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Abstract

In this paper, we propose hybrid inertial parallel subgradient extragradient-line algorithm

for approximating a common solution of variational inequality problems with monotone and L-

Lipschitz continuous mappings but L is unknown and prove strong convergence under some mild

conditions in Hilbert space. We then give numerical examples to demonstrate the performance

of our algorithms better than some of the algorithms mentioned in the literature. The novelty

of our algorithm is that we have shown the algorithm is resilient and has good quality when the

number of subproblems is large, the algorithm can be applied to solve image deblurring when

an image has common types of blur effects.
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1 Introduction and preliminaries

Let H be a real Hilbert space with the inner product 〈., .〉 and induced norm ‖ . ‖. Let C be a

nonempty closed convex subset of H. This paper, we consider the variational inequality problem

(VIP) that is to find a point x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1.1)

∗Corresponding author.

Email addresses: pronpat.pee@gmail.com (P. Peeyada), watcharaporn.ch@up.ac.th (W. Cholamjiak), dam-

rongsak.ya@up.ac.th (D. Yambangwai)
1



where A is a mapping of H into H. We denote V I(C,A) is the solution set of VIP(1.1).

It is well known that the VIP(1.1) is equivalent to the fixed point problem: find a point x∗ ∈ C

such that

x∗ = PC(x∗ − λAx∗),

where λ is any positive real number. The VIP (1.1) is a fundamental problem in nonlinear analysis

and optimization theory which is applied in many ways, such as signal processing, image recovery,

transportation problems, economics, engineering, see [1, 4, 5, 17, 19, 20, 23, 26] and the references

therein.

Projection type methods have been extensively used to solve VIP(1.1), see [4, 7, 10]. An

important projection method which is called the Extragradient Method (EGM) was proposed by

Korpelevich [21] in 1976, see also [3]. The method is generated by giving the current iterate xn,

compute






yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),
(1.2)

where λ ∈ (0, 1
L
) and PC denotes the metric projection from H onto C.

In recent years, the EGM (1.2) has received great attention by many authors, who improved it

in various ways (see, for example, [7, 9, 10, 12, 13, 15, 18, 31, 34] and the references therein).

In 2011, Censor et al. [11] improved the EGM (1.2) for approximating a solution of the VIP(1.1)

in Hilbert spaces. The method have been called the subgradient extragradient method (SEGM).

Their method is of the form :






























x1 ∈ C,

yn = PC(xn − λAxn),

Tn = {w ∈ H : 〈xn − λAxn − yn, w − yn〉 ≤ 0},

xn+1 = PTn(xn − λAyn).

(1.3)

In (1.3), the second projection PC of the EGM (1.2) was replaced with a projection onto a half-

space Tn which can be calculated easier more than a projection onto a complex closed convex set

C. Under the assumptions of monotonicity and continuity of the operator A, Censor et al. [11]

obtained weak convergence results for solving VIP(1.1) using (1.3).

Recently, Alvarez and Attouch [2], and Censor et al. [11], used the inertial extrapolation

term to speed up the rate of convergence of the SEGM for solving the VIP(1.1) in Hilbert spaces.

This proposed algorithm have been called inertial subgradient extragradient method (ISEGM).The

algorithm is designed by choosing x0, x1 ∈ H and compute






























wn = xn + αn(xn − xn−1),

yn = PC(wn − τAwn),

Tn = {x ∈ H|〈wn − τAwn − yn, x − yn〉 ≤ 0},

xn+1 = PTn(wn − τAyn),

(1.4)
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where τ > 0, αn ≥ 0 are suitable parameters. Under several appropriate conditions imposed on

these parameters, weak convergence result was established, here, the assumption of monotonicity

and Lipschitz continuous which Lipschitz constant is known were required.

Our interest in this paper is to study of finding common solutions of variational inequality

problems (CVIP). The CVIP is stated as follows: Let C be a nonempty closed and convex subset

of H. Let Ai : H → H, i = 1, 2, ..., N be mappings. The CVIP is to find x∗ ∈ C such that

〈

Aix
∗, x − x∗

〉

≥ 0, ∀x ∈ C, i = 1, 2, ..., N. (1.5)

If N = 1, CVIP (1.5) becomes VIP (1.1).

