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This work focuses on the Riemann problem of Euler equations with global constant
initial conditions and a single-point heating source, which comes from the physical
problem of heating one-dimensional inviscid compressible constant flow. In order
to deal with the source of Dirac delta-function, we propose an analytical frame of
double classic Riemann problems(CRPs) coupling, which treats the fluids on both
sides of the heating point as two separate Riemann problems and then couples them.
Three structures of the exact Riemann solution are found, which is consistent with
the results of numerical methods. Furthermore, we establish the uniqueness of the
Riemann solution with some restrictions on theMach number of the initial condition.
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1 INTRODUCTION

TheRiemann problem of the one-dimensional inviscid compressible flowwith global constant initial conditions and a singe-point
heating source is studied in this paper. The heating point is located at x = 0. The governing equations is given by
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Here, �, p and E denote the thermodynamical variables: density, pressure and total energy, respectively. u is velocity. Q > 0 is
the heat flux per unit time added to the flow. �(x) is the Dirac delta-function. Therefore, the source means that Q heat is added
to the flow from the heating point per unit time. We assume that the fluid is polytropic ideal and the equaiotn of state is given by

p = (
 − 1)�e, 1 ≤ 
 ≤ 3.

where 
 is the ratio of specific heats and e is the internal energy. The initial condition is

U (x, 0) ≡ U1 = (�1, �1u1, E1), (2)

where �1, u1 and E1 are constant. We assume that u1 is greater than 0 for convenience. The subscript 1 represents the initial
condition in this paper. The physical problem described by the Riemann problem (1.1)-(1.2) is that Q heat is added to the
one-dimensional constant flow per unit time, as shown in Figure 1.
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FIGURE 1 one-dimensional constant flow with heat addition from a single point

We use the subscripts − and + to represent the limiting states upstream and downstream of the heating point respectively. We
set

U−(t) = U (0−, t), U+(t) = U (0+, t).
The source term implies a jump of the energy flux across the heating point:

�−(t)u−(t) = �+(t)u+(t)
�−(t)u−(t)

2 + p−(t) = �+(t)u+(t)
2 + p+(t)

(E−(t) + p−(t))u−(t) +Q = (E+(t) + p+(t))u+(t).
(3)

If the velocity at the heating point is zero, thermal convection does not occur, and the added heat has no effect on the
surrounding flow. Thus in the following paper we assume that

u−(t) ≠ 0, u+(t) ≠ 0.

We will prove that the solution of Riemann problem (1.1)-(1.2) is self-similar in the third section, therefore both U−(t) and
U+(t) are constant vectors. Omitting the time parameter t, we can get the following equation from (1.3):
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We call following equations the heating equations:
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The solution of the heating equations (1.4) corresponds to the steady solution of Riemann problem (1.1)-(1.2). Therefore, the
properties of the solution of the heating equations (1.4) are important for the study of Riemann problem (1.1)-(1.2).

The mathematical model of Figure 1 can be applied to the study of one-dimensional condensation problem1,2. The condensa-
tion of the vapor leads to the release of latent heat and therefore has heating effects on the carrier fluid. Previous researches on
condensation problems have revealed some information about the solution of Riemann problem (1.1)-(1.2). The solution of the
heating equations (1.4), which is a steady solution of the Riemann problem, has already been available1,3,2,4. In4 Schnerr made
a good summary of the properties of the solution of (1.4) withM− > 1, which is typical for condensation problems. Schnerr
showed that there are two solutions of the heating equations (1.4), one called the shock solution, which reduces to identity with
Q = 0, and the other called the weak solution, which reduces to the adiabatic normal shock solution with Q = 0. For the heat
addition of subsonic flow, Schnerr predicted the appearance of the unsteady solution, but did not do a more detailed analysis.
There are other solution expressions of the heating equations. For example, Delale1,3 and Dongen2 have their own forms of the
solution of (1.4). For the unsteady solution of the Riemann problem, some scholars have proposed the possible wave patterns
of the solution, but the complete and rigorous theoretical proof is lacking at present. Dongen2 studied the unsteady effects of
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the heat addition, and proposed three possible solution structures. Those three structures are determined by the Mach numbers
of the fluid around the heating point. Numerical simulation is an effective method to explore the wave patterns of the heating
problem. Chengwan5 used the ASCE method6 to numerically verify the above three structures by the simulation of the onset
of condensation in a slender Laval nozzle. In the wet nitrogen condensation problem of the Laval nozzle, Chengwan showed
the transition between the three structures by adjusting the humidity. However, the above work focused on using numerical
methods to reveal some of the properties of the heating problem. To our knowledge, there is no effective theoretical method to
study the exact solution of Riemann problem (1.1)-(1.2).

Riemann problem (1.1)-(1.2) has two features: first, the initial condition is global constant; second, the governing equations
are non-homogeneous equations containing a �-singularity source term. The second property is the key point, which has an
essential impact on the structure of the solution. One way to deal with Riemann problems with source terms is called generalized
Riemann problem(GRP)7,8 or derivative Riemann problem(DRP)9,10. The Riemann problem of homogeneous Euler equations
with piecewise constant initial conditions is also called classical Riemann problem(CRP). Based on the exact solution of CRP,
GRP made two extensions: the initial condition is changed from piecewise constant functions to piecewise linear functions or
even piecewise smooth functions; the governing equations become non-homogeneous equations containing source terms. GRP
can solve many Riemann problems with complex source terms, such as the Riemann problem of shallow water equations11
and the Riemann problem of three-dimensional spherically symmetric equations12. However, the sources are assumed to be
smooth functions by default in those GRP solvers. As a result, the source term affects the Riemann solution in the second and
higher space-time order. That is, the effect of sources will disappear when the time tends to zero. Therefore the wave patterns
of the GRP solution are the same as the wave patterns of its corresponding CRP solution. For Riemann problem (1.1)-(1.2), the
existing GRP solvers can not be directly applied. The reason is that the source S is not a continuous function, which makes a
huge effect on the Riemann solution at the beginning and directly changes the wave pattern. In fact, as can be seen from1, the
solution of Riemann problem (1.1)-(1.2) may be a three waves structure or a four waves structure, which is different from the
zero wave structure of its CRP.

If the Dirac delta-function in the source term takes the form of the derivative of a step function, we have

�(x) = )ℎ
)x
.

An alternative definition of ℎ is

ℎ(x) =

{

0, x < 0
1, x ≥ 0

.

