(t) and shock velocity D are given as

y =
r

t2
, R(t) = t2, D = 2t. (4.32)

This is a particular case of the power law shock path (R(t) = t2) with shock velocity
D = 2t. For the present case, the forms of ρ0, h0, v0 and w0 are given by:

ρ0 = ρ∗, h0 = h∗r−θ, v0 = v∗rλ1 , w0 = w∗rλ2 , (4.33)

where

θ = −1

2
, λ1 =

1

2
, λ2 =

α55 + k

2k
. (4.34)

MA remains constant for all values of δ for this case also. At y = 1, the flow variables are
given as follows:

ρ|y=1 = Ŝ(1), u|y=1 = tÛ(1), p|y=1 = t2P̂ (1), (4.35)

h|y=1 = tĤ(1), v|y=1 = tV̂ (1), w|y=1 = t
α55+k
k Ŵ (1).
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From Eqs. (2.4), (4.33) and (4.35), we have the following boundary conditions for the

functions Ŝ, Û , P̂ , Ĥ, V̂ and Ŵ :

Ŝ(1) =
ρ∗

β
, Û(1) = 2(1− β),

P̂ (1) = 4

[
1− β +

(
1− 1

β2

)
M−2

A

2

]
ρ∗, (4.36)

Ĥ(1) =
2
√
ρ∗

√
µMAβ

, V̂ (1) = v∗, Ŵ = w∗.

where λ1 = λ2 is necessary for obtaining the similarity solutions. From Eqs. (4.31)-(4.33),
the flow variables are obtained as follows:

ρ = ρ0S(y), u = DU(y), p = ρ0D
2P (y), (4.37)

√
µh =

√
ρ0DH(y), v = DV (y), w = DW (y),

where S = Ŝ(y)
ρ∗
, U = Û(y)

2
, P = P̂ (y)

4ρ∗
, H =

√
µĤ(y)

2
√
ρ∗

, V = V̂ (y)
2

and W = Ŵ (y)
2

. Substituting

Eqs. (4.37) into Eqs. (2.1), and using Eqs. (4.32), we obtain the following system of
ODEs after dropping the bar sign:

(U − y)S ′ + SU ′ +
SU

y
= 0,

1

2
US + (U − y)SU ′ + P ′ +HH ′ − V 2S

y
= 0,

1

2
H + (U − y)H ′ +HU ′ +

HU

y
= 0,

1

2
V + (U − y)V ′ +

V U

y
= 0, (4.38)

1

2
W + (U − y)W ′ = 0,

(1− b̄S)SP ′ − PS ′ = 0,

where the prime represents the differentiation with respect to the independent variable
y. As in previous case, we obtain the non-dimensional components of the vorticity vector
for this case using Eqs. (2.7) and (4.37) as follows:

χr = 0,

χθ =
1

4

W

(U − y)
, (4.39)

χz =
1

2y

[
V − yV

(U − y)

(
1

2
+
U

y

)]
.
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Using Eqs. (4.36) and (4.37), the boundary conditions after suppressing the bar sign are
obtained as follows:

S(1) =
1

β
, U(1) = 1− β,

P (1) =

[
1− β +

(
1− 1

β2

)
M−2

A

2

]
, (4.40)

H(1) =
1

MAβ
, V (1) =

v∗

2
, W (1) =

w∗

2
.

The system of Eqs. (4.38) and Eqs. (4.39) together with boundary conditions (4.40) can
be integrated numerically to obtain the solutions for this case.

Case 4: k = 0 and α22 = 0.

In this case, similarity solutions do not exist.

5. Numerical results and discussion

In this section, we discuss Case 1 in detail. For obtaining the distributions of the flow
variables, namely the density S(y), pressure P (y), magnetic field H(y), radial fluid veloc-
ity U(y), azimuthal fluid velocity V (y), axial fluid velocity W (y), azimuthal component
χθ(y) and axial component χz(y) of vorticity vector in Case 1, we integrate the system of
ODEs (4.16) and Eqs. (4.17) together with the boundary conditions (4.18) numerically
by using the Runge-Kutta method of 4th-order with the help of the software package
“MATLAB”. We obtain the distributions of the flow variables behind the shock front.
For numerical calculations, we take the values of physical parameters as follows:
γ = 4/3, 5/3, b̄ = 0, 0.05, 0.1,M−2

A = 0, 0.02, 0.04, λ1 = 0.2, 0.3, 0.4, v∗ = 1, w∗ = 1 [33, 34].
The values γ = 4/3 and γ = 5/3 stand for relativistic gas and fully ionized gas, respec-
tively, therefore, appropriate for the stellar medium. These two values of γ mark the
most general values observed in real stars. According to Rosenau and Frankenthal [35],
the effect of the magnetic field on the flow-field behind the shock wave is noteworthy when
M−2

A ≥ 0.01; therefore, the above values of M−2
A are taken for calculation in the present

problem. The values b̄ = 0 and M−2
A = 0 correspond to ideal case and non-magnetic case,

respectively. The similarity exponent δ is found from Eq. (4.9) as δ = 1
1−λ1 .

