Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE

A Distributed System for Supporting Smart Irrigation using IoT
Technology

Ahmed Abdelmoamen Ahmed*, Suhib Al Omari' | Ripendra Awal, Ali Fares? | Mohamed Chouikha?

IDepartment of Computer Science Prairie,
Prairie View A&M University, TX, USA Summary

2College of Agriculture and Human
Sciences (CAHS), Prairie View A&M
University, TX, USA tem using Internet of Things (IoT) technology, which can be used for automating the

In this paper, we present the design and implementation of a smart irrigation sys-

*SECURE Center of Cybersecurity, Prairie irrigation process in agricultural fields. It is expected that this system would create a
View A&M University, TX, USA . L. i . .
better opportunity for farmers to irrigate their fields efficiently, as well as eliminating

Correspondence the field’s under-watering, which could stress the plants. The developed system is
*Corresponding Ahmed Abdelmoamen
Ahmed, This is sample corresponding

address. Email: amahmed @pvamu.edu Azure IoT Hub as an underlying infrastructure to coordinate the interaction between

organized into three parts: sensing side, cloud side, and user side. We used Microsoft

the three sides. The sensing side uses a Raspberry Pi 3 device, which is a low cost,
credit-card sized computer device that is used to monitor in near real-time soil mois-
ture, air temperature and relative humidity, and other weather parameters of the field
of interest. Sensors readings are logged and transmitted to the cloud side. At the
cloud side, the received sensing data is used by the irrigation scheduling model to
determine when and for how long the water pump should be turned on based on
a user-predefined threshold. The user side is developed as an Android mobile app,
which is used to control the operations of the water pump with voice recognition
capabilities. Finally, this system was evaluated using various performance metrics,

such as latency and scalability.

KEYWORDS:

Irrigation; IoT; Soil Moisture; Sensors; Azure; Android

1 | INTRODUCTION

In the United States, landscape irrigation consumes around 34 million m? each day'’. A significant percentage of that water use is
wasted due to overwatering caused by inefficiencies in traditional irrigation methods and systems. To reduce the wasted water, it
is becoming increasingly important to optimize the agricultural irrigation methods using advanced technologies such as Cloud
Computing”, Remote Sensing® and Internet of Things (IoT)#, which are used to gather data from various sources in the field for
enhancing predictive decisions. In the agriculture field, sensing capabilities for quickly and inexpensively generating agriculture
and food cyberinformatics have improved immensely in the past few years>.

Imagine a smart IoT system which measures the spatial variability of soil properties in agricultural fields, monitors farm
conditions, and plans irrigation. Such applications would tackle production costs and operational challenges for both small- and
large-scale farmers. These applications rely on the state of the context in which sensing devices are located, such as geographical

location, proximity, temperature, wind speed and direction, solar radiation and humidity.?. Increasingly, sensed data could also

2 | Ahmed Abdelmoamen Ahmed ET AL

inform decisions to activate actuators to carry out tasks automaticallyZ. A growing number of smart farming technologies offer
good examples of such capability.

The objective of this work is to develop an IoT smart irrigation system based on a near real-time monitor of soil moisture in
the plant root zone{ﬂ We developed a distributed system which is organized with parts executing on IoT sensing devices, on the
cloud, as well as on the user devices. The communication between the three sides is coordinated through Azure IoT Hub 8 which
is a cloud-based platform that enables a tremendous number of IoT devices to communicate between themselves in a scalable
and reliable manner.

At the sensing side, we used soil moisture, air temperature, and relative humidity sensors to monitor the current moisture in
the soil, air temperature, and relative humidity in the field, respectively. We developed a sensing-side application, hosted on a
Raspberry Pi 3 device, which receives the sensed data from these sensors, preprocess it, and send the processed feeds to the
cloud side. Also, the Raspberry application enables farmers to manually control the irrigation process by turning on/off a water
pump based on the current moisture level of the soil, which is also displayed on the Raspberry application.

At the cloud side, the Microsoft Azure platform has been used as a central bidirectional communication IoT hub among the
system components. The hub supports multiple forms of messages to keep track of the current state of the IoT end-devices
such as cloud-to-device telemetry messages for controlling the devices remotely. These telemetry messages are sent durably
to accommodate intermittently connected devices. All IoT devices at the sensing side —including the moisture sensor, temper-
ature sensor, LED, and Raspberry Pi— must be registered as end-devices at Iol' Hub Device Provisioning Service in order to
send/receive telemetry messages.