We can remove the obstacle of the source term by supplementing the system (1.1) with the trivial equation:
)ℎ
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= 0. (5)

The original Euler equations with source terms becomes the following hyperbolic equations without source terms:
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The new equation (1.5) gives rise to a new linearly degenerate characteristic field and a new stationary discontinuity. That
seems to be an effective way to solve the Riemann problem (1.1)-(1.2). In fact, that method has been used by many scholars
to deal with hyperbolic banlance problems with the source term of Dirac delta-function, such as the Riemann problem for
the fluid in a nozzle with discontinuous cross-sectional area13,14,15 and the Riemann problem for the shallow water equations
with discontinuous topography16,17,18,19. Although that method can eliminate the source terms, the augmented system (1.6) is
obviously not strictly hyperbolic. In addtion, if Q is related to the state of the fluid rather than a constant, then the augmented
system (1.6) is non-conservative, just like the augmented hyperbolic system in15. Although the augmented equations do not
contain source terms, the solution process of the Riemann problem is very complex and often be problem-related due to the
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lack of conservation or strict hyperbolicity.

In this work, we propose an analytical frame of double CRPs coupling at the heating point to construct the exact solution of
the Riemann problem (1.1)-(1.2). It regards the fluids on both sides of the heating point as two separate CRPs, and gives the
upper limit of the number of waves first. The solutions of the two CRPs are then coupled on the premise of maintaining the
physical properties of the heating point. Depending on the heating properties and gasdynamics properties, the extra waves are
deleted and the type of wave is finally determined. One advantage of the double CRPs coupling method is that it is independent
of whether the fluid at the heating point is supersonic or subsonic. Using the present method we demonstrate three possible
structures of the solution, which are verified by examples in the sixth section.

The text is arranged as follows. In the second section, we will introduce the solution of the heating equations and derive
several useful properties. In the third section, an analytical frame of double CRPs coupling will be introduced by solving the
Riemann problem (1.1)-(1.2). We will use this method to prove the three structures of the exact solution. In teh forth section,
we will give an iterative method for the exact solution of each structure. In the fifth section, the structure of the solution will be
associated with the Mach number of the incoming flow to illustrate the uniqueness of the solution. In the sixth section, we will
give five examples of the Riemann problem (1.1)-(1.2) with different initial conditions and heating coefficients to verify our
results. Finally, a brief summary will be given in the seventh section.

2 HEATING EQUATIONS

There are two different branches of the solution of the heating equations (1.4), but only one of them is physical. The physical
solution satisfy the following criterion20:

Property 2.1. IfM− < 1, thenM+ ≤ 1. IfM− > 1, thenM+ ≥ 1.

The physical solution corresponds to the weak solution in4. In this paper the solution of Dongen2 is adopted. For the heat
addition of subsonic flow, the solution is
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For the heat addition of supersonic flow, the solution is

I ≡

√

√

√

√

√

(


 + 1
M−

2

)2

− 2(
 + 1)

(

1
M−

2
+

 − 1
2

)

(1 + �), (8a)

u+
u−

=
�−
�+

= 1

 + 1

(


 + 1
M−

2
+ I

)

, (8b)

p+
p−

=
M−

2


 + 1

(


 + 1
M−

2
− 
I

)

, (8c)

M+ =

√

√

√

√

√


 + 1
M−

2 + I


 + 1
M−

2 − 
I
. (8d)

M is Mach number. The advantage is that the ratios of variables before and after heat addition are only related to the upstream
Mach number of the heating point. In order to make the solution reasonable, there is an upper bound on k:

k ≤ kmax
def
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FIGURE 2 Relation between the maximum heat parameter and the Mach number of the flow upstream to the heating point.

kmax is called maximum heat parameter. The relation between kmax and M− is shown in figure 2. For M− → 0+, kmax
approaches asymptotically ∞. ForM− → ∞, kmax approaches asymptotically a finite number 1


2−1
. When k is a fixed number

and k < 1

2−1

, there are two numbers ofM satisfy:

k =
(1 −M2)2

2(
 + 1)M2
(

1 + 
−1
2
M2

) .

One of these two numbers is greater than 1, labeledM∗∗, and one is less than 1, labeledM∗. When k ≥ 1

2−1

, the solution of
above equation is unique, which is labeled M∗ and is less than 1. From the relation between M− and kmax, we can draw the
following conclusion:
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Lemma 2.1. For a given k, we have:

(1) when k < 1

2−1

,M− ≤M∗ orM− ≥M∗∗;

(2) when k ≥ 1

2−1

,M− ≤M∗;

(3) IfM− =M∗ orM− =M∗∗, I = 0 andM+ = 1 hold.

The case ofM+ = 1 is called thermal choking state. At this time, the fluid becomes a sonic flow after being heated. As can
be seen from Figure 2, any heat addition is not allowed for the sonic flow.

Theorem 2.1. u+
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Proof. For the heat addition of subsonic fluid, k > 0 implies
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For the heat addition of supsonic fluid, k > 0 implies

I <

√

√

√

√

√

(


 + 1
M−

2

)2

− 2(
 + 1)

(

1
M−

2
+

 − 1
2

)

= 1 − 1
M−

2
,

u+
u−

< 1

 + 1

(


 + 1
M−

2
+ 1 − 1

M−
2

)

= 1,

�+
�−

=
u−
u+

> 1,

p+
p−

>
M−

2


 + 1

(


 + 1
M−

2
− 
 +



M−

2

)

= 1,

M+ =

√

√

√

√

√


 + 1
M−

2 + I


 + 1
M−

2 − 
I
<

√

√

√

√

√


 + 1
M−

2 −
1

M−
2 + 1


 + 1
M−

2 + 
(
1

M−
2 − 1)

=M−.

According to (2.1) and (2.2), u+
u−

and p+
p−

are both functions ofM−. For the subsonic heat addition, we set
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By some simple calculations, we have
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Theorem 2.2. �′(M−) > 0,  ′(M−) < 0.

Theorem 2.3. When k < 1
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Proof. According to Lemma 2.1,M∗ andM∗∗ are the roots of the equation
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By solving the above equations, we can get (2.5).

3 STRUCTURE OF SOLUTION

Theorem 3.1. The exact solution of the Riemann problem (1.1)-(1.2) is self-similar, and consists of at most seven discontinu-
ities. They are a heating discontinuity at x = 0, two genuinely nonlinear waves and a contact discontinuity left to x = 0, two
genuinely nonlinear waves and a contact discontinuity right to x = 0 respectively, as shown in Figure 3.