Table 1 shows the values of density ratio β for different values of γ, b̄ and M−2
A . We have

used these values in numerical calculations. From Table 1, we observe that β increases
with an increase in the value of any of the parameters γ, b̄ or M−2

A . Figures 1-4 exhibit

the distributions of the non-dimensional flow variables S(y)
S(1)

, P (y)
P (1)

, H(y)
H(1)

, U(y)
U(1)

, V (y)
V (1)

, W (y)
W (1)

, χθ

and χz with respect to the similarity variable y for different values of b̄,M−2
A , λ1 and γ.

From Figs. 1-4, it is observed that the reduced density, pressure, radial fluid velocity
and the axial component of vorticity vector increase, whereas the reduced magnetic field,
azimuthal fluid velocity, axial fluid velocity and the azimuthal component of the vorticity
vector decrease monotonically on moving from the shock front y = 1 to the axis of sym-
metry. The variations in non-ideal parameter, Alfven-Mach number, ambient azimuthal
velocity exponent and adiabatic exponent have remarkable effects on the flow variables
which are discussed as follows:
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5.1. Effect of non-ideal parameter b̄ on the flow variables.
From Fig. 1, we can see the effect of the non-ideal parameter b̄ on the profiles of the
flow variables for γ = 5/3,M−2

A = 0.02 and λ1 = 0.3. We observe that the increment in
the parameter b̄ causes the reduced density, pressure, radial fluid velocity and the axial
component of the vorticity vector to decrease (see Figs. 1(a, b, d, h)), whereas the reduced
magnetic field, azimuthal fluid velocity, axial fluid velocity and the azimuthal component
of the vorticity vector to increase (see Figs. 1(c, e, f, g)) behind the shock front.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Flow patterns with γ = 5/3,M−2
A = 0.02 and λ1 = 0.3.

5.2. Effect of the parameter M−2
A on the flow variables.

Figure 2 depicts the effect of M−2
A (the strength of ambient magnetic field) on the profiles

of the flow variables for γ = 5/3, b̄ = 0.05 and λ1 = 0.3. As we increase the value of M−2
A ,
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all the flow variables except the axial component of vorticity vector increase (see Figs.
2(a, b, c, d, e, f, g)). The axial component of vorticity vector decreases with an increase
in the value of M−2

A behind the shock front (see Fig. 2(h)).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Flow patterns with γ = 5/3, b̄ = 0.05 and λ1 = 0.3.

5.3. Effects of ambient azimuthal or axial fluid velocity exponent λ1(= λ2) on
the flow variables.
Figure 3 shows the effects of λ1(= λ2) on the profiles of the flow variables for γ = 5/3, b̄ =
0.05 and M−2

A = 0.02. On increasing the value of λ1, the reduced density, pressure, radial
fluid velocity increase (see Figs. 3(a, b, d)), whereas the reduced azimuthal fluid velocity,
axial fluid velocity and the azimuthal component of vorticity vector decrease (see Figs.
3(e, f, g)) as we move towards the axis of symmetry from the shock front. The reduced
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magnetic field increases near the shock front and decreases near the axis of symmetry
(see Fig. 3(c)), whereas the axial component of vorticity vector has reverse effect, i.e., it
decreases near the shock front and increases near the axis of symmetry (see Fig. 3(h))
with an increase in the value of λ1(= λ2).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Flow patterns γ = 5/3, b̄ = 0.05 and M−2
A = 0.02.

5.4. Effect of adiabatic exponent γ on the flow variables.
From Fig. 4, we can see the effect of γ on the profiles of the flow variables for b̄ =
0.05,M−2

A = 0.02 and λ1 = 0.3. With an increase in the value of γ, the reduced density,
pressure, radial fluid velocity and the axial component of vorticity vector decrease (see
Figs. 4(a, b, d, h)), whereas the reduced magnetic field, azimuthal fluid velocity, axial
fluid velocity and the azimuthal component of vorticity vector increase (see Figs. 4(c, e,
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f, g)) behind the shock front. The variation in the values of γ and b̄ has the same effects
on the flow variables (see Figs. (1, 4)).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Flow patterns with M−2
A = 0.02, b̄ = 0.05 and λ1 = 0.3.