At the user side, we developed a desktop application which enables users to remotely control the farm irrigation and lighting
devices, customize the automatic irrigation process, and communicate with the Raspberry Pi application. It also gives users
the ability to set predefined thresholds for the soil dryness alert property, which warns the user if the moisture level drops to a
certain degree. We also developed an Android mobile app for increasing the user experience while using the system. The app
has an option to control the irrigation and lighting devices using voice recognized-commands.

The rest of the paper is organized as follows: Section[2]presents related work. Sections[3Jand@]present the design and prototype
implementation of the irrigation system, respectively. Section [5] experimentally establishes the performance cost of using the
system. Finally, Section [6] summarizes the results of this work.

2 | RELATED WORK

Conventional agriculture is slowly changing towards precision agriculture?, which is a farming management concept based
on observing, measuring, and responding to the spatiotemporal variability in weather, soil, irrigation/water, and agricultural
production. The use of intelligent agricultural IoT applications 21314 through a large number of end-devices in the target
areas —such as farmland, greenhouses, forest gardens, pastures-—, which can collect data about agricultural breeding or planting
in real-time is becoming increasingly important in modern agriculture. This section focuses on existing work that supports smart
farming practices using IoT technology.

Since landscape irrigation consumes billions of gallons of fresh water daily worldwide, tremendous research efforts have
been done to make the irrigation process and water usage more efficient. For instance, in2, the authors used low-cost sensors to
implement an automated system for crop field monitoring. Arduino was used to sending the sensed data to a web server, which
stores the current values of moisture, humidity, temperature, and light intensity in a database. An Android mobile app was built
to enable users to monitor the status of their crop fields.

An IoT-based irrigation monitoring system is proposed in'>, which uses a wireless sensor network and Arduino technology
for sensing soil moisture level, temperature and relative humidity values in the agricultural field. The system monitors the water
level of the irrigation tank via a water level sensor so that if the water level is below a certain threshold, then irrigation will
not start. The sensed data are preprocessed using two Arduino nodes; then the processed data is sent to a cloud server via a
ZigBee transceiver and relay switching unit. The cloud server is responsible for making the irrigation decisions based on a set
of predefined thresholds. An android application was also developed to notify the user with any change that needs immediate
actions such as a sudden rise in temperature, new watering requirements for some species of plants, etc.

! Available online: https://github.com/ahmed-pvamu/Smart-ToT-Irrigation-System

Ahmed Abdelmoamen Ahmed ET AL | 3

Sales et al.'% proposed a Wireless Sensors Actuators Network (WSAN) system for monitoring and assessing plants water
needs. The system consists of three main components: a WSAN, cloud platform, and web application. The WSAN is deployed
in the agricultural field to collect soil moisture data. The WSAN has several nodes connected using cluster-tree topology for
improving the system scalability. Each node is equipped with a soil moisture sensor. Sensor feeds are collected by a central Access
Point (AP) which sends the aggregated data to the cloud server. The Cloud Platform is responsible for validating, processing,
and storing the received sensor feeds from the sensing side. Besides, the authors developed an algorithm for controlling the
irrigation process based on the collected soil moisture from the WSAN nodes, as well as weather forecasted data from Weather
Underground serviceﬂ This service gets the predicted weather data for the closest available weather station to the location of the
field where the sensor nodes are deployed. The algorithm uses the Probability of Precipitation (PoP) value of the target region
within 6 hours to decide when the irrigation should start and for how long. When it is the time to spray the field, sensor nodes are
instructed by the cloud platform to increase the soil moisture sampling frequency, which allows optimizing the irrigation process
because more information is collected. The default sampling rate is restored after watering the field. Finally, a web application
is used to show the location of each sensor node, the connected battery status, and data history.

Another platform for managing the components of a precision irrigation system is presented in”. The proposed distributed
system includes a server node which hosts a decision support system, a mobile application for user interaction, and IoT devices
that operate linear irrigation machines. The decision support system creates an irrigation map, which represents the amount of
water to be supplied in each cell of the field based on several factors such as the integrating geographic, meteorological, and soil
data. An Unmanned Aerial Vehicle (UAV) —equipped with a vision sensor— was deployed to perform an aerial survey over the
field to provide a high-resolution measurement of the current state of the field.