Proof. We set
Ũ (x, t) = U (�x, �t),

where � is a fixed number greater than 0. For any point(x, t) of x ≠ 0, we have
)Ũ (x, t)
)t

+
)F (Ũ (x, t))

)x
= �

(

)U (x, t)
)t

+
)F (U (x, t))

)x

)

= 0.

At the point (x, t) of x = 0, Ũ is a heating discontinuity and it satisfies the heat addition relation (1.3). Therefore Ũ is a solution
of (1.1)-(1.2). Hence the exact solution of the Riemann problem (1.1)-(1.2) is self-similar.

From the above proof we know that Ũ (0−, t) and Ũ (0+, t) are constant vectors. The exact solution U (x, t) in the left half
{(x, t)|x < 0, t ≥ 0} satisfies the classical Euler equations, hence it is the left half of the CRP solution with U1 and U (0−, t)
as the left and right initial conditions. From theory of the CRP solution, we know that U (x, t) in the left half consists three
discontinuities at most, which are two genuinely nonlinear waves, namely shock waves or rarefaction waves, and a contact
discontinuity corresponding to the characteristic fields u − a, u + a, a respectively, where a is the speed of sound. Similarly,
U (x, t) in the right half consists two genuinely nonlinear waves and a contact discontinuity at most.

The elementary waves on the left and right sides are denoted as WL1,W L2,W L3 and WR1,W R2,W R3, respectively.
The eight constant regions are labeled (1) ∼ (8), respectively. U1 ∼ U8 are the states in regoins (1) ∼ (8) and it is obvious that
U1 = U8. Note that the t-axis is a discontinuity and U4 ≠ U5. We adopt similiar way to express the solution structure as in15. For
examples, S(U1, U2) and R(U1, U2) mean two states U1 and U2 are connected by a shock and a rarefaction wave respectively,
C(U2, U3) means U2 and U3 are connected by a contact discontinuity, and H(U4, U5) means U4 and U5 are connected by a
heating discontinuity. The six elementary waves in Figure 3 can not exist at the same time. The next step in our double CRPs
coupling method is to eliminate the redundant waves according to the heat addition properties and the gasdynamics properties.
We will give the main results in Theorem 3.2 and then give the proof.

Theorem 3.2. According to the Mach number at the heating point, there are three different solution structures as follow:
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FIGURE 3 All possible waves for the Riemann problem (1.1)-(1.2)

(1) IfM4 < M5 < 1, the wave pattern is

S(U1, U4)⊕H(U4, U5)⊕C(U5, U7)⊕S(U7, U8);

(2) IfM4 < M5 = 1, the wave pattern is

S(U1, U4)⊕H(U4, U5)⊕R(U5, U6)⊕C(U6, U7)⊕S(U7, U8);

(3) IfM4 > M5 ≥ 1, the wave pattern is

H(U1, U5)⊕R(U5, U6)⊕C(U6, U7)⊕S(U7, U8).

Figure 4 depicts the three solution structures in the Theorem 3.2. They are called Structure 1, Structure 2 and Structure
3, respectively. According to the Mach number around the heating point and whether the thermal choking state appears, the
proof of the Theorem 3.2 is divided into three parts, namely the following Lemma 3.1, Lemma 3.2 and Lemma 3.2, which
corresponds to Structure 1, Structure 2 and Structure 3 respectively.

FIGURE 4 Three different solution structures

Lemma 3.1. WhenM4 < M5 < 1,WL2,WL3 andWR1 do not exist, and u5 > u4 > 0 holds. IfWL1 andWR3 exist, they
are both shock waves.

Proof. u4 and u5 have the same sign according to (1.3a).WL3 andWR1 do not exist due toM4 < 1,M5 < 1. According to the
sign of velocity at the heating point, there are three cases:

(1) If u4 > 0, u5 > 0,WL2 does not exist;
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(2) If u4 < 0, u5 < 0,WR2 does not exist;

(3) If u4 = u5 = 0,WL2 andWR2 cling to the heating point and the widths of region 3 and region 6 are both zero.

These three structures are shown in Figure 5.

FIGURE 5 Three possible structures when subsonic flow is heated without thermal choke

If u4 < 0, u5 < 0, WL1 is a shock wave and WR3 is a rarefaction wave. p4 < p5 holds according to Theorem 2.1. The
relation of elenmentary wave21 implies that p1 ≤ p2 = p4 and p5 ≤ p8. It results that p5 ≤ p1, which is contradictory with
p5 > p4 ≥ p1, hence the structure of u4 < 0, u5 < 0 does not exist.

Using a similar method we can prove that the structure of u4 = u5 = 0 dose not exist. The structure of the solution is the
same as the left image in Figure 5.

If WL1 is a rarefaction wave, we have p7 = p5 < p4 ≤ p1 = p8. Hence WR3 is a rarefaction wave and u7 = u5 > u4 ≥ u1
holds. Let us consider the control volume [x0, x4] × [0, T ] in the x − t space as shown in the left figure of Figure 6 and apply
the conservation of mass and momentum. From U1 = U8, we have

x4

∫
x0

�(x, T )dx =

x4

∫
x0

�(x, 0)dx,

x4

∫
x0

�(x, T )u(x, T )dx =

x4

∫
x0

�(x, 0)u(x, 0)dx.

The solution is constant in the each region, thus
x1

∫
x0

�(x, T )dx + �4|x1| + �5|x2| + �7|x3 − x2| +

x4

∫
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�(x, T )dx

=

x1

∫
x0

�(x, T )
u(x, T )
u1

dx + �4|x1|
u4
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+ �5|x2|
u5
u1

+ �7|x3 − x2|
u7
u1

+

x4

∫
x3

�(x, T )
u(x, T )
u1

dx.

(12)

Because the velocity inside the rarefaction wave is monotonous, we have u(x, T ) ≥ max(u1, u4) ≥ u1 for x0 ≤ x ≤ x1 and
u(x, T ) ≥ max(u5, u8) = u5 > u1 for x3 ≤ x ≤ x4. Then we have

x1

∫
x0

�(x, T )
u(x, T )
u1

dx ≥

x1

∫
x0

�(x, T )dx.
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x4

∫
x3

�(x, T )
u(x, T )
u1

dx ≥

x4

∫
x3

�(x, T )dx.

u4
u1

≥ 1, u5
u1
> 1 and u7

u1
> 1 hold for the right side of (3.1). Therefore we have x2 = x3 = 0 and u5 = 0, which are unreasonable.