Very recently, Suantai et al. [28] motivated the viscosity-type subgradient extragradient-line

method which introduced by Shehu and Iyiola [21] to solve the CVIP (1.5). This algorithm was

called the parallel viscosity-type subgradient extragradient-line method (PVSEGM). The strong

convergence theorem was proved when each of the operator Ai is Lipschitz continuous monotone

mapping that the Lipschitz constant is unknown. This algorithm start with x1 ∈ H and compute







































yi
n = PC(xn − λi

nAixn), λi
n = ρlin ,

(lin is the smallest nonegative integer li such that λi
n‖Aixn − Aiy

i
n‖ ≤ µ‖r

ρlin
(xn)‖),

zi
n = PT i

n
(xn − λi

nAyi
n),

xn+1 = α0
nf(xn) +

N
∑

i=1

αi
nzi

n, n ≥ 1,

(1.6)

where T i
n = {z ∈ H : 〈xn − λi

nAixn − yi
n, z − yi

n〉 ≤ 0} with ρ, µ ∈ (0, 1) and {αn}
∞
n=1 ⊆ (0, 1).

The sequence {xn}
∞
n=1 generated by (1.6) was proved that it converges strongly to x∗ ∈ VI(C,A),

where x∗ = PV I(C,A)f(x∗) is the unique solution of the variational inequality

〈

(I − f)x∗, x − x∗
〉

≥ 0,∀x ∈ V I(C,A), (1.7)

where f : C → C be a strict contraction mapping with constant k ∈ (0, 1] under the following

conditions

(C1) lim
n→∞

α0
n = 0 and (C2)

∞
∑

n=1

α0
n = ∞.

The advantage of the PVSEGM was presented to solve the problem of multiblur effects in an

image restoration. The resulting image quality is improved sharper by using the PVSEGM in the

resolution of common resolution (VIP) problems.

In this paper, motivated and inspired by the works in literature, and by the ongoing research

in these directions, we introduce combining hybrid inertial techniques with a parallel subgradient

extragradient-line method for solving CVIP (1.5). Numerical experiments are also conducted to

illustrate the efficiency of the proposed algorithms. Moreover, the problem of multiblur effects in

an image is solved by applying our algorithm.
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2 Main result

In this section, we propose the hybrid inertial parallel subgradient extragradient-line method

for solving CVIP (1.5). Let H be a real Hilbert space and C be a nonempty closed convex subset of

H. Let Ai : H → H be monotone mappings and Li-Lipschitz continuous on H but Li is unknown

for all i = 1, 2, ..., N such that Υ =
N
⋂

i=1

V I(C,Ai) 6= ∅. Suppose {xn}
∞
n=1 is generated in the

following Algorithm 2.1 :

Algorithm 2.1. Take ρ ∈ (0, 1), µ ∈ (0, 1). Select arbitrary points x0, x1 ∈ H and {θn} ⊆ [0, θ]

for some θ ∈ [0, 1). Set n := 1.

Step 1 Compute

tn = xn + θn(xn − xn−1), ∀n ≥ 1.

Step 2 Compute yi
n for all i = 1, 2, ..., N by

yi
n = PC(tn − λi

nAitn), ∀n ≥ 1,

where λi
n = ρlin and lin is the smallest nonnegative integer such that

λi
n ‖ Aitn − Aiy

i
n ‖≤ µ ‖ tn − yi

n ‖ . (2.1)

Step 3 Compute

zi
n = PT i

n
(tn − λi

nAiy
i
n),

where T i
n := {z ∈ H :

〈

tn − λi
nAitn − yi

n, z − yi
n

〉

≤ 0}.

Step 4 Compute

ūn = α0
n(tn) +

N
∑

i=1

αi
nzi

n, n ≥ 1, (2.2)

where αi
n ∈ (0, 1), ∀i = 1, 2, ..., N and

N
∑

i=0

αi
n = 1, ∀n ∈ N .

Step 5 Compute

xn+1 = PCn+1
x1

where Cn+1 := {z ∈ Cn :‖ ūn − z ‖≤‖ tn − z ‖}.

Set n + 1 → n and go to Step1.
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Lemma 2.2. There exists a nonnegative integer lin satisfying (2.1).

Proof For each i = 1, 2, ..., N and n ∈ N, we let yi
l = PC(tn − ρlAitn) for all l ∈ N. We divide

the proof into two cases as follows:

case I: if ‖ tn − yi
n0

‖= 0 for some n0 ≥ 1, then we take lin = 0 which satisfies (2.1).

case II: if ‖ tn − yi
n1

‖6= 0 for some n1 ≥ 1, then we assume the contrary that

ρn1 ‖ Aitn − Aiy
i
n1

‖> µ ‖ tn − yi
n1

‖ .

