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Abstract

This paper investigates the notion of practical feedback stabilization of evolution
equations satisfying some relaxed conditions in infinite-dimensional Banach spaces.
Moreover, sufficient conditions are presented that guarantee practical stabilizability
of uncertain systems based on Lyapunov functions. These results are applied to partial
differential equations.

Keywords: Dynamical systems in control, linear operator, Controllability, Uncertain sys-
tems, practical stabilization, Banach spaces.
2000 Mathematics Subject Classification: 34H15, 37N35, 47D03, 93B05.

1 Introduction

In the literature on control theory of time-varying dynamical systems, controllability and
stabilizability are the qualitative control problems that play an important role in the sys-
tems and have attracted many researchers, see [4, 10, 13, 16, 17, 18, 19]. The theory was
first introduced by Kalman et al. [11] for the finite dimensional of time-invariant systems.
Furthermore, the theory can first introduced by Wonham [25] which related to exponential
stability. Furthermore, Lyapunov function approach and the method based on spectral
decomposition are the most widely used techniques for studying stabilizability of special
classes of control systems, see, for example [12, 21]. In the infinite-dimensional control
systems, the investigation of practical stabilization is more complicated and require more
sophisticated techniques. The practical stabilization is to find the state feedback candidate
such that the solution of the closed-loop system is practically exponentially stable in the
Lyapunov sense in which the origin is not necessary an equilibrium point. In this case,
Damak et al. [3] proved the practical feedback stabilization of the time-varying control
systems in Hilbert spaces where the nominal system is a linear time-varying control sys-
tems globally null-controllable and the perturbation term satisfies some conditions. The
authors in [11, 25] have shown that in the finite-dimensional autonomous control system,
if the system is null-controllable in finite time then it is stabilizable. But, it does not hold
for the converse. Moreover, if the system is completely stabilizable, then it is null control-
lable in finite time. The results of the stabilizability for the finite-dimensional systems can
be generalized into infinite-dimensional systems. For time-invariant control systems in Ba-
nach spaces, Phat and Kiet [19] defined an equivalence between solvability of the Lyapunov
∗hanen.damak@yahoo.fr
†Address: Faculty of Sciences, Route Soukra BP1171, 3000 Sfax, Tunisia.
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equation and exponential stability of linear system. Based on the Lyapunov theorem, a
relationship between stabilizability and exact null-controllability of linear time-invariant
control systems is established. Moreover, he gave the exponential stabilizability of a class
of nonlinear control systems.
The purpose of this paper is to present the practical stabilization of evolution equations in
Banach spaces. Based on the exact-controllability assumption of the linear control system,
sufficient conditions for the stabilizability are established by solving a standard Lyapunov
equation. Further, the nonlinear perturbation term is locally Lipschitz continuous and
satisfy some appropriate growth conditions. Based on the null controllability of the nomi-
nal system, a stabilizing controller for nonlinear uncertain system is then synthesized. We
derive a Lyapunov functional which allows us to prove and even characterize the decay
rate of the trajectories.
The paper is organized as follows. In Section 2, we introduce briefly some notations and
necessary preliminaries. The required assumptions and the statement of the main results
in Section 3. In Section 4, we present illustrative examples showing the importance of this
study. Our conclusion is given in Section 5.

2 Preliminaries

Throughout this paper we adopt the following notations: R+ denotes the set of all non-
negative real numbers, X denotes a infinite-dimensional Banach space with the norm ‖.‖.
Let X? the topological dual space of X and U infinite dimensional Banach space. Let
< y?, x > denote the value of y ∈ X∗ at x ∈ X. L(X) (respectively, L(X,Y )) denotes the
Banach space of all linear bounded operators T mapping X into X (respectively, X into
Y ) endowed with the norm ‖T‖ = supx∈X

‖T (x)‖
‖x‖ · The domain, the image, the adjoint, and

the inverse operator of an operator A are denoted by D(A), ImA, A∗ and A−1 respectively.
Everywhere below A is a linear operator in X with domain D(A), generating a strongly

continuous semigroup S(t), that is, A = lim
h−→0

S(h)− I
h

in the strong topology. L2([t, s], X)

denotes the set of all strongly measurable L2−integrable and X− valued functions on [t, s].
Let Q ∈ L(X,X∗) be a duality operator. We recall that the operator Q is positive definite
in X if 〈Qx, x〉 ≥ 0 for arbitrary x ∈ X, and 〈Qx, x〉 > 0 for x 6= 0. In the case if
〈Qx, x〉 ≥ c‖x‖2 for some c > 0 we say that Q is strongly positive definite. We will denote
by LPD(X,X∗) and LSPD(X,X∗) the set of all linear bounded positive definite and
strongly positive definite operators mapping X into X∗, respectively. Also, we define

• Lp(R+,R+) as the set of functions positive and integrable with pth power on R+

where p ≥ 1;

• L∞(R+,R+) as the set of all measurable functions from R+ to R+ which are essen-
tially bounded;

• ‖ϕ‖p =
(∫ +∞

0
ϕp
) 1
p

for ϕ ∈ Lp(R+,R+);

• ‖ϕ‖∞ = sup
t∈R+

ϕ(t) for ϕ ∈ L∞(R+,R+).