An IoT-based smart irrigation system based on machine learning is proposed in'?. The proposed system aims to achieve
optimum water-resource utilization in the field by using a machine learning model, which can predict the irrigation requirements
of a field using the sensing of several parameters such as soil moisture and the weather forecast data. The machine learning
model uses the sensors’ feeds of the recent past few days, and the weather forecasted data for predicting the soil moisture for the
upcoming days. However, the proposed system depends entirely on the accuracy of the predicted soil moisture, which is affected
by numerous environmental variables such as air temperature, air humidity, soil temperature, etc.

In summary, most of the existing work focuses on narrow application areas or specific concerns, making it difficult to utilize
them for a broader class of functionalities. Furthermore, none of these systems implemented a fully-functional ecosystem for
agricultural applications starting from collecting data at the sensing side all the way to visualizing processed information at
the cloud side. In this paper, we present a complete IoT system which can be used to monitor and control the agricultural field
operations.

3 | SYSTEM DESIGN

As illustrated in Figure[T] the distributed run-time system for the irrigation system is organized with parts executing on sensing
IoT devices, Azure cloud platform, as well as user devices. In the rest of this section, we discuss these three parts separately.

3.1 | Sensing side

At the sensing side, data can be collected from a variety of IoT end-devices including soil moisture, temperature, rainfall, wind
speed and direction, solar radiation, humidity, leaks monitoring, accelerometer, GPS, proximity, motion, and dew point sensors.
A Raspberry Pi device — which acts as an IoT gateway-— is used to aggregate these data and coordinate the connectivity of the end-
devices to each other and to the cloud side. Accurately, the gateway keeps aggregating the received sensor data until a sufficient
number of them have been received to detect an interesting event such as a change in the level of soil moisture in an agricultural
field. Gateways either send updates periodically or when they observe a new event, to the IoT hub at the cloud side through the
device provisioning service. The IoT hub sends a set of parameters to the gateway advising it on how to detect events, construct
their messages, and how often to send them (once or periodically, how frequently, etc.).

The IoT Hub Device Provisioning Service is a helper service for the IoT Hub that enables zero-touch real-time provisioning
of IoT end-devices. All IoT end-devices must be enrolled with a Device Provisioning Service instance by sending a registration

2Weather Underground is a third-party online weather service.

4 Ahmed Abdelmoamen Ahmed ET AL

Sensing Side Cloud Side

loT End-Devices

Position / Presence / Proximity

]

1 <)
(>

“ Acceleration / Tilt O
& Leaks / Levels

Humidity / Moisture i L.
éoak

Temperature

L Stream
Provisioning 10T Hub Analytics

10T Gateway
/ Service

User Side

Mobile App Cloudfise%pplication

< i 2 3=_

Farmers - c—

FIGURE 1 System Architecture

request to the service. Once the device has been provisioned, it can boot up, and call the provisioning service to be recognized
and assigned to an IoT hub.

3.2 | Cloud side

At the cloud side, the IoT Event Hub' is used to receive and aggregate the events sent from the gateway at the sensing side. The
Event Hub is a streaming service that is capable of collecting and processing millions of events contained in telemetry messages
produced by IoT end-devices. The Event Hub also implements some security mechanisms to ensure that the incoming telemetry
messages are legitimate. Event Hubs enqueue the received messages in a partitioned consumer model in which each consumer
application only reads a partition of the message stream. This model enables horizontal scale for event processing that can be
easily integrated into the big data and analytics services of Azure, including Databricks, Azure Stream Analytics, etc.

Stream Analytics is a serverless event processing engine that can be used to analyze data streams generated from IoT end-
devices in real time. The Stream Analytics is employed to implement our automatic irrigation algorithm by detecting the pattern
of the soil dryness. Specifically, the analytics service collects aggregated events until a sufficient number of them have been
received (as determined by a sufficiency condition) and then triggers actions such as creating alerts, feeding information to a
reporting tool, or storing transformed data for later use.

An Azure Stream Analytics job consists of an input, a transformation query, and an output. The events sent from the sensing
devices are considered the input source for a job. The transformation query, which is based on SQL query language, is used to
aggregate the streaming sensor data to produce the actions which are considered the output of the job.

To control our sensing devices connected to the IoT hub remotely, we used a cloud-to-device interaction model by invoking
the direct methods on the IoT end-devices. Direct methods represent a synchronous request-reply interaction with an IoT hub and
a sensing device. For instance, direct methods can be used to send an action message to control a water pump in the agriculture
field.