Then, by Lemma 6.3 of [16] and the fact that ρ ∈ (0, 1), we obtain

‖ Aitn − Aiy
i
n1

‖ >
µ

ρn1
‖ tn − yi

n1
‖

≥
µ

ρn1
min{1, ρn1} ‖ tn − yi

1 ‖

= µ ‖ tn − yi
1 ‖ . (2.3)

By using the continuity of PC , we have that

yi
n1

= PC(yn − ρn1Aitn) → PC(tn), n1 → ∞ for all i = 1, 2, ..., N.

We consider two cases: tn ∈ C and tn /∈ C.

(i) If tn ∈ C, then tn = PC(tn). Now, since ‖ tn − yi
n1

‖6= 0 and ρn1 ≤ 1, it follows from Lemma 6.3

of [16] again, we have

0 < ‖ tn − yi
n1

‖≤ max{1, ρn1} ‖ tn − yi
1 ‖

= ‖ tn − yi
1 ‖ . (2.4)

Takeing n1 → ∞ in (2.1), we have that

0 =‖ Aitn − Aitn ‖≥ µ ‖ tn − yi
1 ‖> 0.

This is a contradiction and hence (2.1) is well defined.

(ii) If tn /∈ C, then

ρn1 ‖ Aitn − Aiy
i
n1

‖→ 0, as n1 → ∞

while

lim
n1→∞

µ ‖ tn − yi
n1

‖ = µ lim
n1→∞

‖ tn − PC(tn − ρn1Aitn) ‖

= µ ‖ tn − PC(tn) ‖> 0.

This is a contradiction. Therefore, linesearch in Algorithm 3.1 is well defined and implementable.

Theorem 2.3. Assume that the conditions hold:

(i)

∞
∑

n=1

θn ‖ xn − xn−1 ‖< ∞.

(ii) lim inf
n→∞

αi
n > 0 for all i = 1, 2, ..., N .

Then the sequence {xn} generated by Algorithm 2.1 converges strongly to z ∈ Υ.
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Proof We split the proof into five steps.

Step 1. Show that {xn} is well defined. From C1 = C, C1 is closed and convex. Assume that Cn

is closed and convex. From the definition of Cn+1 and Lemma 1.3 in [22], we get Cn+1 is closed

and convex. Let x∗ ∈ Υ and si
n = tn − λi

nAiy
i
n,∀n ≥ 1, i = 1, 2, .., N , we have

‖ zi
n − x∗ ‖2 = ‖ PT i

n
(si

n) − x∗ ‖2

= ‖ PT i
n
(si

n) − si
n ‖2 +2

〈

PT i
n
(si

n) − si
n, si

n − x∗
〉

+ ‖ si
n − x∗ ‖2 . (2.5)

Since x∗ ∈ Υ ⊆ C ⊆ T i
n and by the characterization of the metric projection PT i

n
, we get

2 ‖ si
n − PT i

n
(si

n) ‖2 +2
〈

PT i
n
(si

n) − si
n, si

n − x∗
〉

= 2
〈

si
n − PT i

n
(si

n), x∗ − PT i
n
(si

n)
〉

≤ 0. (2.6)

This implies that

‖ si
n − PT i

n
(si

n) ‖2 +2
〈

PT i
n
(si

n) − si
n, si

n − x∗
〉

≤ − ‖ si
n − PT i

n
(si

n) ‖2 . (2.7)

By the definition of Algorithm 3.1 the inequalities (2.5) and (2.6), we have

‖ zi
n − x∗ ‖2 ≤ ‖ si

n − x∗ ‖2 − ‖ si
n − zi

n ‖2

= ‖ (tn − x∗) − λi
nAiy

i
n ‖2 − ‖ (tn − zi

n) − λi
nAiy

i
n ‖2

= ‖ tn − x∗ ‖2 − ‖ tn − zi
n ‖2 +2λi

n

〈

− tn + x∗, Aiy
i
n

〉

+2λi
n

〈

tn − zi
n, Aiy

i
n

〉

= ‖ tn − x∗ ‖2 − ‖ tn − zi
n ‖2 +2λi

n

〈

x∗ − zi
n, Aiy

i
n

〉

. (2.8)

By the monotonicity of the operator Ai, we have

0 ≤
〈

Aiy
i
n − Aix

∗, yi
n − x∗

〉

=
〈

Aiy
i
n, yi

n − x∗
〉

−
〈

Aix
∗, yi

n − x∗
〉

≤
〈

Aiy
i
n, yi

n − x∗
〉

=
〈

Aiy
i
n, yi

n − zi
n

〉

+
〈

Aiy
i
n, zi

n − x∗
〉

.