• 1[ϑ,ζ] =
{

1, si ϑ ≤ x ≤ ζ
0, elsewhere.
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We consider the system: 
ẋ = F (t, x, u), t ≥ t0 ≥ 0

x(t0) = x0

(1)

where x ∈ X is the system state, u(t) ∈ U is the control input. F : R+ ×X ×U → X is a
given function.

Definition 1 System (1) is practically stabilizable if there exists a continuous feedback
control u : X → U, such that system (1) with u(t) = u(x(t)) satisfies the following proper-
ties:
(i) For any initial condition x0 ∈ X, there exists a unique mild solution x(t, x0) defined on
R+.
(ii) There exist positive scalars ω, k, r, such that the solution of the system (1) satisfies

‖x(t)‖ ≤ k‖x0‖e−ω(t−t0) + r, ∀t ≥ t0 ≥ 0.

When (i) and (ii) are satisfied for (3), we say that (1) with u(t) = u(x(t)) is globally
practically uniformly exponentially stable.

Definition 2 (See [6]) A Banach space X∗ has the Radon-Nikodym property if

L2([0, T ], X∗) = (L2([0, T ], X))∗.

In the proof of the main results, we shall use the following lemmas.

Lemma 1 (Nonlinear generalization of Gronwall’s inequality)(See [7])
Let θ be a non-negative function on R+, that satisfies the following integral inequality

θ(t) ≤ ν +
∫ t

t0

(
χ(s)θ(s) + σ(s)θα(s)

)
ds, ν ≥ 0, 0 ≤ α < 1, t ≥ t0 ≥ 0

where χ and σ are non-negative continuous functions. Then,

θ(t) ≤
[
ν1−αe

(1−α)
∫ t
t0
χ(s)ds + (1− α)

∫ t

t0

σ(s)e(1−α)
∫ t
s χ(r)drds

] 1
1−α

.

Lemma 2 (Generalized Gronwall-Bellman Inequality)(See [24]))
Let λ, ρ : R+ → R be continuous functions and ϕ : R+ → R+ is a function, such that

ϕ̇(t) ≤ λ(t)ϕ(t) + ρ(t), ∀ t ≥ 0. (2)

Then, for any t ≥ t0 ≥ 0, we have the following inequality

ϕ(t) ≤ ϕ(t0)e

∫ t

t0

λ(v)dv
+
∫ t

t0

e

∫ t

s
λ(v)dv

ρ(s)ds.

Lemma 3 Let a, b ≥ 0 and p ≥ 1. Then,

(a+ b)p ≤ 2p−1(ap + bp).
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3 Main Results

In this section, we shall state and prove our main results.

3.1 Practical Stabilization of infinite-dimensional evolution equations

The purpose of this section is to establish the practical stabilization of evolution equations
in Banach spaces. Based on the exact null-controllability in finite time of the nominal
system whose origin is an equilibrium point, a stabilizing controller for the nonlinear system
is then synthesized. This leads us to address the problem of practical stability of time-
varying perturbed systems.
Consider infinite-dimensional evolution equations of the form

ẋ = Ax+Bu+ F (t, x), t ≥ t0 ≥ 0

x(t0) = x0

(3)

where x ∈ X is the system state, u ∈ U is the control input, X is a Banach space,
X∗ has the Radon-Nikodym property and U is a Hilbert space. Further, the operator
A : D(A) ⊂ X → X is assumed to be the infinitesimal generator of the C0− semigroup
S(t) on X, B ∈ L(U,X) and the function F : R+×X −→ X is continuous in t and locally
Lipschitz continuous in x, uniformly in t on bounded intervals, that is, for every t1 ≥ 0
and constant c ≥ 0, there is a constant L(c, t1), such that

‖F (t, u)− F (t, v)‖ ≤ L(c, t1)‖u− v‖

holds for all u, v ∈ X, with ‖u‖ ≤ c, ‖v‖ ≤ c, and t ∈ [0, t1].
This system is seen as a perturbation of the nominal system

ẋ = Ax+Bu, t ≥ 0

x(0) = x0,
(4)

Next, we are interested in suitable feedback of the form

u(t) = Dx(t), (5)

where D ∈ L(X,U).
Let x(t) = x(t, x0, u) denote the state of a system (3) at moment t ≥ t0 ≥ 0 associated
with an initial condition x0 ∈ X at t = t0 and input u ∈ U.
Now, we recall the definition of the generator of an exponentially stable semi-group as well
as that of the exponential stability, see Curtain and Zwart [2] for details.

Definition 3 The operator A generates an exponentially stable semigroup S(t) if the initial
value problem

ẋ(t) = Ax, t ≥ 0, x(0) = x0 (6)

has a unique solution x(t) = S(t)x0, and ‖S(t)‖ ≤Me−αt, for all t ≥ 0 with some positive
numbers M and α.