ThusWL1 is a shock wave.

IfWR3 is a non-degenerate rarefaction wave, then u4 < u5 = u7 ≤ u8 = u1. Let us consider the control volume [x0, x3]×[0, T ]
in the x − t space as shown in the right figure in Figure 6 and apply the conservation of mass and momentum. We have

t
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O
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( )4 ( )5
( )7

( )8
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FIGURE 6 The integral diagram in the proof of Lemma 3.1. Left: assuming that WL1 is a rarefaction wave and WR3 is a
rarefaction wave. Right: assuming thatWL1 is a shock wave andWR3 is a rarefaction wave.

x3

∫
x0

�(x, T )dx =

x3

∫
x0

�(x, 0)dx,

x3

∫
x0

�(x, T )u(x, T )dx =

x3

∫
x0

�(x, 0)u(x, 0)dx.

Thus

�4|x0| + �5|x1| + �7|x2 − x1| +

x3

∫
x2

�(x, T )dx

= �4|x0|
u4
u1

+ �5|x1|
u5
u1

+ �7|x2 − x1|
u7
u1

+

x3

∫
x2

�(x, T )
u(x, T )
u1

dx.

(13)

For the velocity u insides the rarefaction waveWR3, we have u(x, T ) ≤ max(u5, u8) = u8 = u1. Then we have
x3

∫
x2

�(x, T )
u(x, T )
u1

dx ≤

x3

∫
x2

�(x, T )dx.

u4
u1
< 1, u5

u1
≤ 1 and u7

u1
≤ 1 hold for the right side of (3.1). Therefore it hold that u7

u1
= 1 and U7 = U8, which are unreasonable.

ThusWR3 is a shock wave.

The following two lemmas can be proved using a similar method.

Lemma 3.2. WhenM4 < M5 = 1,WL2 andWL3 do not exist, and u5 > u4 > 0 holds. IfWL1,WR1 andWR3 exist, they
are shock wave, rarefaction wave and shock wave, respectively.

Lemma 3.3. WhenM4 > M5 ≥ 1,WL1,W L2 andWL3 do not exist, and u5 > u4 > 0 holds. IfWR1 andWR3 exist, they
are rarefaction wave and shock wave, respectively.
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For the rest of this paper, each wave and each constant region are marked the same as Figure 4.

Compared with Structure 1 and Structure 3, Structure 2 has one more wave, and the conditionM5 = 1 is used to match the
number of conditions at this time.

4 SOLUTION PROCEDURE

In this section, we will give procedures for solving the exact solution of each structure proposed in the third section.

For Structure 1 and Structure 2, the shock Mach number ofWL1 is

MSL =
sL
a1
,

where sL is the velocity isWL1. From the relation of the shockWL1, we have

f1(M1,MSL)
def
=
�4
�1

=
(
 + 1)(M1 −MSL)2

(
 − 1)(M1 −MSL)2 + 2
, (14a)

f2(M1,MSL)
def
=
p4
p1

=
2
(M1 −MSL)2 − 
 + 1


 + 1
, (14b)

f3(M1,MSL)
def
=
u4 − sL
u1 − sL

=
(
 − 1)(M1 −MSL)2 + 2
(
 + 1)(M1 −MSL)2

. (14c)

From (4.1c) we have
u4 = sL + (u1 − sL)f3(M1,MSL)

= u1(f3(M1,MSL) +
sL
u1

(1 − f3(M1,MSL)))

= u1(f3(M1,MSL) +
MSL

M1
(1 − f3(M1,MSL)))

and

a4 = a1

√

f2(M1,MSL)
f1(M1,MSL)

.

We set
f4(M1,MSL)

def
=
u4
u1

= f3(M1,MSL) +
MSL

M1
(1 − f3(M1,MSL)). (15)

The relation between Mach Numbers is

M4 =
u4
a4

=M1f4(M1,MSL)

√

f1(M1,MSL)
f2(M1,MSL)

=
((
 − 1)M1 + 2MSL)(M1 −MSL) + 2

√

2
(M1 −MSL)2 − 
 + 1
√

(
 − 1)(M1 −MSL)2 + 2

=
((
 − 1)M1 + 2MSL)(M1 −MSL) + 2

√

2
(
 − 1)(M1 −MSL)4 + (6
 − 
2 − 1)(M1 −MSL)2 − 2(
 − 1)
.

(16)

We set
f5(M1,MSL)

def
=

((
 − 1)M1 + 2MSL)(M1 −MSL) + 2
√

2
(
 − 1)(M1 −MSL)4 + (6
 − 
2 − 1)(M1 −MSL)2 − 2(
 − 1)
. (17)

From (2.4), we have
p5
p4

=  (M4) =  (f5(M1,MSL)), (18a)

u5
u4

= �(M4) = �(f5(M1,MSL)). (18b)
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It is obtained from the shock relation ofWR3 that

u5 − u8 =

√

�p8
�8

p5∕p8 − 1
√

1 + �p5∕p8
where � = 2∕(
 − 1), � = (
 + 1)∕(
 − 1).

Substituting (4.1), (4.2) and (4.5) into the above equation, we get

M1(f4(M1,MSL)�(M4) − 1) −

√

�



f2(M1,MSL) (M4) − 1
√

1 + �f2(M1,MSL) (M4)
= 0. (19)

(4.3) and (4.6) form a system of equations forMSL andM4 as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M1(f4(M1,MSL)�(M4) − 1) −

√

�



f2(M1,MSL) (M4) − 1
√

1 + �f2(M1,MSL) (M4)
= 0

M4 =
((
 − 1)M1 + 2MSL)(M1 −MSL) + 2

√

2
(
 − 1)(M1 −MSL)4 + (6
 − 
2 − 1)(M1 −MSL)2 − 2(
 − 1)

(20)

From the entropy condition of the shock wave22, we have

M1 −MSL =
u1
a1

−
sL
a1

≥ 1. (21)

Theorem 4.1. IfM1 andM4 are taken as known quantities, theMSL which satisfies (4.3) and (4.8) exists and is unique.