Thus

〈

x∗ − zi
n, Aiy

i
n

〉

≤
〈

Aiy
i
n, yi

n − zi
n

〉

. (2.9)

Using (2.9) in (2.8), we obtain

‖ zi
n − x∗ ‖2 ≤ ‖ tn − x∗ ‖2 − ‖ tn − zi

n ‖2 +2λi
n

〈

Aiy
i
n, yi

n − zi
n

〉

= ‖ tn − x∗ ‖2 − ‖ tn − yi
n ‖2 − ‖ yi

n − zi
n ‖2 −2

〈

tn − yi
n, yi

n − zi
n

〉

+2λi
n

〈

Aiy
i
n, yi

n − zi
n

〉

= ‖ tn − x∗ ‖2 − ‖ tn − yi
n ‖2 − ‖ yi

n − zi
n ‖2

+2
〈

tn − λi
nAiy

i
n − yi

n, zi
n − yi

n

〉

. (2.10)
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Consider the following inequalities

〈

tn − λi
nAiy

i
n − yi

n, zi
n − yi

n

〉

=
〈

tn − λi
nAitn − yi

n, zi
n − yi

n

〉

+
〈

λi
nAitn − λi

nAiy
i
n, zi

n − yi
n

〉

≤
〈

λi
nAitn − λi

nAiy
i
n, zi

n − yi
n

〉

.

Using the last inequality in (2.10), we have that

‖ zi
n − x∗ ‖2 ≤ ‖ tn − x∗ ‖2 − ‖ tn − yi

n ‖2 − ‖ yi
n − zi

n ‖2 +2
〈

λi
nAitn − λi

nAiy
i
n, zi

n − yi
n

〉

≤ ‖ tn − x∗ ‖2 − ‖ tn − yi
n ‖2 − ‖ yi

n − zi
n ‖2 +2λi

n ‖ Aitn − Aiy
i
n ‖‖ zi

n − yi
n ‖

≤ ‖ tn − x∗ ‖2 − ‖ tn − yi
n ‖2 − ‖ yi

n − zi
n ‖2 +2µ ‖ tn − yi

n ‖‖ zi
n − yi

n ‖

≤ ‖ tn − x∗ ‖2 − ‖ tn − yi
n ‖2 − ‖ yi

n − zi
n ‖2 +µ(‖ tn − yi

n ‖2 + ‖ zi
n − yi

n ‖2)

= ‖ tn − x∗ ‖2 −(1 − µ)(‖ tn − yi
n ‖2 + ‖ yi

n − zi
n ‖2). (2.11)

This implies that

‖ ūn − x∗ ‖2 ≤ α0
n ‖ tn − x∗ ‖2 +

N
∑

i=1

‖ zi
n − x∗ ‖2

≤ ‖ tn − x∗ ‖2 .

This shows that ‖ ūn − x∗ ‖=‖ tn − x∗ ‖, this mean that x∗ ∈ Cn, ∀n ≥ 1. This implies that {xn}

is well-defined.

Step 2. Show that lim
n→∞

‖ xn −x1 ‖ exists. Since Υ is a nonempty, closed and convex subset of H,

there exists a unique v ∈ Υ such that v = PΥx1. From xn = PCnx1 and xn+1 ∈ Cn, for all n ≥ 1,

we get

‖ xn − x1 ‖≤‖ xn+1 − x1 ‖ ; ∀n ≥ 1. (2.12)

On the other hand, as Υ ⊂ Cn, we obtain

‖ xn − x1 ‖≤‖ v − x1 ‖ ; ∀n ≥ 1. (2.13)

It follows from (2.12) and (2.13) that the sequence {xn} is bounded and nondecreasing.

Therefore lim
n→∞

‖ xn − x1 ‖ exists.

Step 3. Show that xn → ω ∈ C as n → ∞. For k > j, by the definition of Cj , since xk = PCk
x1 ∈

Ck ⊂ Cj, so by the property of the metric projection PCj
[6], we have

‖ xk − xj ‖
2≤‖ xk − x1 ‖2 − ‖ xj − x1 ‖2 .

Since lim
j→∞

‖ xj − x1 ‖ exists, we have ‖ xk − xj ‖→ 0, as ‖ k, j → ∞ ‖ this means that {xn} is a

Cauchy sequence. Hence, there exists ω ∈ C such that xn → ω as n → ∞. In particular, we have

lim
n→∞

‖ xn+1 − xn ‖= 0.

