
Ulam’s type stabilities for conformable fractional differential equations with

delay

Sen Wang, Wei Jiang∗, Jiale Sheng, Rui Li

School of Mathematical Sciences, Anhui University, Hefei 230601, PR China

Abstract In this paper, we investigate the existence and uniqueness of solutions and Ulam’s type sta-

bilities including the well-known Ulam-Hyers stability and the newly extended Ulam-Hyers’ conformable

exponential stability for two classes of fractional differential equations with the conformable fractional

derivative and the time delay. The Banach contraction principle, the technique of Picard operator, the

Gronwall integral inequalities and generalized iterated integral inequality in the sense of conformable

fractional integral are the main tools for deriving our main results. Finally, several illustrative examples

will be presented to demonstrate our work.
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1 Introduction

The conformable fractional derivative(CFD) was first introduced by the authors Khalil et al. in [1]. Since

then, the conformable fractional calculus has been rapidly developed and widely applied. For details, one

may refer to [2-10] and the reference therein.

The Ulam’s type stability problems of various differential or integral equations have been extensively

studied in the recent years. There are some commonly used methods for dealing with these problems.

For example, the theory of fixed points [11-12], the approach of integral inequalities [13-15], the method

of Laplace transform [16-21], the integral factors [22-23] and the technique of Picard operator [24-25].

Particularly, the authors in [24,27-28] discussed the Ulam-Hyers-Mittag-Leffler stability problem of frac-

tional differential equations by combining the Ulam stability with the well-known Mittag-Leffler function.

The Ulam stability for some nonlinear integro-differential equations were studied in [25-26].

To our knowledge, however, the Ulam’s type stabilities of fractional differential equations or nonlinear

integro-differential equations with CFD and delay has rarely been studied directly. Considering the spe-

cial advantages of exponential stability in the linear time-invariant systems involved the theory of stability

and control, it would be of interest to connect the Ulam-Hyers stability with the conformable fractional

exponential function (which is defined in Definition 2.4). Besides, the author Pachpatte in [29] offered

some fundamental integral inequalities with iterated integrals which play a significant role in studying

the qualitative theory of integral and differential equations. In view of this, we characterize different

forms of iterated integral inequalities involving the conformable fractional integral(CFI) to explore the

Ulam-Hyers stability of nonlinear conformable Volterra delayed integro-differential equation. Further-

more, it is worth noting that the phenomenon of time-delay is very conventional and important in the

field of engineering and practical applications. Some recent literatures published about the applicability

and universality of the time-delay effect can be found in [32-36].

Motivated by the above discussion, in this paper, we will first consider the following conformable
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fractional delay differential equations{
Tαt0x(t) = f(t, x(t), x(t− τ)), t ∈ (t0, T ],

x(t) = ϕ(t), t ∈ [t0 − τ, t0]
(1.1)

where Tαt0x(t) denotes the CFD starting from the initial time t0 of the function f of order α ∈ (0, 1),

f ∈ C([t0, T ]× R2,R), ϕ ∈ C([t0 − τ, T ],R), t0 < T < +∞ and τ > 0 is the time delay.

The existence and uniqueness of solutions and the Ulam-Hyers stability and Ulam-Hyers conformable

exponential stability of (1.1) will be studied via different approaches including the Gronwall integral

inequalities and the Picard operator.

Then we investigate the Ulam-Hyers stability of the following nonlinear Volterra delay integro-

differential equation Tαt0x(t) = g

(
t, x(t), x(t− τ),

∫ t
t0

(s− t0)α−1h(t, s, x(s), x(s− τ))

)
ds, t ∈ (t0, T ],

x(t) = φ(t), t ∈ [t0 − τ, t0],
(1.2)

where g ∈ C([t0, T ]× R3,R), h ∈ C([t0, T ]× [t0, T ]× R2,R) and φ ∈ C([t0 − τ, T ],R).

2 Preliminaries

This section collects some necessary definitions and lemmas.