3.3 | User side

Non-technical users (e.g., farmers) can easily monitor and control the agricultural field conditions from anywhere with the help
of various sensors and actuators (e.g., light, humidity, temperature, soil moisture, etc.). We developed a Graphical User Interface
(GUI) which can be accessed from personal computing devices such as PCs and smartphones. The GUI will help users to access

Ahmed Abdelmoamen Ahmed ET AL 5

FIGURE 2 The Physical Implementation of the Smart Irrigation System

the deployed IoT system remotely, which will eliminate the need for constant manual monitoring. This design provides cost-
effective and optimal solutions for farmers with minimal manual intervention. Furthermore, the GUI can be used to extract
real-time insights and actionable information using the Azure Stream Analytics, which would aid the decision-making of both
small- and large-scale farmers. This would improve management and crop yields significantly.

4 | SYSTEM IMPLEMENTATION

Figure [2 shows the prototype implementation of the smart irrigation system. Next, we describe the system components at the
sensing, cloud, and user side.

4.1 | Sensing side

For controlling the environment in an agricultural field, different sensors that measure the environmental parameters according
to the plant requirement have to be deployed in the field. In this project, we tried to remotely control the farm irrigation and
lighting devices by using the following hardware components:

e Raspberry Pi 3 Model B+ is used as an IoT gateway at the sensing side for aggregating the sensing data collected from
sensors. The Raspberry Pi is equipped with a 64-bit quad core processor running at 1.4GHz, dual-band 2.4GHz, and 5GHz
wireless LAN. We installed Windows 10 IoT core on the Raspberry Pi, which can host and run .NET applications. We
connected a soil moisture, temperature, and humidity sensor to the Raspberry Pi via the General Purpose I/0 (GPIO) pins.

e Water pump equipped with a 12 volt-DC battery is used to circulate the water on an irrigation pot. The pump has two
water channels: input and output. The flow of water is absorbed by the input channel and pushed into the bowl through
the output channel. We also used a transistor which controls the flow of the electrical current through the circuit. When
the transistor receives a signal from the Raspberry Pi to turn the pump on, it allows the electrical current to move through
the circuit which turns the pump on, and vice versa.

o Soil moisture sensor is used to measure the current moisture level in the soil. The value measured by the sensor is the elec-
trical resistance of the soil to the flow of electricity between two electrodes. Figure[3|shows an example of the relationship
between resistance and water content of the soil moisture sensor.

The measured value must be calibrated according to the type of soil before converting it to volumetric water content of
soil. Precisely, we have calibrated the relationship between resistance and water content of the soil moisture sensor. For
our experiments, we assumed the following calibration equation:

6 Ahmed Abdelmoamen Ahmed ET AL

1200

1000 @
200
.]

— 600 e
= ‘ ¥ =4775.1x2-3370.8x+927.2
P
& 400
£ o 0
b5
& 200

Water Content

FIGURE 3 The Relationship between Resistance and Water Content of the Soil Moisture Sensor

. 1,023-5
~ 16575

where 6 is the volumetric water content of soil (%) and 6 is the soil moisture sensor reading (€2).

There are three methods of irrigation scheduling: soil-, weather-, and plant-based or combined irrigation scheduling. The
latter two methods may need to consider evapotranspiration. In this paper, we measure soil moisture using an in-situ
sensor; therefore, there is no need for considering the evapotranspiration in our calculations.

e DHI11 Temperature and humidity sensors are used to measure the temperature in Celsius and the humidity in percentage
in the field, respectively.

e Light-emitting diode (LED) is used to represent the actual farm lighting, which can be controlled by our system.
e MCP3002 Analog to Digital converter is used to convert the moisture sensor analog reading to a digital value.

e Resistors are used to limit the amount of electrical current moving through the circuit. Particularly, we used one resistor
for the LED and another one for the transistor in case one or both of them draw more current than the Raspberry Pi can
supply (i.e., around 60mA). In this case, the resistors will ensure that only 60mA will flow through the circuit to protect
the connected Raspberry Pi and sensors from damage.

e Jumper wires with two ends connectors are used to connect the Raspberry Pi with all other hardware parts.
e Display screen is connected to the Raspberry Pi via its HDMI port to display the sensing side application.
e Keyboard and mouse are connected to the Raspberry Pi via its USB ports as input devices.

e Breadboard is used to interconnect all hardware components by inserting their terminals or connected jumper wires into
the holes of the board.