Definition 4 The linear control system (6) is exponentially stable if there exist numbers
M > 0 and α > 0, such that

‖x(t)‖ ≤Me−αt‖x0‖, ∀t ≥ 0.
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Definition 5 The control system (4) is exactly null-controllable in finite time if for every
x0 ∈ X, there exist a number T > 0 and an admissible control u(t) ∈ U = {u(.) ∈
L2([0,∞), U)}, such that

S(T )x0 +
∫ T

0
S(T − s)Bu(s)ds = 0.

Furthermore, if we designate by CT the set of null-controllable points in time T of system
(4) defined by

CT = {x0 ∈ X; S(T )x0 = −
∫ T

0
S(T − s)Bu(s)ds; u(.) ∈ U}.

The system (4) is exactly null-controllable in time T > 0 if CT = X.
In the case A is the generator of an analytic semigroup S(t), for T > 0, we can define the
operator WT ∈ L(U , X) by

WT (u) =
∫ T

0
S−1(s)Bu(s)ds, u(.) ∈ U ,

and we then have CT = ImWT . We state the following well-known controllability criterion
for infinite-dimensional control system (4) presented in [1] for reflexive Banach spaces and
then in [22] for non-reflexive Banach spaces having the Radon-Nikodym property.

Proposition 1 (see [1] and [22]) Let X,U be Banach spaces, S(t) the C0− semigroup of
A. Assume that X∗, U∗ have the Radon-Nikodym property. The following conditions are
equivalent.
(i) Control system (4) is exactly null-controllable in time T > 0.
(ii) There exists c > 0, ‖W ∗Tx∗‖ ≥ c‖x∗‖, ∀x∗ ∈ X∗.
(iii) There exists c > 0, ‖B∗S∗(s)x∗‖2 ≥ c‖S∗(T )x∗‖, ∀x∗ ∈ X∗.

(iv) If U is a Hilbert space, the operatorWT =
∫ T

0
S−1(s)BB∗S∗−1(s)ds is strongly positive

definite.

The operator P ∈ L(X,X∗) is called a solution of the Lyapunov equation if the following
condition hold:

〈PAx, x〉+ 〈Px,Ax〉 = −〈Qx, x〉, ∀x ∈ D(A). (7)

Note that, if A is bounded, then the above equation (7) has the standard form

A∗Px+ PAx = −Qx, ∀x ∈ X.

Remark 1 The author in [5] showed that if A is exponentially stable in Hilbert space, then
the Lyapunov equation has a solution.

In Proposition 2 below we present the equivalence between the solvability of the Lyapunov
equation and the exponential stability of the linear system (6).

Proposition 2 (See [19]) If for some Q ∈ LSPD(X,X∗), P ∈ LPD(X,X∗), the Lya-
punov equation holds, then the operator A is exponentially stable. Conversely, if the gen-
erator A is exponentially stable, then for any Q ∈ LSPD(X,X∗), there is a solution
P ∈ LPD(X,X∗) of the Lyapunov equation

A∗P + PA = −Q. (8)

5



Definition 6 The linear control system (4) is completely stabilisable if for every α > 0,
there exists a linear bounded operator D : X → U and a number M > 0, such that the
solution satisfies the condition:

‖x(t)‖ ≤Me−αt‖x0‖, ∀t ≥ 0.

Note that, if the operator D and number M do not depend on α, then the complete
stabilizability implies exponential stabilizability in usual Lyapunov sens (see Zabczyk [23]).
It is known from that if the linear control system (6), where X and U are Hilbert spaces
is completely stabilizable then it is exactly null-controllable in finite time (see Megan[14]).
Also, Phat and Kiet [19] improved this result in Banach spaces.

Proposition 3 If linear control system (6) is completely stabilisable then it is exactly null-
controllable in finite time.

In the sequel, Phat and Kiet [19] proved that the linear control system (6) is exponentially
stabilizable by linear feedback control D : X → U, if it is null-controllable in finite time.

Proposition 4 If the linear control system (4) is exactly null-controllable in finite time,
then the linear time-varying control system (4) is exponentially stabilizable.

In what follows, we shall that V : X → R+ is a Lyapunov function.

Definition 7 The Lie derivative of V corresponding to the input u is defined by

V̇ (x) = limt−→0+
1
t
(V (x(t, x, u)− V (x)).

Now, we suppose the following assumptions.

(H1) The linear system (4) is exactly null-controllable in finite time, there exists a constant
operator D : X → U, such that a sufficient condition specially related to operator
AD = A + BD is presented in Phat and Kiet [19] as the following: for any Q ∈
LSPD(X,X∗),

〈Qx, x〉 ≥ b1‖x‖2, ∀x ∈ X,

there exists P ∈ LPD(X,X∗),

b2‖x‖2 ≤ 〈Px, x〉 ≤ ‖P‖‖x‖2, ∀x ∈ X,

where b1, b2 > 0, which satisfies

A∗DP + PAD = −Q. (9)

(H2) The perturbation term F : R+ ×X −→ X verifies the following condition:

‖F (t, x)‖ ≤ $(t)‖x‖+ µ(t) + η, ∀t ≥ 0,∀x ∈ X, η ≥ 0, (10)

where $ and µ are non-negative continuous functions, with $ ∈ L1(R+,R+) and
µ ∈ Lp(R+,R+) for some p ∈ [1,+∞).