Proof. (4.3) has another form:

M4

√

(
 − 1)(M1 −MSL)2 + 2
√

2
(M1 −MSL)2 − 
 + 1

= − 2(M1 −MSL)2 + (
 + 1)M1(M1 −MSL) + 2.
We divide both sides of the above equation byM1 −MSL and get

M4

√

(
 − 1)(M1 −MSL)2 + 2

√

2
 −

 + 1

(M1 −MSL)2

= − 2(M1 −MSL) + (
 + 1)M1(M1 −MSL) +
2

(M1 −MSL)2
.

We set

�1(x)
def
= M4

√

(
 − 1)x2 + 2
√

2
 −

 + 1
x2

,

�2(x)
def
= 2x − (
 + 1)M1 −

2
x
,

�(x)
def
= �1(x) + �2(x).

The domains of �1(x), �2(x) and �(x) are {x|x ≥ 1}. Both �1(x) and �2(x) are monotone increasing functions, hence �(x) is
a monotone increasing function. We have

�(1) = (
 + 1)(M4 −M1) ≤ 0,
lim
x→∞

�(x) = lim
x→∞

�1(x) + lim
x→∞

�2(x) = ∞.

Therefore the root of �(x) exists and is unique in the domain.

M1 −MSL is the root of �(x). Therefore, theMSL that satisfies (4.3) and entropy condition (4.8) exists and is unique.

The procedure for accessing the exact solution of Structure 1 is as follows:

Step1: Iteratively solve (4.7) forMSL, then getM4 using (4.3);

Step2: Evaluate �4∕�1, p4∕p1, u4∕u1 and sL by (4.1), then U4 can be obtained;
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Step3: Evaluate U5 by (2.1);

Step4: Evaluate U7 by a solver of CRP.

According to Theorem 4.1, the solution ofMSL in the Step 1 is unique. It should be noted thatM4 andM5 are only related to
M1, thus there is an equivalence between the range ofM1 and the assumption that the heating flow is subsonic and no thermal
choke appears. Besides, the ratios of the variables in region 4, region 5 and region 7 to the corresponding variables of the initial
state are also only related toM1.

For Structure 2, we have

M∗ =
((
 − 1)M1 + 2MSL)(M1 −MSL) + 2

√

2
(
 − 1)(M1 −MSL)4 + (6
 − 
2 − 1)(M1 −MSL)2 − 2(
 − 1)
. (22)

Thus we can solve the left and right half parts of the exact solution separately for Structure 2. The procedure for accessing the
exact solution of Structure 2 is as follows:

Step1: Iteratively solve (4.9) forMSL;

Step2: Evaluate �4∕�1, p4∕p1, u4∕u1 and sL by (4.1);

Step3: Evaluate U5 by (2.1);

Step4: Evaluate U6 and U7 by a solver of CRP with U5 and U8 as the left and right initial states.

According to Theorem 4.1, the solution ofMSL in the Step 1 is unique.

For Structure 3, the incoming flow is directly heated. The solution precudure is much simpler, as shown below:

Step1: Evaluate U5 by (2.2);

Step2: Evaluate U6 and U7 by a solver of CRP with U5 and U8 as the left and right initial states.

For the Step 4 in the solution precedure of Structure 1, Structure 2 and the Step 2 in the solution precudure of Structure 3,
a CRP solver of Euler equations is needed. For the solutions of these CRPs, the wave patterns are identical, which consists a
rarefaction wave corresponding to the u − a characteristic field and a shock wave corresponding to the u + a charatristic field.

We describe the strength of each nonlinear wave in terms of the ratio of pressures on both sides of the wave. Then the
following theorem holds:

Theorem 4.2. It holds for each solution structure: the strength of each nonlinear wave is determined by the Mach number of
the initial condition, independent of other variables of the initial condition.

Proof. For Structure 1, (4.1) and (4.5) imply
p4∕p1 = f2(M1,MSL),

p8∕p7 = p1∕p4 × p4∕p5 =
[

f2(M1,MSL (f5(M1,MSL)))
]−1 ,

(23)

whereMSL is obtained from equation (4.7) and is determined byM1.

For Structure 2, we have:
p4∕p1 = f2(M1,MSL),

whereMSL is obtained from equation (4.9) and is determined byM1.

From the elementary wave equation[27], we get:

u6 = u5 −
2a5

 − 1

[

(

p6
p5

)

−1
2


− 1

]

,

u7 = u8 +
√

2(p7 − p8)
[

(
 + 1)p7�8 + (
 − 1)p8�8
]− 1

2 .

(24)
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According to u6 = u7, p6 = p7 and U1 = U8, we have

u5 −
2a5

 − 1

[

(

p6
p5

)

−1
2


− 1

]

= u1 +
√

2(p6 − p1)
[

(
 + 1)p6�1 + (
 − 1)p1�1
]− 1

2 . (25)

Divide both sides of the equation (4.12) by a1, then

u5
u1
M1 −

2

 − 1

M1

M5

u5
u1

[

(

p6
p5

)

−1
2


− 1

]

=M1 +

√

2
a1

(p6 − p1)
[

(
 + 1)p6�1 + (
 − 1)p1�1
]− 1

2 . (26)

Apply the equation of state to (4.13), we have

u5
u1
M1 −

2

 − 1

M1

M5

u5
u1

[

(

p6
p5

)

−1
2


− 1

]

=M1 +
√

2


(
p6
p1

− 1)
[

(
 + 1)
p6
p1

+ (
 − 1)
]− 1

2

. (27)

Therefore p6∕p5 satisfies the following equation:
(

A
(

p6
p5

)

−1
2


+ B

)

√

C
p6
p5

+ 
 − 1 −
√

2



(

C

 + 1

p6
p5

− 1
)

= 0, (28)

where A = − 2

−1
M1�(M∗)f4(M1,MSL), B = 
+1


−1
M1�(M∗)f4(M1,MSL), C = (
 + 1) (M∗)f2(M1,MSL) and MSL is

obtained form equation (4.9). Thus the strength ofWR1 in Structure 2 is determined byM1.

ForWR3, we have
p8
p7

=
[

f2(M1,MSL) (M∗)
p6
p5

]−1

.

Therefore the strength of each nonlinear wave in Structure 2 is determined byM1.