Step 4. Show that lim
n→∞

‖ xn − yi
n ‖= lim

n→∞
‖ yi

n − zi
n ‖= 0 for all i = 1, 2, ..., N . Let x∗ ∈ Υ. Then,
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we have from (2.2), (2.11) and Lemma 2.1 in [14] that

‖ ūn − x∗ ‖2 = ‖ α0
n(tn) +

N
∑

i=1

αi
nzi

n − x∗ ‖2

≤ α0
n ‖ tn − x∗ ‖2 +

N
∑

i=1

αi
n ‖ zi

n − x∗ ‖2

= ‖ tn − x∗ ‖2 −(1 − µ)

N
∑

i=1

αi
n(‖ tn − yi

n ‖2 + ‖ yi
n − zi

n ‖2)

= ‖ xn − x∗ ‖2 +θ2
n ‖ xn − xn−1 ‖2 +2

〈

xn − x∗, θn(xn − xn−1)
〉

−(1 − µ)

N
∑

i=1

αi
n(‖ xn − yi

n ‖2 +θ2
n ‖ xn − xn−1 ‖2

+2
〈

xn − yi
n, θn(xn − xn−1)

〉

+ ‖ yi
n − zi

n ‖2). (2.14)

Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖ ūn − xn+1 ‖ ≤ ‖ tn − xn+1 ‖

≤ ‖ tn − xn ‖ + ‖ xn − xn+1 ‖

= θn ‖ xn − xn−1 ‖ + ‖ xn − xn+1 ‖→ 0, as n → ∞.

This implies that

‖ ūn − xn ‖ ≤ ‖ ūn − xn+1 ‖ + ‖ xn+1 − xn ‖→ 0, as n → ∞. (2.15)

It follows form (2.14) that

(1 − µ)
N

∑

i=1

αi
n

(

‖ xn − yi
n ‖2 + ‖ yi

n − zi
n ‖2

)

≤ ‖ xn − x∗ ‖2 − ‖ ūn − x∗ ‖2

+θ2
n ‖ xn − xn−1 ‖2 +2

〈

xn − x∗, θn(xn − xn−1)
〉

−(1 − µ)

N
∑

i=1

αi
n

(

θ2
n ‖ xn − xn−1 ‖2

+2
〈

xn − yi
n, θn(xn − xn−1)

〉)

.

By our assumptions (i), (ii) and (2.15), we obtain

lim
n→∞

‖ yi
n − zi

n ‖= lim
n→∞

‖ xn − yi
n ‖= 0, ∀i = 1, 2, ..., N. (2.16)

Step 5. We show that ω ∈ Υ. Now, xn − yi
n → 0 implies that yi

n → ω and since yi
n ∈ C, we then

obtain ω ∈ C. For all x ∈ C and using the property of the projection PC , we have (Since Ai is

monotone)

0 ≤
〈

yi
n − tn + λi

nAitn, x − yi
n

〉

=
〈

yi
n − tn, x − yi

n

〉

+
〈

λi
nAitn, x − xn

〉

+
〈

λi
nAitn, xi

n − yi
n

〉

≤
〈

yi
n − xn, x − xi

n

〉

+ λi
n

〈

Aix, x − xn

〉

+ λi
n

〈

Aixn, xi
n − yi

n

〉

+
〈

θn(xn − xn−1), x − yi
n

〉

+ λi
n

〈

Aiθn(xn − xn−1), x − xn

〉

+λi
n

〈

Aiθn(xn − xn−1), xn − yi
n

〉

. (2.17)
8



By Remark 3.2 in [29], we know that inf
n≥1

λn > 0. So by taking n → ∞ in (2.17), we obtain

〈

Aix, x − ω
〉

≥ 0, ∀x ∈ C.

This implies that ω ∈ V I(C,Ai) for all i = 1, 2, ..., N . This completes the proof.

Base on the choice of the inertial parameter θn the relation between Algorithm 2.1 where

Ai = A for all i = 1, 2, ..., N , then Algorithm 2.1 reduces to the following hybrid inertial subgradient

extragradient algorithm :

Algorithm 2.4 Take ρ ∈ (0, 1), µ ∈ (0, 1). Select arbitrary points x0, x1 ∈ H and {θn} ⊆ [0, θ] for

some θ ∈ [0, 1). Set n := 1.

Step 1 Compute

tn = xn + θn(xn − xn−1), ∀n ≥ 1.