Next, sufficient conditions are presented to guarantee the global existence and uniqueness of
solutions of systems (3). Further, we investigate the practical stabilizability of the evolution
equation using Generalized Gronwall-Bellman Inequality and Lyapunov’s techniques.
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Theorem 1 Under assumptions (H1) and (H2), the closed-loop system (3)-(5) has a
unique solution, which is globally defined for all t ≥ t0 and this system is globally practically
uniformly exponentially stable.

Proof. We break up the proof into two steps.

1. Since F is a locally Lipschitz continuous in x, uniformly in t, it follows from Pazy
[15] that for every initial condition the closed-loop equation possesses a unique mild
solution on some interval [t0, t0 + δ], with δ > 0. Indeed, integrating (3), we obtain

x(t) = S(t− t0)x0 +
∫ t

t0

S(t− s)[Bu(s) + F (s, x(s))]ds, t0 ≤ t ≤ t0 + δ.

Since B ∈ L(U,X), then

‖x(t)‖ ≤M‖x0‖+M

(∫ t

t0

‖B‖‖D‖‖x(s)‖+M1‖x(s)‖+M2 + η

)
ds (11)

where M = sup{‖S(t − s)‖ : 0 ≤ t0 ≤ s ≤ t ≤ t + δ}, M1 = sup
t∈[t0,t0+δ]

‖$(t)‖, and

M2 = sup
t∈[t0,t0+δ]

‖µ(t)‖. By applying Gronwall inequality (see [20], Lemma 2.7, p42)

to inequality (11), any solution of this equation is uniformly bounded

‖x(t)‖ ≤M(‖x0‖+M2 + η)e(‖B‖‖D‖+M1)Mδ,

on an arbitrary time interval [t0, t0 + δ]. Then, using Theorem 1.4 in [15], we have
t0 + δ =∞, and so we get global existence.

2. Consider a Lyapunov function:

V (x) = 〈Px, x〉.

Let us compute the Lie derivative of V with respect to system (3) in closed-loop with
the controller (5). For x ∈ D(A), we have

V̇ (x) = 〈Pẋ, x〉+ 〈Px, ẋ〉

From 〈P (Ax), x〉 = 〈Ax, Px〉, and (9) with the help of Cauchy-Schwartz inequality,
we obtain

V̇ (x) ≤ −〈Qx, x〉+ 2‖P‖‖F (t, x)‖‖x‖
≤ −b1‖x‖2 + 2‖P‖($(t)‖x‖+ µ(t) + η)‖x‖

≤
(
− b1
‖P‖

+
2‖P‖$(t)

b2

)
V (x) +

2‖P‖√
b2

(µ(t) + η)
√
V (x).

Let,
z(x) =

√
V (x).

Then,

ż(x) ≤
(
− b1

2‖P‖
+
‖P‖$(t)

b2

)
z(x) +

‖P‖√
b2

(µ(t) + η). (12)
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These derivations hold for x ∈ D(A) ⊂ X If x /∈ D(A), then the solution x(t) ∈ D(A)
and t→ z(x(t)) is a continuously differentiable function for all t ≥ t0 (these properties
follow from the properties of solutions x(t), see Theorem 3.3.3 in [9]). Thus, by the
mean value theorem we obtain that (12) holds for all x ∈ X.
Using Lemma 2, we obtain for all t ≥ t0

z(x) ≤ z(x0)e
‖P‖M$
b2 e

− b1
2‖P‖ (t−t0) + e

‖P‖M$
b2

∫ t

t0

‖P‖√
b2

(µ(s) + η)e−
b1

2‖P‖ (t−s)ds,

with M$ =
∫ ∞

0
$(s)ds. We discriminate three cases:

(1) if p = 1, we get ∫ t

t0

(µ(s) + η)e−
b1

2‖P‖ (t−s)ds ≤ ‖µ‖1 +
2‖P‖η
b1
·

Then, for all t ≥ t0,

‖x(t)‖ ≤

√
‖P‖
b2

e
‖P‖M$
b2 ‖x0‖e−

b1
2‖P‖ (t−t0) +

‖P‖
b2

e
‖P‖M$
b2

(
‖µ‖1 +

2‖P‖η
b1

)
.

(2) If p ∈ (1,+∞) and q > 0, such that
1
p

+
1
q

= 1, we have by applying Holder

Inequality ∫ t

t0

(µ(s) + η)e−
b1

2‖P‖ (t−s)ds ≤
(

2‖P‖
b1q

) 1
q

‖µ‖p +
2‖P‖η
b1

.

Therefore, for all t ≥ t0, the solution x(t) verifies the estimation

‖x(t)‖ ≤

√
‖P‖
b2

e
‖P‖M$
b2 ‖x0‖e−

b1
2‖P‖ (t−t0)+

‖P‖
b2

e
‖P‖M$
b2

((
2‖P‖
b1q

) 1
q

‖µ‖p +
2‖P‖η
b1

)
.

(3) If p = +∞. Then, we have∫ t

t0

e
− b1

2‖P‖ (t−s)µ(s)ds ≤
(

2‖P‖
b1

)
‖µ‖∞.

One can get, for all t ≥ t0

‖x(t)‖ ≤

√
‖P‖
b2

e
‖P‖M$
b2 ‖x0‖e−

b1
2‖P‖ (t−t0)+

‖P‖
b2

e
‖P‖M$
b2

((
2‖P‖
b1

)
‖µ‖∞ +

2‖P‖η
b1

)
.