The analysis method of Structure 3 is similar to the analysis method of Structure 2. We have
(

A′
(

p6
p5

)

−1
2


+ B′

)

√

C ′
p6
p5

+ 
 − 1 −
√

2



(

C ′


 + 1
p6
p5

− 1
)

= 0,

p8
p7

=
[

p5
p1

p6
p5

]−1

,

(29)

where A′ = − 2

−1

M1

M5

u5
u1
, B′ = u5

u1
M1 +

2

−1

M1

M5

u5
u1
, C ′ = (
 + 1) p5

p1
. u5
u1
, p5
p1

andM5 in (4.16) is obtained from (3.1) and they are all
detrmined byM1.

5 UNIQUENESS OF SOLUTION

In this section we will study the reasonable range ofM1 for the three structures of the exact sulution. The other contribution of
this work is to obtain the uniqueness of the solution. In addition, the determination ofM1 to the structure of the solution helps
to reduce the computational cost.

For Structure 1 and Structure 2, the following equation holds:

M4 =
((
 − 1)M1 + 2MSL)(M1 −MSL) + 2

√

2
(
 − 1)(M1 −MSL)4 + (6
 − 
2 − 1)(M1 −MSL)2 − 2(
 − 1)
.

From the above equation we can get

A(M1 −MSL)4 + B(M1 −MSL)3 + C(M1 −MSL)2 +D(M1 −MSL) + E = 0, (30)
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where
A = 4 − 2
(
 − 1)M2

4 ,
B = −4(
 + 1)M1,
C = (
 + 1)2M2

1 − 8 − (6
 − 
2 − 1)M2
4 ,

D = 4(
 + 1)M1,
E = 4 + 2(
 − 1)M2

4 .
M1−MSL is the root of equation (5.1). According to Theromen 4.1, the entropy solution of (5.1) is unique, which is a smooth

function ofM1 andMSL defined as follows:
MSL = f6(M1,M4).

We set

X(M1,M4)
def
= M1(f4(M1,MSL)�(M4) − 1) −

√

�



f2(M1,MSL) (M4) − 1
√

1 + �f2(M1,MSL) (M4)
, (31)

Y (M1)
def
= X(M1,M∗), (32)

whereMSL = f6(M1,M4).

Lemma 5.1. For the solution of Structure 1, Y (M1) ≥ 0 holds.

Proof. From (4.6), we know that
X(M1,M4) = 0.

It can be proved that
)f5
)MSL

> 0

and
)f6
)MSL

=
(

)f5
)MSL

)−1

> 0.

Then we have

)X
)M4

=M1
)

)M4
(f4(M1,MSL)�(M4)) −

√

�



)
)M4

(

f2(M1,MSL) (M4) − 1
√

1 + �f2(M1,MSL) (M4)

)

. (33)

For the first part on the right of (5.4), we have
)

)M4
(f4(M1,MSL)�(M4)) =

)f4(M1,M4)
)M4

�(M4) +
d�(M4)
dM4

f4(M1,MSL),

)f4(M1,M4)
)M4

=
)f4(M1,M4)

)MSL

)MSL

)M4
=

2(1 + (M1 −MSL)−2)
(
 + 1)M1

)f6
)M4

> 0,

�′(M4) > 0.
Thus we have proved that

)
)M4

(f4(M1,MSL)�(M4)) > 0.

For the second part on the right of (5.4), we have

)
)M4

(

f2(M1,MSL) (M4) − 1
√

1 + �f2(M1,MSL) (M4)

)

=
�(f2(M1,MSL) (M4) + 1) + 2

2(f2(M1,MSL) (M4))3∕2
)

)M4
(f2(M1,MSL) (M4)),

)
)M4

(f2(M1,MSL) (M4)) = −
(

)f2
)M1

−
)f2
)MSL

)

 (M4) +
d (M4)
dMSL

f2(M1,MSL),

)f2
)M1

−
)f2
)MSL

> 0,

 ′(M4) < 0.
Thus we have

)
)M4

(f2(M1,MSL) (M4)) < 0
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and
)

)M4

(

f2(M1,MSL)g2(M1,MSL) − 1
√

1 + �f2(M1,MSL)g2(M1,MSL)

)

< 0.

From the above equations, we have
)X
)M4

> 0.

From Lemma 2.1 we know thatM4 < M∗, thus

Y (M1) = X(M1,M∗) ≥ X(M1,M4) = 0.

Lemma 5.2. Y (M1) ≤ 0 andM1 ≤M∗∗ (ifM∗∗ exists) are two necessary conditions for Structure 2.

Proof. The solution right to x = 0 in Structure 2 is the solution of a CRP, whose wave pattern is R(U5, U6) ⊕ C(U6, U7) ⊕
S(U7, U8), then the following equation holds23:

u5 − u8 ≤

√

�p8
�8

p5∕p8 − 1
√

1 + �p5∕p8
.

The above equation can be transformed into

M1(f4(M1,MSL)�(M∗) − 1) −

√

�



f2(M1,MSL) (M∗) − 1
√

1 + �f2(M1,MSL) (M∗)
≤ 0.

Thus we have
Y (M1) ≤ 0. (34)

For structure 2, we set
M ′

SL =
sL
a4
,

where sL is the velocity ofWL1 and a4 is the speed of sound in region 4.

Similar to (4.3), the following equation holds:

M1 =
((
 − 1)M4 + 2M ′

SL)(M4 −M ′
SL) + 2

√

2
(
 − 1)(M4 −M ′
SL)4 + (6
 − 
2 − 1)(M4 −M ′

SL)2 − 2(
 − 1)
.

We set
g(M4,M

′
SL) =

((
 − 1)M4 + 2M ′
SL)(M4 −M ′

SL) + 2
√

2
(M4 −M ′
SL)2 − 
 + 1

√

(
 − 1)(M4 −M ′
SL)2 + 2

.

The domain of g satisfies
M4 ≤M∗, M ′

SL ≤ 0.
It can be proved that

)g
)M ′

SL
> 0.

Thus we have

g(M4,M
′
SL) ≤ g(M4, 0) =

√

√

√

√

(
 − 1)M2
4 + 2

2
M2
4 − 
 + 1

and

M1 = g(M∗,M
′
SL) ≤ g(M∗, 0) =

√

(
 − 1)M2
∗ + 2

2
M2
∗ − 
 + 1

.

According to Theorem 2.3, we have

M∗∗ =

√

(
 − 1)M2
∗ + 2

2
M2
∗ − 
 + 1

.