6. Conclusion

The present work is concerned with the study of one-dimensional cylindrical shock
waves in a rotating isothermal flow of a non-ideal gas with the effect of the axial magnetic
field. We have used a one-parameter Lie group of transformations to obtain the similarity
solutions for the problem under consideration. We determined the infinitesimal genera-
tors of the Lie group of transformations for the system of non-linear PDEs (2.1) under
which the system of PDEs remains invariant and produces similarity solutions. Based on
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Table 1. Values of density ratio (β) for different values of γ, b̄ and M−2
A .

γ b̄ M−2
A β

5/3 0 0 0.250000
0.02 0.271701
0.04 0.292116

5/3 0.05 0 0.287500
0.02 0.302928
0.04 0.318450

5/3 0.1 0 0.325000
0.02 0.336067
0.04 0.347657

4/3 0 0 0.142857
0.02 0.185149
0.04 0.218112

4/3 0.05 0 0.185714
0.02 0.212525
0.04 0.237865

4/3 0.1 0 0.228571
0.02 0.245565
0.04 0.263610

the arbitrary constants occurring in the expressions for the generators of the Lie group of
transformations, we obtained four cases of possible solutions. Among all the possibilities,
only three cases admit similarity solutions. In the first and third cases, the shock path
follows the power law, whereas in the second case, the shock path follows the exponential
law. We discussed the first case in detail in Section 5. The results have been shown
through tables and graphs. The present study concludes the following:

(i) The density ratio β increases as we increase the values of γ, b̄ or M−2
A .

(ii) The reduced density, pressure, radial fluid velocity and the axial component of the
vorticity vector increase, whereas the reduced magnetic field, azimuthal fluid veloc-
ity, axial fluid velocity and the azimuthal component of the vorticity vector decrease
monotonically on moving inwards from the shock front y = 1 to the axis of symmetry.

(iii) Increment in the parameter b̄ causes the reduced density, pressure, radial fluid veloc-
ity and the axial component of the vorticity vector to decrease, whereas the reduced
magnetic field, azimuthal fluid velocity, axial fluid velocity and the azimuthal com-
ponent of vorticity vector to increase behind the shock front.

(iv) Increase the value of M−2
A results in a decrease in the axial component of the vor-

ticity vector; however, other flow variables increase in the region behind the shock
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front when we increase the value of M−2
A .

(v) On increasing the value of λ1(= λ2) the reduced density, pressure, radial fluid ve-
locity increase, whereas the reduced azimuthal fluid velocity, axial fluid velocity and
the azimuthal component of vorticity vector decrease as we move towards the axis
of symmetry from the shock front. The reduced magnetic field increases near the
shock front and decreases near the axis of symmetry, whereas the axial component
of the vorticity vector has a reverse effect, i.e., it decreases near the shock front and
increases near the axis of symmetry with an increase in the value of λ1(= λ2).

(vi) The parameters γ and b̄ have the same effects on the flow variables.

ACKNOWLEDGEMENT

The first and second authors acknowledge the financial support awarded by the “Min-
istry of Human Resource Development”, New Delhi, India under the scheme Senior Re-
search Fellowship.

CONFLICT OF INTEREST

This work does not have any conflict of interest.

References

[1] Chaturani P. Strong cylindrical shocks in a rotating gas. Applied Scientific Research.1971;23(1):197–
211.

[2] Nath O, Ojha SN, Takhar HS. Propagation of a shock wave in a rotating interplanetary atmosphere
with increasing energy.Theor. Chim. Acta.1999;44(1):87-98.

[3] Vishwakarma JP, Nath G. Propagation of a cylindrical shock wave in a rotating dusty gas with heat
conduction and radiation heat flux.Physica Scripta.2010;81(4):045401.

[4] Vishwakarma JP, Nath G. Cylindrical shock wave generated by a piston moving in a non-uniform self-
gravitating rotational axisymmetric gas in the presence of conduction and radiation heat-flux. Advances
in Engineering Research.2011;2:537-576.

[5] Vishwakarma JP, Vishwakarma S. Magnetogasdynamic cylindrical shock wave in a rotating gas with
variable density.International Journal of Applied Mechanics and Engineering. 2007;12(1):283-297.

[6] Hishida M, Fujiwara T, Wolanski P, Fundamentals of rotating detonations, Shock waves.2009;19(1):1-
10.

[7] Ganguly A, Jana M, Propagation of shock wave in a self-gravitating radiative magnetohydrodynamic
non-uniform rotating atmosphere, Bull Cal Math Soc.1998;90:77-82.

[8] Levin VA, Skopina GA, Detonation wave propagation in rotational gas flows, Journal of Applied
Mechanics and Technical Physics.2004;45(4):457-460.

[9] Nath G, Magnetogasdynamic shock wave generated by a moving piston in a rotational axisymmetric
isothermal flow of perfect gas with variable density, Advances in Space Research.2011;47(9):1463-1771.