We conclude that, the system (3) in closed-loop with the controller (5) is globally practically
uniformly exponentially stable. This completes the proof. 2

As a consequence of Theorem 1, we have the following corollary.

Corollary 1 We consider the dynamical system (3). Assume that (H1) and (H2) are
fulfilled, with

‖F (t, x)‖ ≤ µ(t), ∀ t ≥ 0, ∀x ∈ X,
where µ is a non-negative continuous function on R+, such that µ ∈ Lp(R+,R+) for
some p ∈ [1,+∞). Then, the system (3) in closed-loop with the controller (5) is globally
practically uniformly exponentially stable.
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We can state other assumptions to obtain the global existence, uniqueness and the practical
stabilizability for the evolution equation (3) under a restriction about the perturbed term
bounded by the sum of Holder continuous function and a Lipschitz function.

(H3) There exists a non-negative constant 0 < α < 1, such that the perturbation term
F : R+ ×X −→ X satisfies the following condition:

‖F (t, x)‖ ≤ φ(t)‖x‖α + σ(t)‖x‖, ∀t ≥ 0, ∀x ∈ X,

where φ, σ are non-negatives continuous functions, with σ ∈ L1(R+,R+) and φ ∈
Lp(R+,R+) for some p ∈ [1,+∞).

Next, one has the following theorem.

Theorem 2 If assumptions (H1) and (H3) are fulfilled, the closed-loop system (3)-(5)
has a unique solution, which is globally defined for all t ≥ t0 and this system is globally
practically uniformly exponentially stable.

Proof. We break up the proof into two steps.

1. Since F is a locally Lipschitz continuous in x, uniformly in t, it follows from Pazy
[15] that for every initial condition the closed-loop equation possesses a unique mild
solution on some interval [t0, t0 + δ], with δ > 0. Indeed, integrating (3), we obtain

x(t) = S(t− t0)x0 +
∫ t

t0

S(t− s)[Bu(s) + F (s, x(s))]ds, t0 ≤ t ≤ t0 + δ.

Since B ∈ L(U,X), then

‖x(t)‖ ≤M‖x0‖+M

∫ t

t0

(‖B‖‖D‖‖x(s)‖+M1‖x(s)‖α +M2‖x(s)‖)ds (13)

where M = sup{‖S(t − s)‖ : 0 ≤ t0 ≤ s ≤ t ≤ t + δ}, M1 = sup
t∈[t0,t0+δ]

‖φ(t)‖, and

M2 = sup
t∈[t0,t0+δ]

‖σ(t)‖. By applying Lemmas 1 and 3 to inequality (13), any solution

of this equation is uniformly bounded

‖x(t)‖ ≤ 2
α

1−α eMδ(‖B‖‖D‖+M2)(M‖x0‖+ (MM1δ(1− α))
1

1−α ),

on an arbitrary time interval [t0, t0 + δ]. Applying Theorem 1.4 in [15], we have
t0 + δ =∞, and so we obtain global existence.

2. Define the function V : D(A)→ R+ by

V (x) = 〈Px, x〉.

Then, the Lie derivative of V in t along the solution of the system (3) in closed-loop
with the controller (5) leads to

V̇ (x) = 〈Pẋ, x〉+ 〈Px, ẋ〉
≤ −〈Qx, x〉+ 2‖P‖‖F (t, x)‖‖x‖
≤ −b1‖x‖2 + 2‖P‖(φ(t)‖x‖α + σ(t)‖x‖)‖x‖

≤
(
− b1
‖P‖

+
2‖P‖σ(t)

b2

)
V (x) +

2‖P‖φ(t)
√
b2
α+1 V (x)

α+1
2 .
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Let,
ϑ(x) = V (x)

1−α
2 ,

which implies that

ϑ̇(x) ≤ −(1− α)
2

(
b1
‖P‖

− 2‖P‖σ(t)
b2

)
ϑ(x) +

‖P‖(1− α)φ(t)
√
b2
α+1 , ∀x ∈ X, ∀t ≥ t0·

Using Lemma 2, we get for all t ≥ t0

ϑ(x) ≤ e
‖P‖(1−α)Nσ

b2

(
ϑ(x0)e

− b1(1−α)
2‖P‖ (t−t0) +

‖P‖(1− α)
√
b2
α+1

∫ t

t0

e
− b1(1−α)

2‖P‖ (t−s)
φ(s)ds

)
,

with Nσ =
∫ ∞

0
σ(s)ds. We discriminate three cases:

(1) If p = 1, we get

ϑ(x) ≤ e
‖P‖(1−α)Nσ

b2

(
ϑ(x0)e

− b1(1−α)
2‖P‖ (t−t0) +

‖P‖(1− α)
√
b2
α+1 ‖φ‖1ds

)
.

It follows that,

‖x(t)‖1−α ≤ e
‖P‖(1−α)Nσ

b2

√‖P‖
b2

1−α

‖x0‖1−αe−
b1(1−α)

2‖P‖ (t−t0) +
1

√
b2

1−α
‖P‖(1− α)
√
b2
α+1 ‖φ‖1ds

 .