4.2 | Cloud side

At the cloud side, we used the Azure portal to create an IoT hub instance and two virtual devices connected to the established
hub. The first virtual device represents the physical LED, while the second virtual device represents the physical water pump at
the sensing side.

As shown in Figure[d] we developed a cloud-based windows application for managing the IoT-end devices at the sensing side.
The app uses the IoT hub direct methods to control the devices remotely. On the right-hand side, we display the device-to-cloud
telemetry messages sent from the IoT gateway to the Event Hub, and vice versa. On the left-hand side, we build a simple control
panel to enable the user to control the end-device at sensing side remotely. The user can perform the following functionalities:

Ahmed Abdelmoamen Ahmed ET AL 7

Smart Farm 10T Hub

Devices Controlling
Water Pump

@D off

Farm Lighting

@ orf

, Partition {0), Sej

Devices Data Monitoring
Receiving Sensors Data

@D or

Sending Sensors Data

® On

Max. Sent Messages Count

100 Set Mumbers from 1 to 1000 (Defautt=30)

Number Of Devices
Set Numbers from 1 to 5 (Defautt=1%

Partition {0), Se

Sensars Threshold Setting

Moisture Threshold

M, Partitior
% Numbers from 0 to 42 (Required*)
Temperature Threshold
C Numbers from -60 to 100 (Optional*)
Humidity Threshold

% Numbers from 0 to 100 (Optional*) Recelving Elapsed Time - 103775 {
ly. Receiving e e : 103775

Set Thresholds

FIGURE 4 The Cloud-based Windows Application for Managing IoT End-devices

(i) turn on/off the LED (e.g., farm lighting); (ii) turn on/off the water pump (e.g., control irrigation); (iii) set the maximum
number of telemetry messages which can be sent from any end-device to the Event Hub; and (iv) set the threshold values for the
soil moisture, temperature and humidity sensors which are used to fire the dryness alert if immediate attention from the user is
needed.

Figure [5| shows a code snippet for receiving and displaying the telemetry messages which are exchanged between the end-
devices and the Event Hub.

4.3 | User side

At the user side, we developed a Universal Windows Platform (UWP) application that runs on the Raspberry Pi to display the
real-time sensing data from the field (see Figure E]) This application’s GUI is designed and developed using XAMI_E] and C#,
respectively. The application displays the following information:

o The current readings of the soil moisture (in percentage), temperature (in Celsius), and humidity (in percentage) sensors.

e The number of devices which are currently sending sensors readings to the cloud side. It can be remotely adjusted in the
cloud-based windows application. We also show the total elapsed time for both collecting and sensing sensor data to the
cloud side in milliseconds.

e The current threshold value of the soil moisture is used to control the water pump at the sensing side. Also, this threshold
can be set in the cloud-based windows application.

e Two interactive images are used for illustrating the current status of the farm lighting and the water pump.

3XAML is a declarative language that is used to create the GUI of UWP applications.

8 Ahmed Abdelmoamen Ahmed ET AL

opWatch.Start(
events = a eventHubReceiver.ReceiveAsync(int .MaxValue);
pWatch.5top()
(events == null)

f (!anyEventsReceivedBefore)
stopWatch.Reset();

anyEventsReceivedBefore = true;
F eventData in events)

g.UTF8.Get5tring({eventData. Body.Array);

~ enqueuedTime = eventData.SystemProperties.EnqueuedTimeltc.TolocalTime();
- connectionDeviceld = eventData.SystemProperties othu i id”].Tostring();
ssagesCount++;
(devices.Contains{connectionDeviceId))
txutMsgReceiw ‘{messagesCount} - {engqueuedTime} , Pa n ({partition}),
 (eventData.Properties.Count > 8)
txtMsgReceived.Text += "
(var property in eventData.Properties)
£ (property.Key = S
entMsglount
£ (property.Key

txtMsgReceived. Text ‘{property.Key}' : '{property.Value}
g currentDrynessAlert = property.Value.ToString().TolLowe

f {previousDrynessAlert != currentDrynessAlert)
previousDrynessAlert = currentDrynessAlert;

if (property.Value.ToString().ToLower(} t Tostring().Tolo
i ib. InvokeDirectMethod DirectMetho ion.S5tartWaterPump) ;

-InvokeDirectMethod{Az b.DirectMethodAction.StopWaterPump);

FIGURE 5 Code Snippet for Receiving and Parsing the Telemetry Messages in the Windows Application

Each telemetry message sent from the cloud side contains three sensed readings (i.e., the current moisture, temperature,
and humidity reading), in addition to one extra value for the dryness alert property. If a dryness alert message is received, the
application turns on the water pump immediately by invoking a cloud pre-registered direct method call on the IoT gateway. The
water pump keeps irrigating the field until the sensed moisture level exceeds the moisture threshold.