Step 2 Compute yn by

yn = PC(tn − λnAtn), ∀n ≥ 1,

where λn = ρln and ln is the smallest nonnegative integer such that

λn ‖ Atn − Ayn ‖≤ µ ‖ tn − yn ‖ . (2.18)

Step 3 Compute

zn = PTn(tn − λnAyn),

where Tn := {z ∈ H :
〈

tn − λnAtn − yn, z − yn

〉

≤ 0}.

Step 4 Compute

ūn = αntn + (1 − αn)zn, (2.19)

where αn ∈ (0, 1).

Step 5 Compute

xn+1 = PCn+1
x1

where Cn+1 := {z ∈ Cn :‖ ūn − z ‖≤‖ tn − z ‖}.

Set n + 1 → n and go to Step1.

We now give an example in Euclidean space R
3 to support the our main theorem.

Example 2.5 Let A1, A2 : R
3 → R

3 be defined by A1x = 4x and A2x =







10 −5 5

−5 10 −5

5 −5 10






for

all x = (x1, x2, x3) ∈ R
3. Let C = {x ∈ R

3|x2
1 + x2

2 + x2
3 ≤ 4}. The stopping criterion is defined by

‖ xn − xn−1 ‖< 10−15.
9



(1) Choose θ = 0.15, α0
n = n2+1

3n2+n
and α1

n = 1 − α0
n for applying our Algorithm 2.1 in two

cases when we put Ai = A1 for all i = 1, 2, ..., N in the first case and the second Ai = A2 for all

i = 1, 2, ..., N . Choose α0
n = n2+1

100n2+n
, α1

n = 50n+2
100n+1 and α2

n = 1 − (α0
n + α1

n) for the third case that

we put A1, A2 in our Algorithm 2.1.

(2) Choose α0
n = 1

(n+1)0.3 , α1
n = 1

2n
and α2

n = 1 − (α0
n + α1

n) for PVSEMG in Theorem 1 [28] to

compare the convergence of our Algorithm 2.1.

Table 1: Comparison of the methods in Theorem 2.3 and Theorem 1 [28] of Example 2.5

by choosing x0 = (−2,−4, 1) and x1 = (−1, 7, 6).
A1 A2 A1, A2

CPU Time Iter.No. CPU Time Iter.No. CPU Time Iter.No.

Algorithm 2.1 : θ = 0.15

ρ = 0.2, µ = 0.3 0.0000049 302 0.0000226 263 0.0000392 229

ρ = 0.4, µ = 0.5 0.0000055 212 0.0000335 300 0.000029 202

ρ = 0.4, µ = 0.3 0.0000054 212 0.0000169 366 0.000026 215

ρ = 0.3, µ = 0.4 0.0000048 175 0.0000163 348 0.000024 187

PVSEMG

ρ = 0.2, µ = 0.1 0.0000056 591 0.0000086 505 0.0000179 506
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Figure 1-4: Error plots for Table 1 in Example 2.5.

Remark 2.6 From Table 1 and Figure 1-4, we see that

(i) it is clearly seen that the common solution of CVIP (1.5) with N = 2 get the better number

of iterations than the average iteration of N = 1;

(ii) for the CPU Time of three in four cases when the parameters ρ and µ are different, we get

that the case N = 2 converges faster than N = 1;

(iii) for the comparison between our Algorithm 2.1 and PVSEMG, we see that our Algorithm

2.1 get the good CPU Time and number of iterations more than PVSEMG for each of all cases.
10



3 Application to image restoration problems

The image restoration problem is the recovering process of a degraded version which is a blurred

and noisy image. This problem can be formulated in the linear equation system as follows :

b = Bx + υ, (3.1)

where x ∈ R
n×1 is an original image, b ∈ R

m×1 is the unknown image, υ is additive noise and

B ∈ R
m×n is the blurring operation. The main goal of image restoration problem (3.1) is to find

the original image x. In some case, finding x = B−1(b − υ) maybe a difficult task, thus finding

the solution x by mean of convex minimization can overcome such difficulty, which is known as the

following least squares (LS) problem

min
x

1

2
‖b − Bx‖2

2, (3.2)

where ‖.‖ is ℓ2-norm defined by ‖x‖2 =
√

∑n
i=1 |xi|2. The solution of (3.2) can be estimated by

many well known iteration method [36, 37, 38, 39].