From Lemma 3, we obtain for all t ≥ t0

‖x(t)‖ ≤ 2
α

1−α e
‖P‖Nσ
b2

√‖P‖
b2
‖x0‖e−

b1
2‖P‖ (t−t0) +

1√
b2

(
‖P‖(1− α)
√
b2
α+1 ‖φ‖1

) 1
1−α
 .

(2) If p ∈ (1,+∞) and q > 0, such that
1
p

+
1
q

= 1, we have by applying Holder

Inequality

ϑ(x) ≤ e
‖P‖(1−α)Nσ

b2

(
ϑ(x0)e

− b1(1−α)
2‖P‖ (t−t0) +

‖P‖(1− α)
√
b2
α+1 ‖φ‖p

(
2‖P‖

q(1− α)b1

) 1
q

)
.

By using Lemma 3, we obtain for all t ≥ t0

‖x(t)‖ ≤ 2
α

1−α e
‖P‖Nσ
b2

√
‖P‖
b2
‖x0‖e−

b1
2‖P‖ (t−t0)

+
2

α
1−α e

‖P‖Nσ
b2

√
b2

(
‖P‖(1− α)
√
b2
α+1 ‖φ‖p

) 1
1−α ( 2‖P‖

q(1− α)b1

) 1
q(1−α)

.

(3) If p = +∞, then,

‖x(t)‖ ≤ 2
α

1−α e
‖P‖Nσ
b2

√‖P‖
b2
‖x0‖e−

c1
2‖P‖ (t−t0) +

1√
b2

(
2‖P‖2

b1
√
b2
α+1 ‖φ‖∞

) 1
1−α
 .

10



We deduce that, the system (3) in closed-loop with the controller (5) is globally practically
uniformly exponentially stable. This ends the proof. 2

For perturbed time-varying systems (3) in finite-dimensional spaces, we also have the
following consequence.

Corollary 2 (See [8]) Assume that X = Rn, U = Rm, and the assumptions (H1), (H3)
are satisfied, then the system (3) with the controller (5) is globally practically uniformly
exponentially stable.

4 Feedback control of uncertain systems

Let X be a Banach space, X∗ has the Radon-Nikodym property and U is a Hilbert space.
We consider the uncertain dynamical system:

ẋ = Ax+Bu(t) +G(t, x, u), t ≥ t0 ≥ 0

x(t0) = x0,
(14)

where x ∈ X is the system state, u ∈ U is the control input, A is the infinitesimal generator
of the C0− semigroup S(t) on a Banach space X, B ∈ L(U,X) and G : R+×X×U → X is
continuous in t and locally Lipschitz continuous in x, uniformly in u ∈ U and t on bounded
intervals, that is, for every t1 ≥ 0 and constant c ≥ 0, there is a constant L(c, t1), such
that

‖G(t, x, u)−G(t, y, u)‖ ≤ L(c, t1)‖x− y‖

holds for all x, y ∈ X, with ‖x‖ ≤ c, ‖y‖ ≤ c, and t ∈ [0, t1].
Let x(t) = x(t, x0, u) denote the state of a system (14) at moment t ≥ t0 ≥ 0 associated
with an initial condition x0 ∈ X at t = t0 and input u ∈ U.
Before giving our syntaxes approach, we state the following standard assumption.

(H4) The perturbation term G : R+ ×X × U → X satisfies the following condition:

∃a, b > 0, ‖G(t, x, u)‖ ≤ a‖x‖+ b‖u‖+ %(t) + ε, ∀t ≥ 0, ∀x ∈ X, ε ≥ 0, (15)

where % is a non-negative continuous function, with % ∈ Lp(R+,R+) for some p ∈
[1,+∞).

The following lemma proved sufficient conditions for the global existence and uniqueness
of solutions of system (14).

Lemma 4 Under assumption (H4), the closed-loop system (5)-(14) has a unique solution,
which is globally defined for all t ≥ t0.

Proof. G is a locally Lipschitz continuous in x, uniformly in u ∈ U and t, it follows from
Pazy [15] that for every initial condition the closed-loop equation possesses a unique mild
solution on some interval [t0, t0 + δ], with δ > 0. Indeed, integrating (14), we obtain

x(t) = S(t− t0)x0 +
∫ t

t0

S(t− s)[Bu(s) +G(s, x(s), u(s))]ds, t0 ≤ t ≤ t0 + δ.

Since B ∈ L(U,X), then by applying Gronwall inequality (see [20], Lemma 2.7, p42), we
have

‖x(t)‖ ≤M(‖x0‖+M1δ +Mδ)eMδ(‖B‖‖D‖+a+b‖D‖),
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where M = sup{‖S(t − s)‖ : 0 ≤ t0 ≤ s ≤ t ≤ t + δ} and M1 = sup
t∈[t0,t0+δ]

‖%(t)‖ on an

arbitrary time interval [t0, t0 +δ]. Now, Pazy (see [15], Theorem 1.4) gives that t0 +δ =∞,
and so we have global existence. The proof is completed. 2

The next theorem shows the practical stabilization of the system (14) using Lyapunov
indirect method and Gronwall-Bellman Inequality.