We also developed an Android mobile app for enabling the user to manually control both the irrigation pump and the farm
lighting using (shown in Figure [7). The app includes a voice assistant which uses voice recognition and speech synthesis to
translate the voice commands of the user to actions. For example, if the user says, "start irrigation," then the water pump will
be turned on. Additionally, the user can turn on/off the farm lighting and the water pump by taping the corresponding icons on
the app.

The mobile app was developed using the Xamarin platform'’®, which is a development platform for creating native mobile
apps across different platforms (e.g. Android, iOS, etc.). Particularly, we used the Xamarin.Android library which exposes the
complete Android SDK for .NET developers to build fully native Android apps using C# in MS Visual Studio Development
Environment.

Figure[§|shows a code snippet for how to control the end-devices using voice recognition in the Android app. We first convert
the recorded speech to text. Then, we match the generated command to one of the existing direct method actions. If a matching
action is found, we call the appropriate direct method, which in turns sends a direct method call to the device to take action.

Ahmed Abdelmoamen Ahmed ET AL 9

% Sensors Data

Moisture Temperature Humidity
0.2% 242 C 46.0 %

Sending Data (1 Device) Thresholds Max. Msgs Count

True (100), (5621 ms) Moisture: 70 100 / Device

Farm Lighting is Off _ Water Pump Stopped

FIGURE 6 Screenshot of the UWP Application Running on the Raspberry Pi

S | EVALUATION

We experimentally evaluated our prototype regarding performance and scalability. We installed instrumentation in both the
cloud-based application and the UWP application running on the Raspberry Pi to measure the processor time that was taken to
perform various tasks. Instrumentation was also added to the sensing side to measure the processor time of sensing data. Each
experiment presented in this section is carried out for ten trials, then we took the average of these trials’ results.

5.1 | The effect of changing the number messages on the response time

We ran a set of experiments to determine the impact of changing the number of messages exchanged between the sensing and
cloud sides on the processing time of these messages at the UWP application running on the Raspberry Pi. This application
was developed to asynchronously send one sensor feed to the IoT Event Hub per second. In these experiments, we used one IoT
end-device to send/receive all messages to/from the cloud side.

Figure 9] shows the results of these experiments. As shown in the figure, as the number of messages increases, the total
processing time increases until reaching 500 messages. At this point, we could not observe noticeable significant differences in
the response time. The overall average latency was measured to be 0.027seconds per message, which is considered an acceptable
latency that makes our system a near-real-time irrigation system. This means when the dryness alert is fired, the irrigation process
can start within one second considering the network delay as well. Furthermore, we assumed that a sensor feed is collected
every second, and consequently, a message is sent to the cloud side every second, which may be not very reasonable in reality
as farmers need to check the moisture level in the soil every couple of hours, for instance.

10 Ahmed Abdelmoamen Ahmed ET AL

= .l i 1:56 PM

Start Irrigation

Turn On Light

<>

-

Welcome to your Smart Farm!

FIGURE 7 The Android Mobile App

5.2 | The effect of changing the number of IoT end-devices on the response time

We ran another set of experiments to determine the impact of changing the number of IoT end-devices on the response time
of the system. In the first experiment, we used one IoT end-device to perform all computations. Then, we gradually increased
the number of devices in the following experiments. In these experiments, we used the physical pump in addition to other four
virtual devices, which are all connected to the IoT hub. We instructed each device to send 100 feeds per second to the cloud side
during the time of the experiment.

Figure [10] shows the results of these experiments. As shown in the figure, as the number of devices increases, the latency
time slightly increases. This demonstrates that our system is scalable and can support a high number of IoT-end devices without
significantly affecting the responsiveness of the system.

5.3 | The effect of changing the number of IoT end-devices on the processing time

Finally, we ran a set of experiments to determine the impact of changing the number of IoT end-devices on the on-going per-
event processing time. The main objective of these experiments is to assess the scalability of the system to accommodate an
enormous number of sensing devices. The on-going processing time measured was per sensor feed: every time a piece of raw
data was received from a sensor, its average the total processing cost amounted to that per-event processing time.