The main goal in digital image restoration is to find the unknown image that we don’t know

which one is the blurring matrix of this unknown image. This problem can be considered in the

system of least squares problems :

min
x∈Rn

1

2
‖B1x − b1‖

2
2, min

x∈Rn

1

2
‖B2x − b2‖

2
2, ..., min

x∈Rn

1

2
‖BNx − bN‖2

2 (3.3)

where x is the original true image, Bi is the blurred matrix, bi is the blurred image by the blurred

matrix Bi for all i = 1, 2, ..., N . For solving 3.3, we can apply our main Algorithm 2.1 by setting

Aix = BT
i (Bix − bi) for all x ∈ R

n in Algorithm 2.1 since BT
i (Bix − bi) is Lipschitz continuous for

each i = 1, 2, ..., N . This algorithm is generated as follows:






























































tn = xn + θn(xn − xn−1), ∀n ≥ 1,

yi
n = PC(tn − λi

nBT
i (Bitn − bi)), ∀n ≥ 1 and ∀i = 1, 2, ..., N,

(lin is the smallest nonnegative integer such that λi
n ‖ Bitn − Biy

i
n ‖≤ µ ‖ tn − yi

n ‖),

zi
n = PT i

n
(tn − λi

nBT
i (Biy

i
n − bi)),

ūn = α0
n(tn) +

N
∑

i=1

αi
nzi

n, n ≥ 1,

xn+1 = PCn+1
x1,

(3.4)

where T i
n = {z ∈ H|〈tn − λi

nBitn − yi
n, z − yi

n〉 ≤ 0}, Cn+1 = {z ∈ Cn| ‖ ūn − z ‖≤‖ tn − z ‖},

ρ, µ, αi
n ∈ (0, 1) and {θn} ⊆ [0, θ] for some θ ∈ [0, 1).

We will show the efficiency of our Algorithm 2.1 in image deblurring for the following three

blur types:

Type 1: Gaussian blur of filter size 9 × 9 with standard deviation σ = 4 (blur matrix B1).

Type 2: Out of focus blur (Disk) with radius r = 6 (blur matrix B2).

Type 3: Motion blur specifying with motion length of 21 pixels (len = 21) and motion orientation

11◦ (θ = 11) (blur matrix B3).

The original Grey and RGB images are show in figure 5-6.
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Figure 5-6: The original Grey and RGB image of sizes 276× 490 and 280× 440× 3, respectively.

The different types of blurred Grey and RGB images degraded by the blurring matrices B1, B2 and

B3 are shown in figures 7-12.

Gaussian Blurred Image Out of Focus Blurred Image Motion Blurred Image

Gaussian Blurred Image Out of Focus Blurred Image Motion Blurred Image

Figure 7-12: The degraded Grey and RGB images by blurred matrices B1, B2 and B3,

respectively.

We apply the PVSEMG amd our Algorithm 2.1 in getting the solution of deblurring problem

with the three blurring matrices B1, B2, B3. The results of the PVSEMG and our Algorithm 2.1

are considered in following seven cases:

Case I: Inputting B1 on the PVSEMG and Algorithm 2.1,

Case II: Inputting B2 on the PVSEMG and Algorithm 2.1,

Case III: Inputting B3 on the PVSEMG and Algorithm 2.1,

Case IV: Inputting B1 and B2 on the PVSEMG and Algorithm 2.1,

Case V: Inputting B1 and B3 on the PVSEMG and Algorithm 2.1,

Case VI: Inputting B2 and B3 on the PVSEMG and Algorithm 2.1,

Case VII: Inputting B1, B2 and B3 on the PVSEMG and Algorithm 2.1.
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Table 2: Comparison of the number of iterations in Grey images.
PSNR of 10, 000th Number of Iterations 33 PSNR

Inputting

PVSEMG Our Algorithm PVSEMG Our Algorithm

B1 24.70720 29.57263 4921th 50th

B2 26.47867 34.15647 2775th 58th

B3 29.50780 35.32024 801th 36th

B1, B2 28.59585 36.01784 975th 60th

B1, B3 32.37244 42.50473 446th 62th

B2, B3 33.47745 46.33505 538th 73th

B1, B2, B3 34.41830 45.79034 411th 52th

Moreover, the Cauchy error, the figure error and the peak signal-to-noise ratio (PSNR) for recover-

ing processes of the degraded Grey images by using the proposed method within the first 10000th

iterations are shown in figures 13-15.
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Figure 13-15: Cauchy error, Figure error and PSNR quality plots of the proposed iteration in

all cases of Grey images.