Theorem 3 Assume that A is exponentially stable and the assumption (H4) is satisfied.
Let P,Q ∈ LPD(X,X∗) be the operators satisfying the Lyapunov equation (8) where P =
P ∗ and < Qx, x >≥ λ‖x‖2, for all x ∈ X,λ > 0. Then, the nonlinear control system (14)
is practically stabilizable by the feedback control u(t) = −ρB∗Px(t) if

ρ <
λ− 2a‖P‖
2b‖B‖‖P‖2

· (16)

Proof. Let P ∈ LPD(X,X∗) be an operator which is a solution of the Lyapunov equation
(8). Define the Lyapunov function V : D(A)→ R+ by

V (x) = 〈Px, x〉.

Noting that, there exists α > 0, such that

α‖x‖2 ≤ V (x) ≤ ‖P‖‖x‖2, α > 0.

Then, the Lie derivative of V in t along the solution of x(t) of the system (14) and using
the chosen feedback control and the Lyapunov equation is given by

V̇ (x) = 〈Pẋ, x〉+ 〈Px, ẋ〉
= −〈Qx, x〉 − ρ〈PBB∗Px, x〉 − ρ〈Px,BB∗Px〉
+ 〈PG(t, x, u), x > + < Px,G(t, x, u)〉.

Since P is self-adjoint, by assumption (H4) and condition (16), we have for all t ≥ t0

V̇ (x) ≤ −κV (x) +
2‖P‖√
α

(δ(t) + ε)
√
V (x),

where

κ =
λ− 2bρ‖P‖2‖B‖ − 2a‖P‖

‖P‖
> 0.

Let
v(x) =

√
V (x).

Then,

v̇(x) ≤ −κ
2
v(x) +

‖P‖√
α

(%(t) + ε), ∀x ∈ X, ∀t ≥ t0.

Applying Lemma 2, we obtain

v(x) ≤ v(x0)e−
κ
2
(t−t0) +

‖P‖√
α

∫ t

t0

e
κ
2
(s−t)(%(s) + ε)ds, ∀t ≥ t0.

We distinguish three cases:

12



(1) if p = 1, we get

‖x(t)‖ ≤
√
‖P‖
α
‖x0‖e−

κ
2
(t−t0) +

‖P‖
α

(
‖%‖1 +

2ε
κ

)
, ∀t ≥ t0.

(2) If p ∈ (1,+∞) and q > 0, such that
1
p

+
1
q

= 1, we get by applying Holder Inequality

‖x(t)‖ ≤
√
‖P‖
α
‖x0‖e−

κ
2
(t−t0) +

‖P‖
α

((
2
qκ

) 1
q

‖%‖p +
2ε
κ

)
, ∀t ≥ t0.

(3) If p = +∞. Then, we have

‖x(t)‖ ≤
√
‖P‖
α
‖x0‖e−

κ
2
(t−t0) +

2‖P‖
ακ

(‖%‖∞ + ε) , ∀t ≥ t0.

We deduce that, the system (14) is practically stabilizable. This ends the proof. 2

Next, we denote another sufficient condition for the practical stabilizability of system (14)
in the case A is not exponentially stable and it is a generator of bounded C0− semigroup,
but the associated linear control system (4) is exactly null-controllable in finite time and
the nonlinear perturbation satisfies a condition.

Theorem 4 Assume that the linear control system (4) is exactly null-controllable in finite
time, then the system (14) is practically stabilizable for some appropriate numbers a, b > 0,
satisfying the condition (15).

Proof. The linear control system (4) is exactly null-controllable in finite time, then from
Proposition 4 there is an operator D ∈ L(X,U), such that the operator WL = A+BD is
exponentially stable. Let P,Q ∈ LPD(X,X∗) be the operators satisfying the Lyapunov
equation (8) where P = P ∗ and 〈Qx, x〉 ≥ λ‖x‖2, for all x ∈ X, and λ > 0. Consider the
Lyapunov function:

V (x) = 〈Px, x〉.

We have,
α‖x‖2 ≤ V (x) ≤ ‖P‖‖x‖2, α > 0.

The Lie derivative of V along the trajectories of system (14) is given by

V̇ (x) ≤ −λ‖x‖2 + 2〈PG(t, x,Dx), x〉
≤ −η‖x‖2 + 2‖P‖(%(t) + ε),

where η = λ− 2(a‖P‖+ b‖D‖). We take a, b > 0, such that η > 0, that is,

a‖P‖+ b‖D‖ < λ

2
·

Let
v(x) =

√
V (x).

Then,

v̇(x) ≤ − η

2‖P‖
v(t) +

‖P‖√
α

(%(t) + ε), ∀x ∈ X, ∀t ≥ t0.

13



Using Lemma 2, we have

v(x) ≤ v(x0)e
− η

2‖P‖ (t−t0) +
‖P‖√
α

∫ t

0
e

η
2‖P‖ (s−t)(%(s) + ε)ds, ∀t ≥ t0.

We distinguish three cases:

(1) if p = 1, we have for all t ≥ t0,

‖x(t)‖ ≤
√
‖P‖
α
‖x0‖e−

κ
2
(t−t0) +

‖P‖
α

(
‖%‖1 +

2‖P‖ε
η

)
.