Definition 2.1. (see [3]) The conformable fractional derivative(CFD) starting from t0 of the function

f : [t0,+∞)→ R of order α ∈ (0, 1] is defined as

Tαt0f(t) = lim
δ→0

f(t+ δ(t− t0)1−α)− f(t)

δ
. (2.1)

Particularly, if f is differentiable, then

Tαt0f(t) = (t− t0)1−αf ′(t). (2.2)

Definition 2.2. (see [3]) The conformable fractional integral(CFI) starting from t0 of the function f :

[t0,+∞)→ R of order α ∈ (0, 1] is defined as

Iαt0f(t) =

∫ t

t0

(s− t0)α−1f(s)ds. (2.3)

Lemma 2.3. (see [3]) Let α ∈ (0, 1] and f : [t0,+∞)→ R be a continuous function. Then for all t > t0,

Tαt0I
α
t0f(t) = f(t). (2.4)

Further, if f is differentiable on (t0,+∞), then for all t > t0,

Iαt0T
α
t0f(t) = f(t)− f(t0). (2.5)

Definition 2.4. (see [3,6,8]) The conformable fractional exponential function(CFEF) is defined by

Eα(λ, t− t0) = exp(λ · (t− t0)α

α
) =

∞∑
k=0

λk(t− t0)αk

αkk!
, t ≥ t0, 0 < α ≤ 1, λ ∈ R. (2.6)

The following two lemmas involving the Gronwall integral inequality in the sense of CFI will play a

significant role in studying stability.
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Lemma 2.5. (see [3]) Assume that f is a continuous, nonnegative function on [t0, t1] and ξ, η are two

nonnegative constants such that

f(t) ≤ ξ + η

∫ t

t0

(s− t0)α−1f(s)ds.

Then for all t ∈ [t0, t1], the following inequality holds

f(t) ≤ ξEα(η, t− t0). (2.7)

Lemma 2.6. (see [30]) Suppose that f is a continuous, nonnegative function on [t0, t1] satisfying

f(t) ≤ ξ(t) + η

∫ t

t0

(s− t0)α−1f(s)ds,

where η > 0 is a constant and ξ(t) is a nonnegative differentiable function defined on [t0, t1]. Then

f(t) ≤ ξ(t) + ηEα(η, t− t0)

∫ t

t0

ξ(s)Eα(−η, s− t0)(s− t0)α−1ds. (2.8)

To end this section, we introduce the following Picard operator definition and abstract Gronwall

lemma which will be fairly useful to contribute to deriving our main results.

Definition 2.7. (see [31]) Assume that (Z, d) is a metric space, the mapping A : Z → Z is called a

Picard operator if there exists z∗ ∈ Z such that (i) SA = {z∗}, where SA = {z ∈ Z : A(z) = z}; (ii) the

sequence {An(z)}n∈N converges to z∗ for all z ∈ Z.

Lemma 2.8. (see [31]) Let (Z, d,≤) be an ordered metric space, A : Z → Z is an increasing Picard

operator (SA = {z∗}). Then for any z ∈ Z, z ≤ A(z) implies z ≤ z∗ and z ≥ A(z) implies z ≥ z∗.

3 Main results

3.1 Ulam-Hyers stability for (1.1)

In this subsection, we utilize the Banach contraction principle and the technique of the Gronwall inequality

presented in Lemma 2.5 to investigate the existence and uniqueness of solutions and the Ulam-Hyers

stability of the Equation (1.1).

Definition 3.1. The Equation (1.1) is called Ulam-Hyers stable if there exists a constant Λ > 0 such

that for each ε > 0 and for each solution y ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) of the following inequality

|Tαt0y(t)− f(t, y(t), y(t− τ))| ≤ ε, t ∈ [t0, T ], (3.1)

there exists a solution x ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) of the Eq.(1.1) with

|y(t)− x(t)| ≤ Λ · ε, t ∈ [t0 − τ, T ]. (3.2)

Lemma 3.2. Assume that y ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) is the solution of (3.1). Then

|y(t)− y(t0)− Iαt0f(t, y(t), y(t− τ))| ≤ (T − t0)α

α
ε, t ∈ [t0, T ].

Proof. Obviously,

|y(t)− y(t0)− Iαt0f(t, y(t), y(t− τ))| = |Iαt0
(
Tαt0y(t)− f(t, y(t), y(t− τ))

)
|

≤ Iαt0 |T
α
t0y(t)− f(t, y(t), y(t− τ))|

≤ Iαt0ε =
(t− t0)α

α
ε ≤ (T − t0)α

α
ε.
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Theorem 3.3. For all t ∈ [t0, T ] and ui, vi ∈ R(i = 1, 2), if there exists a constant Lf > 0 such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lf (|u1 − v1|+ |u2 − v2|)

holds true and satisfying
2Lf (T−t0)α

α < 1, then the Eq.(1.1) has a unique solution in C([t0 − τ, T ],R) ∩
C1([t0, T ],R) and is Ulam-Hyers stable.