[10] Zhao N, Mentrelli A, Ruggeri T, Sugiyama M, Admissible shock waves and shock-induced phase
transitions in a van der Waals fluid, Physics of Fluids.2011;23(8):086101.

[11] Chauhan S, Chauhan A, Arora R, Similarity solutions of converging shock waves in an ideal relaxing
gas with dust particles, European physical journal plus (DOI: 10.1140/epjp/s13360-020-00823-9).

[12] Rao MPR, Purohit NK, Self-similar piston problem in non-ideal gas, International Journal of Engi-
neering Science.1976;14(1):91-97.

[13] Nath G, Self-similar solution of cylindrical shock wave propagation in a rotational axisymmetric
mixture of a non-ideal gas and small solid particles, Meccanica.2012;47:1797-1814.

[14] Nath G, Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas,
Indian Journal of Physics.2016;90(9):1055-1068.



21

[15] Vishwakarma JP, Maurya AK, Singh KK, Self-similar adiabatic flow headed by a magnetogasdy-
namic cylindrical shock wave in a rotating non-ideal gas, Geophysical and Astrophysical Fluid Dynam-
ics.2007;101(2):155-168.

[16] Arora R, Spherical shock waves in magneto-gas-dynamics, Canadian Applied Mathematics
Quaterly.2007;15(1):1-12.

[17] Pullin DI, Mostert W, Wheatley V, Samtaney R, Converging cylindrical shocks in ideal magnetohy-
drodynamics, Physics of Fluids.2014;26(9):097103.

[18] Singh D, Arora R, Similarity solutions for imploding shocks in a non-ideal magnetogasdynamics,
International Journal of Applied and Computational Mathematics.2020;6(2):1-14.

[19] Singh D, Arora R, Propagation of shock waves in a non-ideal gas under the action of magnetic field,
Mathematical Methods in the Applied Sciences.2020:1-15.

[20] Singh D, Arora R, Chauhan A, Similarity solutions for strong shock waves in magnetogasdynamics
under a gravitational field, Ricerche di Matematica.2020:1-20.

[21] Radha Ch, Sharma VD, Imploding cylindrical shock in a perfectly conducting and radiating gas,
Physics of Fluids B: Plasma Physics.1993;5(12):4287-4294.

[22] Summers D, An idealised model of a magnetohydrodynamic spherical blast wave applied to a flare
produced shock in the solar wind, Astronomy and Astrophysics.1975;45:151-158.

[23] Hunter JK, Ali G, Wave interactions in magnetohydrodynamics, Wave Motion.1998;27(3):257-277.
[24] Bluman GW, Cole JD, Similarity Methods for Differential Equations, Springer, Berlin.1974.
[25] Bluman GW, Kumei S, Symmetries and Differential Equations, Springer, New York.1989.
[26] Logan JD, Perez JDJ, Similarity solutions for reactive shock hydrodynamics, SIAM Journal on
Applied Mathematics.1980;39(3):512-527.

[27] Hydon PE, Symmetry Methods for Differential Equations. A Beginners Guide, Cambridge University
Press, London.2000.

[28] Sharma H, Arora R, Similarity solutions of cylindrical shock waves in non-ideal magnetogasdynamics
with thermal radiation, Differential Equations and Dynamical Systems.2019;27(13):169-180.

[29] Jena J, Self-similar solutions in a plasma with axial magnetic field (θ-pinch),
Meccanica.2012;47(5):1209-1215.

[30] Laumbach DD, Probstein RF, Self-similar strong shocks with radiation in a decreasing exponential
atmosphere, Physics of Fluids.1970;13(5):1178-1183.

[31] Lerche I, Mathematical theory of cylindrical isothermal blast waves in a magnetic field, Australian
Journal of Physics.1981;34(3):279-302.

[32] Sachdev PL, Ashraf S, Converging spherical and cylindrical shocks with zero temperature gradient
in the rear flow field, Zeitschrift für angewandte Mathematik und Physik ZAMP.1971;22(6): 1095-1102.

[33] Nath G, Singh S, Similarity solutions for magnetogasdynamic cylindrical shock wave in rotating ideal
gas using Lie group theoretic method: Isothermal flow, International Journal of Geometric Methods in
Modern Physics.2020 (doi:10.1142/S0219887820501236).

[34] Nath G, Propagation of shock wave in a rotational axisymmetric ideal gas with density varying
exponentially and azimuthal magnetic field: isothermal flow, Indian Journal of Physics.2020:1-13.

[35] Rosenau P, Frankenthal S, Equatorial propagation of axisymmetric magnetohydrodynamic shocks,
Physics of Fluids.1976;19(12):1889-1899.

[36] Nath G, Propagation of a strong cylindrical shock wave in a rotational axisymmetric dusty gas with
exponentially varying density, Research in Astronomy and Astrophysics.2010;10(5):445.