Table 3: Comparison of the number of iterations in RGB images.
PSNR of 10, 000th Number of Iterations 33 PSNR

Inputting

PVSEMG Our Algorithm PVSEMG Our Algorithm

B1 33.47997 38.31203 6816th 385th

B2 34.13544 41.83745 5800th 364th

B3 37.89834 45.57931 1014th 86th

B1, B2 37.46071 47.54648 1253th 190th

B1, B3 41.57133 54.15965 509th 86th

B2, B3 41.77308 53.88841 634th 87th

B1, B2, B3 43.52842 60.59668 474th 122th
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Moreover, the Cauchy error, the figure error and the peak signal-to-noise ratio (PSNR) for recover-

ing processes of the degraded RGB images by using the proposed method within the first 10000th

iterations are shown in figures 16-18.
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Figure 16-18: Cauchy error, Figure error and PSNR quality plots of the proposed iteration in

all cases of RGB images.

The figures of deblurring when the 10, 000th iterations is the stopping criterion are shown in figures

19-32 that be composed of the restored image and its PSNR.

Case I

PSNR = 29.57263

Case II

PSNR = 34.15647

Case III

PSNR = 35.32024

Case I

PSNR = 38.31203

Case II

PSNR = 41.83745

Case III

PSNR = 45.57931

Figure 19-24: The reconstructed Grey and RGB images with their PSNR for Case I - Case III

being used our Algorithm 2.1 presented in 10000th iterations respectively.
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It can be seen from figures 25-30 that the quality of restored image by using our Algorithm 2.1

in solving the common solutions of deblurring problem (VIP) with (N = 2) has improved compare

with the previous result on figures 19-24.

Case IV

PSNR = 36.01784

Case V

PSNR = 42.50473

Case VI

PSNR = 46.33505

Case IV

PSNR = 47.54648

Case V

PSNR = 54.15965

Case VI

PSNR = 53.88841

Figure 25-30: The reconstructed Grey and RGB images with their PSNR for Case IV - Case VI

used our Algorithm 2.1 presented in 10000th iterations respectively.

Finally, the common solution of deblurring problem (VIP) with (N = 3) by using the proposed

algorithm is also tested (Inputting B1, B2 and B3 on the proposed algorithm).

Case VII

PSNR = 45.79034

Case VII

PSNR = 60.59668

Figure 31-32: The reconstructed Grey and RGB images from the blurring operators B1, B2 and

B3 (Case VII) being used our Algorithm 2.1 presented in 10000th iterations, respectively.

Figure 31-32 show the reconstructed Grey and RGB images with thousand iteration. It has

been found that the quality (PSNR) of the recovered Grey and RGB images obtained by this

algorithm is highest compared to the previous two algorithm.

The figures of deblurring when the 33 PSNR is the stopping criterion are shown in figures 33-46

that be composed of the restored image and its number of iterations.
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Case I

PSNR = 29 (10000th Iteration)

Case II

PSNR = 29 (1343th Iteration)

Case III

PSNR = 29 (524th Iteration)

Case IV

PSNR = 29 (256th Iteration)

Case V

PSNR = 29 (262th Iteration)

Case VI

PSNR = 29 (188th Iteration)

Case VII

PSNR = 29 (195th Iteration)

Figure 33-39: The reconstructed Grey images of all cases being used our Algorithm 2.1 with

PSNR = 29.

Case I

PSNR = 38 (10000th Iteration)

Case II

PSNR = 38 (2693th Iteration)

Case III

PSNR = 38 (414th Iteration)

Case IV

PSNR = 38 (604th Iteration)

Case V

PSNR = 38 (248th Iteration)

Case VI

PSNR = 38 (286th Iteration)
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Case VII

PSNR = 38 (284th Iteration)

Figure 40-46: The reconstructed RGB images of all cases being used our Algorithm 2.1 with

PSNR = 38.

4 Conclusions

In this paper, solving common variational inequality problem are studied by combining the hy-

brid inertial technique with a parallel subgradient extragradient-line method. Under some suitable

conditions imposed on parameters, we have proved the strong convergence of the algorithm. Exam-

ples that demonstrate the effectiveness of the proposed algorithm by comparison with PVSEMG

see in Table 1 and Figure 1-4. We apply our proposed algorithm to recover images compared to

PVSEMG, when PSNR of 10, 000th and number of iterations 33 PSNR are given, our algorithm is

more efficient than PVSEMG see in Table 2 and 3. Moreover, our algorithm can solve image recov-

ery under unknown situation of blur matrix type, to demonstrate the computational performance

see in Figures 25-32 and Figures 33-46.
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