Therefore we have proved that
M1 ≤M∗∗.
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The following lemma can be derived directly by Lemma 2.1:

Lemma 5.3. When k < 1

2−1

, a necessary condition for the solution of Structure 3 isM1 ≥ M∗∗. When k ≥ 1

2−1

, the solution
of Structure 3 does not exists.

When k ≥ 1

2−1

,M∗∗ does not exist. Therefore, the upstream flow of the heating point must be a subsonic flow. At this time,
there are only two structures: Structure 1 and Structure 2. No matter what the Mach number of the incoming flow is, it drops
below 1 after passing through the upward shock wave. When K < 1


2−1
, all three structures are possible. According to Lemma

5.1, Lemma 5.2 and Lemma 5.3, the following conclusions hold:

Theorem 5.1. When k ≥ 1

2−1

, the solution can only have two structures: Strcture 1 and Structure 2. When k < 1

2−1

, all three
structures are possible. For the three solution structures, there are the following necessary conditions:

(1) For Structure 1, Y (M1) ≥ 0 holds;

(2) For Structure 2, Y (M1) ≤ 0 andM∗ ≤M1 ≤M∗∗ hold;

(3) For Structure 3,M1 ≥M∗∗ holds.

From Theorem 5.1 we can directly obtain the following conclusions:

Theorem 5.2. (a) When k ≥ 1

2−1

, the solution of Riemann problem (1.1)-(1.2) is unique.

(b) When k < 1

2−1

, The solution of Riemann problem (1.1)-(1.2) is unique under the assumption that the root of Y (M1) is
not greater thanM∗∗.

It can be seen from Theorem 5.1 that the structure of M1 equaling to the root of Y (M1) is the demarcation structure of
Structure 1 and Structure 2, whose wave pattern is

S(U1, U4)⊕H(U4, U5)⊕C(U5, U7)⊕S(U7, U8) with M4 =M∗.

And the structure ofM1 equaling toM∗∗ is the demarcation structure of Structure 2 and Structure 3, whose wave pattern is

S(U1, U4)⊕H(U4, U5)⊕R(U5, U6)⊕C(U6, U7)⊕S(U7, U8) with sL = 0, (35)

or
H(U1, U5)⊕R(U5, U6)⊕C(U6, U7)⊕S(U7, U8) with M5 = 1. (36)

Remark 1. The structure of (5.6) is a limit structure of Structure 2. WL1 is a normal shock and M4 = M∗ hold at this time,
which imply thatM1 =M∗∗. For the structure of (5.7),M5 = 1 implies thatM1 =M∗∗. Therefore the structure of (5.6) equals
to the structure of (5.7).

For the case that the root of Y (M1) is greater thanM∗∗, the uniqueness of the solution has not been proved. To compare the
size of the root of Y (M1) andM∗∗, we set

R(
, k) = tℎe root of Y ,
T (
, k) =M∗∗ − R(
, k).

In Figure 7 we show the contour map of the function T . The curved boundary on the upper right is the curve of k = 1

2−1

.
From Figure 7 we can see that T (
, k) is greater than 0, therefore the root of Y (M1) is smaller thanM∗∗ and the assumption in
the second part of Theorem 5.2 is always holds. We give the following conjecture:

Conjecture 5.1. The solution of Riemann problem (1.1)-(1.2) is always unique for any 
 and any �. The structure of the solution
is determined byM1, as shown below:

(1) ifM1 is less than the root of Y , the wave pattern is Structure 1;

(2) ifM1 is greater than the root of Y and less thanM∗∗, the wave pattern is Structure 2;

(3) ifM1 is greater thanM∗∗, the wave pattern is Structure 3.
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k

1.5 2 2.5

0.2

0.4

0.6

0.8 3

2.77857

2.55714

2.33571

2.11429

1.89286

1.67143

1.45

1.22857

1.00714

0.785714

0.564286

0.342857

0.121429

FIGURE 7 The contour map of function T (
, k)

6 VERIFICATION

In this section, we will construct five examples with 
 = 1.4. In the first four examples, we take the heating coefficient k = 0.2,
then k < 1


2−1
holds. M∗ and M∗∗ are 0.6136 and 1.8130 respectively. The root of Y (M1) is 1.0620, which is less than M∗∗,

hence the solution is unique. These four examples contain the solutions of Structure 1, Structure 2 and Structure 3. In the last
example, the value of k is 2.0. k > 1


2−1
holds at this time. From Theorem 5.2 we know that the solution is unique. The wave

pattern of the example is Structure 2.

We first gives two exact solutions of Structure 1. The initial conditions are (�1, u1, p1) = (1.0, 0.8, 1.0) and
(�1, u1, p1) = (1.0, 1.2, 1.0) respectively and their exact solutions are shown in Figure 8 and Figure 9.

The third example has an exact solution of Structure 2. The initial condition is (�1, u1, p1) = (1.0, 1.8, 1.0). The states of each
region are shown in Figure 10.

The fourth example has an exact solution of Structure 3. The initial condition is (�1, u1, p1) = (1.0, 2.8, 1.0). The states of
each region are shown in Figure 11.

The fifth example has an exact solution of Structure 2. The initial condition is (�1, u1, p1) = (1.0, 2.8, 1.0). The states of each
region are shown in Figure 12.

7 CONCLUSIONS

This paper focused on the Riemann problem of the Euler equations with a Dirac delta-source in the energy conservation
eqution. We proved that there are three structures of the solution and proposed an iterative method of the exact solution. In
addition, we associated each structure of the solution with the Mach number of the initial condition, thereby obtained some
conclusions about the uniqueness of solution.

The present method is completely different from the existing method of dealing with the Riemann problem with discontinu-
ous source. Based on CRP solution structures, the strategy of the present method is the elimination of unconscionable waves on
the general structure (Figure 3). This method can be applied to the Riemann problem of other hyperbolic systems with Dirac
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FIGURE 8 The exact solution of t = 4.5s with initial condition (�1, u1, p1) = (1.0, 0.8, 1.0) and k = 0.2
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FIGURE 9 The exact solution of t = 4.5s with initial condition (�1, u1, p1) = (1.0, 1.2, 1.0) and k = 0.2
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FIGURE 10 The exact solution of t = 4.5s with initial condition (�1, u1, p1) = (1.0, 1.8, 1.0) and k = 0.2

delta-function sources or other sources. Compared with the method of augmented equations, it is more simple and can naturally
cover all possible structures.