In the first experiment, we used one virtual end-device to perform all computations. Then, we gradually doubled the number
of virtual devices in the following experiments. Figure [TT|shows the results of these experiments. As shown in the figure, as the
number of devices increases, the average processing time per event slightly increases. These experiments show that our system
can include a large number of IoT-end devices without having a significant effect on the on-going processing time of sensor feeds.

Ahmed Abdelmoamen Ahmed ET AL

11

i OnActivityResult(int requestCode, Result resultVal,
OnActivityResult(requestCode, resultVal, data);
(requestCode == WOICE)
if (resultVal == Result.Ok)
i
- matches = data.Get5tringArraylListExtra(R xtraResults);
F (matches.Count != @)
> saidText = matches[8];
f (saidText.Length
saidText = saidText.Substring(@, 308).ToUpperInvariant();
xtInputWhatlustSaid. Text = saidT CapitilizeFirstlLetterEachWord(saidText);
(saidText == ion.Context.GetString(farm_water_pump_on))
b.InvokeDirectMethod(A ub.DirectMethodAction.StartWaterPump);
.Context.GetString(.farm_water_pump_off))
5. InvokeDirectMethod(Az ub.DirectMethodAction.StopWaterPump) ;
on.Context.GetString(< .farm_light_turn_on))
0. InvokeDirectMethod(Azurelo b.DirectMethodAction. TurnOnFarmLight);

F (saidText == on.Context.GetString(g.farm_light_turn_off)}

.InvokeDirectMethod(DirectMethodAction. TurnOffFarmLight);

xtInputWhatJustSaid

FIGURE 8 Code Snippet for Controlling the End-devices using Voice Recognition in the Mobile App
20
18
16
14
12
10

Response Time (seconds)

A O ©

100 200 300 400 500 600 700 800 900 1000

Number of Messages

FIGURE 9 The Effect of Changing the Number Messages on the Response Time

12 Ahmed Abdelmoamen Ahmed ET AL

3.00 T —e
"
©
c
S 2.00
(]
o
(]
S
|_
Q
c
o 1.00
o
(%]
Q
[a'ss
0.00
1 2 3 4 5

Number of 10T Sensing Devices

FIGURE 10 The Effect of Changing the Number IoT End-devices on the Response Time

30 /
25 o

L 4

20

15

10

Processing Time Per Event (MS)

0 2,000 4,000 6,000 8,000 10,000

Number of 10T Sensing Devices

FIGURE 11 The Effect of Changing the Number IoT End-devices on the Ongoing Per-event Processing Time

6 | CONCLUSIONS

This paper presented a distributed IoT system which can better inform and engage farmers with the automated irrigation process
in agriculture fields. The developed system would create a better opportunity for farmers to irrigate more efficiently, remotely, as
well as reducing the field’s overwatering based on actual soil watering needs. We developed three different types of applications
as part of the IoT system executing on sensing IoT devices, Azure cloud platform, as well as on users’ mobile devices. These
applications give the ability to users to set various irrigation parameters such as the thresholds for the moisture, temperature
and humidity sensors, which makes the system widely useable for a different type of crops and soils considering they have
their suitable soil moisture threshold values. We also carried out several sets of experiments for evaluating the performance and

Ahmed Abdelmoamen Ahmed ET AL | 13

scalability of our system, paying particular attention to establishing the relationship between the number of IoT end-devices
connect to the IoT hub and the response time of the system. The results showed that the response time depends on various
granularity characteristics of the systems, most notably the number of messages exchanged between the IoT end-devices and the
IoT Event Hub. Also, the experimental evaluation showed that the system is highly responsive and scalable despite the number
of messages exchanged as well as the number of contributing IoT end-devices.

We expect that this research would increase the open source knowledge base in the area of IoT-based distributed and mobile
systems by publishing the source codes to the public domailﬂ

In on-going work, we are looking into opportunities for generalizing our approach to be used for other smart farming practices
such as automatic seeding, fire detection, lighting, and climate control. This would lessen the need for human interaction and
ultimately improve agriculture productivity. We also plan to check the forecasted rainfall in the next few hours before starting
the irrigation process. Also, we will test the developed prototype in the Research Farm at Prairie View A&M University, as a
pilot site. Furthermore, we are also looking at the opportunity of using deep learning to predict more accurate plant watering
requirements. Finally, experiments with more massive datasets are needed to study the robustness of our solution further.