(2) If p ∈ (1,+∞) and q > 0, such that
1
p

+
1
q

= 1, we obtain by applying Holder

Inequality

‖x(t)‖ ≤
√
‖P‖
α
‖x0‖e−

κ
2
(t−t0) +

‖P‖
α

((
2β
qη

) 1
q

‖%‖p +
2βε
η

)
, ∀t ≥ t0.

(3) If p = +∞. Then, we have

‖x(t)‖ ≤
√
‖P‖
α
‖x0‖e−

κ
2
(t−t0) +

2‖P‖2

αη
(‖%‖∞ + ε) , ∀t ≥ t0.

We conclude that, the system (14) is practically stabilizable. This ends the proof. 2

Remark 2 The above results generalize theorems of stabilizability in [19] with δ(t) = 0,
and ε = 0.

5 Examples

In this section, we give some illustrating examples to illustrate the effectiveness of the
results obtained in the present paper.

Example 1 We Consider the controlled metal bar:
∂x(ζ, t)
∂t

=
∂2x(ζ, t)
∂ζ2

+ 1[ 1
2
,1]u(t) +

1
1 + t2

x(ζ, t) +
1 + t

(1 + t2)(1 + ‖x(ζ, t)‖)
, x(ζ, 0) = x0(ζ),

∂x

∂ζ
(0, t) = 0 =

∂x

∂ζ
(1, t), (t ≥ 0)

(17)
x(ζ, t) represents the temperature at position ζ at time t ≥ 0 and z0 represents the initial
temperature profile, u(t) the addition of heat along the bar. The two boundary conditions
state that there is no heat flow at the boundary, and thus the bar is insulated. The partial
differential equation can be formulated to an abstract differential equation on X = L2(0, 1)
of the form

ẋ = Ax+Bu+ F (t, x), t ≥ 0, x(0) = x0,
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where U = C, the operator A =
∂2

∂2ζ
, with

D(A) = {h ∈ L2(0, 1), h,
∂h

∂ζ
are absolutely continuous,

∂2h

∂ζ2
∈ L2(0, 1) and

dh

dζ
(0) = 0 =

dh

dζ
(1)},

B = 1[ 1
2
,1] and F (t, x) =

1
1 + t2

x(ζ, t) +
1 + t

(1 + t2)(1 + ‖x(ζ, t)‖)
.

A possesses an orthonormal basis of eigenvector φ0(ζ) = 1 and φn(ζ) =
√

2 cos(nπζ), n ≥ 1.
Furthermore, the semigroup (S(t))t≥0 generated by A is given by

S(t)x =
∞∑
n=0

e−n
2π2t < x, φn > φn.

Using Proposition 1, it is easy to see that the nominal system of (17) is exactly null-
controllable in finite time. Moreover, the assumption (H2) is satisfied with η = 0 and

$(t) =
1

1 + t2
, µ(t) =

1 + t

1 + t2
are non-negative functions with $ ∈ L1(R+,R+) and µ ∈

Lp(R+,R+) for some p ∈ [1,+∞). Then, all hypotheses of Theorem 1 are satisfied and the
controlled heat equation (17) is practically stabilizable.

Example 2 We Consider the controlled perturbed heat equation:
∂x(ζ, t)
∂t

=
∂2x(ζ, t)
∂ζ2

+
2 + t2

1 + t2
u(t) + x(ζ, t) + e−t1[0,π

2
], x(ζ, 0) = x0(ζ),

x(0, t) = 0 = x(π, t), (t ≥ 0)

(18)

x(ζ, t) represents the temperature at position ζ ∈ [0, π] at time t ≥ 0 and x0 represents
the initial temperature profile. The partial differential equation can be formulated to an
abstract differential equation on X = L2(0, π) of the form

ẋ = Ax+Bu(t) +G(t, x, u), t ≥ 0, x(0) = x0,

where U = C, the operator A =
∂2

∂2ζ
, with

D(A) = {h ∈ L2(0, π),
∂h

∂ζ
are absolutely continuous,

∂2h

∂ζ2
∈ L2(0, π) and h(0) = 0 = h(π)},

B = I and G(t, x(ζ, t), u(t)) = x(ζ, t) +
1

1 + t2
u(t) + e−t1[0,π

2
].

A possesses an orthonormal basis of eigenvector φn(ζ) =
√

2
π sin(nζ), n ≥ 0. Further-

more, the semigroup (S(t))t≥0 generated by A is given by

S(t)x =
∞∑
n=1

e−n
2t < x, φn > φn.

Obviously, S(t) is exponentially stable. Therefore, A is exponentially stable. Moreover, G
satisfies the assumption (H6), just take a = 1, b = 1, ε = 0 and %(t) =

π

2
e−t, is a non-

negative continuous function, with % ∈ Lp(R+,R+) for some p ∈ [1,+∞). Consequently,
by applying Theorem 3, the controlled heat equation (18) is practically stabilizable.
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6 Conclusion

Practical stabilization of infinite-dimensional evolution equations in Banach spaces has
been investigated. Moreover, sufficient conditions have been derived to guarantee the prac-
tical stabilization of a class of uncertain systems in Banach spaces. Illustrative examples
are given to indicate significant improvements and the application of the results.
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