Such heating problem (Figure 1) can be seen in man-made channels and natural streams, such as condensation probelm.
The results of this paper provide theoretical support for the study of some condensation phenomena. The exact solution of the
Riemann problem can be directly applied to the flux calculation of Godunov-type methods24 in numerical simulation. The exact
solutions constructed by this method, such as the examples in the sixth section, can be used to evaluate the existing numerical
methods of dealing with source terms, such as25,26,13. In addition, this work has potential in the area of interface processing for
multi-phase flow simulation with the Riemann problem based interface algorithms. The uniqueness of solutions under arbitrary
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FIGURE 11 The exact solution of t = 2.5s with initial condition (�1, u1, p1) = (1.0, 2.8, 1.0) and k = 0.2
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FIGURE 12 The exact solution of t = 2.5s with initial condition (�1, u1, p1) = (1.0, 2.8, 1.0) and k = 2.0

initial conditions is an unsolved problem, which is the goal of our future work. In addition, future work should focus on the
heating addition of unsteady flow, in which the transition of the three structures proposed in this paper may occur.

References

1. Delale Can F., Schnerr Günter H., Dongen Marinus E. H. Van. Condensation Discontinuities and Condensation Induced
Shock Waves. 2007.

2. Dongen M. E. H. Van, Luo X., Lamanna G., Kaathoven D. J. Van. On Condensation Induced Shock Waves. In: ; 2002.

3. Delale Can F, Schnerr G H, Zierep Jurgen. The mathematical theory of thermal choking in nozzle flows. Zeitschrift für
Angewandte Mathematik und Physik. 1993;44(6):943–976.

4. Schnerr Gunter. Unsteadiness in Condensing Flow: Dynamics of Internal Flows with Phase Transition and Application to
Turbomachinery. Journal of Mechanical Engineering Science. 2005;219.

5. Cheng Wan, Luo Xisheng, Dongen Van Meh Rini. On condensation-induced waves. Journal of Fluid Mechanics.
2010;651(1):145–164.

6. Luo Xisheng, Prast B Bart, Dongen Van Meh Rini, Hoeijmakers Hwm Harrie, Yang J. On phase transition in compressible
flows: modelling and validation. Journal of Fluid Mechanics. 2006;548(1):403–430.

7. Benartzi Matania, Falcovitz Joseph. A second-order Godunov-type scheme for compressible fluid dynamics. Journal of
Computational Physics. 1984;55(1):1–32.



Yu ET AL 21

8. Benartzi Matania, Li Jiequan, Warnecke Gerald. A direct Eulerian GRP scheme for compressible fluid flows. Journal of
Computational Physics. 2006;218(1):19–43.

9. Toro Eleuterio F, Hidalgo Arturo. ADER finite volume schemes for nonlinear reaction–diffusion equations. Applied
Numerical Mathematics. 2009;59(1):73–100.

10. Toro Eleuterio F, Montecinos Gino I. Implicit, semi-analytical solution of the generalized Riemann problem for stiff
hyperbolic balance laws. Journal of Computational Physics. 2015;303:146–172.

11. Li Jiequan, Chen Guoxian. The generalized Riemann problem method for the shallow water equations with bottom
topography. International Journal for Numerical Methods in Engineering. 2006;65(6):834–862.

12. Li Jiequan, Liu Tiegang, Sun Zhongfeng. Implementation of the GRP scheme for computing radially symmetric compress-
ible fluid flows. Journal of Computational Physics. 2009;228(16):5867–5887.

13. Kroner Dietmar, Thanh Mai Duc. Numerical Solutions to Compressible Flows in a Nozzle with Variable Cross-section.
SIAM Journal on Numerical Analysis. 2005;43(2):796–824.

14. Lefloch Philippe G, Thanh Mai Duc. The Riemann Problem for Fluid Flows in a Nozzle with Discontinuous Cross-Section.
Communications in Mathematical Sciences. 2003;1(4):763–797.

15. Thanh Mai Duc. The Riemann Problem for a Nonisentropic Fluid in a Nozzle with Discontinuous Cross-Sectional Area.
Siam Journal on Applied Mathematics. 2009;69(6):1501–1519.

16. Alcrudo Francisco, Benkhaldoun Fayssal. Exact solutions to the Riemann problem of the shallow water equations with a
bottom step. Computers & Fluids. 2001;30(6):643 - 671.

17. Bernetti R, Titarev V A, Toro Eleuterio F. Exact Solution of the Riemann Problem for the Shallow Water Equations with
Discontinuous Bottom Geometry. Journal of Computational Physics. 2008;227(6):3212–3243.

18. Lefloch Philippe G, Thanh Mai Duc. The Riemann problem for the shallow water equations with discontinuous topography.
Communications in Mathematical Sciences. 2007;5(4):865–885.

19. Pares Carlos, Pimentel Ernesto. The Riemann problem for the shallow water equations with discontinuous topography: The
wet–dry case. Journal of Computational Physics. 2019;378:344–365.

20. Temple G. Course of theoretical physics, vol. VI, fluid mechanics By L. D. Landau and E. M. Lifshitz (translated by J. B.
Sykes and W. H. Reid). Pp. x + 536. Pergamon Press Ltd, London. 1959. E5 5s. net. Endeavour. 1960;19(76):228.

21. Toro Eleuterio F.. Riemann solvers and numerical methods for fluid dynamics : a practical introduction. Springer,; .

22. Peter D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves /. Society for Industrial and
Applied Mathematics,; 1973.

23. Liu T G, Khoo Boo Cheong, Wang C W. The ghost fluid method for compressible gas-water simulation. Journal of
Computational Physics. 2005;204(1):193–221.

24. Godunov Sergei, Bohachevsky I. Finite difference method for numerical computation of discontinuous solutions of the
equations of fluid dynamics. Matematicheskii Sbornik. 1959;(3):271–306.

25. Greenberg JM, Leroux AY, Baraille R, Noussair A. Analysis and Approximation of Conservation Laws with Source Terms.
SIAM Journal on Numerical Analysis. 1997;34(5):1980–2007.

26. Jin Shi, Wen Xin. Two Interface-Type Numerical Methods for Computing Hyperbolic Systems with Geometrical Source
Terms Having Concentrations. SIAM Journal on Scientific Computing. 2005;26(6):2079–2101.


	Riemann problem for constant flow with single-point heating source
	Abstract
	Introduction
	Heating equations
	Structure of solution
	Solution procedure
	Uniqueness of solution
	Verification
	Conclusions
	References