References

1. EPA: Statistics and Facts. https://www.epa.gov/watersense/statistics-and-facts; accessed November 03, 2020.
2. The rise of big data on cloud computing: Review and open research issues. Information Systems 2015; 47: 98—115.

3. Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management
2000; 46(2): 137-155.

4. Tzounis A, Katsoulas N, Bartzanas T, Kittas C. Internet of Things in agriculture, recent advances and future challenges.
Biosystems Engineering 2017; 164: 31-48. |doi: https://doi.org/10.1016/j.biosystemseng.2017.09.007

5. Nawandar NK, Satpute VR. IoT based low cost and intelligent module for smart irrigation system. Computers and
Electronics in Agriculture 2019; 162: 979-990. doi: https://doi.org/10.1016/j.compag.2019.05.027

6. Moamen AA, Jamali N. Coordinating Crowd-Sourced Services. In: ; 2014; Alaska, USA: 92-99.

7. Moamen AA, Jamali N. An Actor-Based Middleware for Crowd-Sourced Services. EAI Transactions on Mobile Communi-
cations and Applications 2017(vol 17): 1-15.

8. Azure IoT Hub. https://azure.microsoft.com/en-us/services/iot-hub/; accessed November 03, 2020.

9. Aleotti J, Amoretti M, Nicoli A, Caselli S. A Smart Precision-Agriculture Platform for Linear Irrigation Systems. In: ; 2018:
1-6.

10. Rajendrakumar S, Parvati VK, Rajashekarappa , D PB. Automation of Irrigation System Through Embedded Computing
Technology. In: ICCSP ’19. ; 2019: 289-293.

11. KwokJ, Sun Y. A Smart IoT-Based Irrigation System with Automated Plant Recognition Using Deep Learning. In: ICCMS
2018. ; 2018: 87-91.

12. Rao RN, Sridhar B. IoT based smart crop-field monitoring and automation irrigation system. In: ; 2018: 478—483.

13. Goap A, Sharma D, Shukla A, Krishna CR. An IoT based smart irrigation management system using Machine
learning and open source technologies. Computers and Electronics in Agriculture 2018; 155: 41-49. doi:
https://doi.org/10.1016/j.compag.2018.09.040

14. Muangprathub J, Boonnam N, Kajornkasirat S, Lekbangpong N, Wanichsombat A, Nillaor P. IoT and agri-
culture data analysis for smart farm. Computers and Electronics in Agriculture 2019; 156: 467-474. doi:
https://doi.org/10.1016/j.compag.2018.12.011

4 Available online: https://github.com/ahmed-pvamu/Smart-ToT-Irrigation-System

https://www.epa.gov/watersense/statistics-and-facts
http://dx.doi.org/https://doi.org/10.1016/j.biosystemseng.2017.09.007
http://dx.doi.org/https://doi.org/10.1016/j.compag.2019.05.027
https://azure.microsoft.com/en-us/services/iot-hub/
http://dx.doi.org/https://doi.org/10.1016/j.compag.2018.09.040
http://dx.doi.org/https://doi.org/10.1016/j.compag.2018.09.040
http://dx.doi.org/https://doi.org/10.1016/j.compag.2018.12.011
http://dx.doi.org/https://doi.org/10.1016/j.compag.2018.12.011

14 | Ahmed Abdelmoamen Ahmed ET AL

15. Saraf SB, Gawali DH. IoT based smart irrigation monitoring and controlling system. In: ; 2017: 815-819.
16. Sales N, Remédios O, Arsenio A. Wireless sensor and actuator system for smart irrigation on the cloud. In: ; 2015: 693—-698.
17. Azure IoT Event Hub. https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about; accessed November 03, 2020.

18. Visual Studio Tools for Xamarin. https://visualstudio.microsoft.com/xamarin/; accessed November 03, 2020.

[

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://visualstudio.microsoft.com/xamarin/

	A Distributed System for Supporting Smart Irrigation using IoT Technology
	Abstract
	Introduction
	Related Work
	System Design
	Sensing side
	Cloud side
	User side

	System Implementation
	Sensing side
	Cloud side
	User side

	Evaluation
	The effect of changing the number messages on the response time
	The effect of changing the number of IoT end-devices on the response time
	The effect of changing the number of IoT end-devices on the processing time

	Conclusions
	References