Proof. (i) Firstly, the Eq.(1.1) can be written as the following equivalent form

x(t) =

{
ϕ(t), t ∈ [t0 − τ, t0],

ϕ(t0) +
∫ t
t0

(s− t0)α−1f(s, x(s), x(s− τ)ds, t ∈ [t0, T ].

Define the space X := C([t0− τ, T ],R)∩C1([t0, T ],R) with the norm ‖ · ‖X = max
t0−τ≤θ≤T

|x(θ)|, x ∈ X and

the operator P : X → X as

(Px)(t) =

{
ϕ(t), t ∈ [t0 − τ, t0],

ϕ(t0) +
∫ t
t0

(s− t0)α−1f(s, x(s), x(s− τ)ds, t ∈ [t0, T ].

Apparently, for all t ∈ [t0 − τ, t0] and x, z ∈ X, |(Px)(t)− (Pz)(t)| = 0. While for t ∈ [t0, T ],

|(Px)(t)− (Pz)(t)| = |
∫ t

t0

(s− t0)α−1f(s, x(s), x(s− τ)ds−
∫ t

t0

(s− t0)α−1f(s, z(s), z(s− τ)ds|

≤ Lf
∫ t

t0

(s− t0)α−1
(

max
σ∈[t0−τ,T ]

|x(σ)− z(σ)|+ max
υ∈[t0−τ,T ]

|x(υ)− z(υ)|
)
ds

≤ 2Lf (T − t0)α

α
‖x− z‖X .

Therefore, ‖Px − Pz‖X ≤ 2Lf (T−t0)α
α ‖x − z‖X holds for all t ∈ [t0 − τ, T ] and x, z ∈ X. Then P is a

contraction on X, the Banach contraction principle guarantees that Eq.(1.1) has a unique solution in X.

(ii)Next, we show that the Equation (1.1) is Ulam-Hyers stable. Let y ∈ C([t0 − τ, T ],R)∩C1([t0, T ],R)

is the solution of (3.1) and x ∈ C([t0 − τ, T ],R) ∩C1([t0, T ],R) be the unique solution of (1.1) satisfying

the initial condition x(t) = y(t), t ∈ [t0 − τ, t0], that is to say,

x(t) =

{
y(t), t ∈ [t0 − τ, t0],

y(t0) +
∫ t
t0

(s− t0)α−1f(s, x(s), x(s− τ)ds, t ∈ [t0, T ].

For all t ∈ [t0−τ, t0], |y(t)−x(t)| = 0. For t ∈ [t0, T ], we divide it into two intervals. When t ∈ [t0, t0+τ ],

it can be deduced from Lemma 3.2 and the fact y(t− τ)− x(t− τ) = 0 for t ∈ [t0, t0 + τ ] that

|y(t)− x(t)| =|y(t)− y(t0)− Iαt0f(t, y(t), y(t− τ)) + y(t0) + Iαt0f(t, y(t), y(t− τ))− x(t)|

=|y(t)− y(t0)−
∫ t

t0

(s− t0)α−1f(s, y(s), y(s− τ)ds

+

∫ t

t0

(s− t0)α−1f(s, y(s), y(s− τ)ds−
∫ t

t0

(s− t0)α−1f(s, x(s), x(s− τ)ds|

≤|y(t)− y(t0)−
∫ t

t0

(s− t0)α−1f(s, y(s), y(s− τ)ds|

+

∫ t

t0

(s− t0)α−1|f(s, y(s), y(s− τ)− f(s, x(s), x(s− τ)|ds

≤ (T − t0)α

α
ε+ Lf

∫ t

t0

(s− t0)α−1|y(s)− x(s)|ds.
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Applying the Gronwall inequality in Lemma 2.5, it follows that

|y(t)− x(t)| ≤ (T − t0)α · ε
α

Eα(Lf , t− t0) ≤ (T − t0)α

α
Eα(Lf , τ)ε, t ∈ [t0, t0 + τ ].

While for t ∈ [t0 + τ, T ], the following inequality can be easily obtained by using the similar steps

|y(t)− x(t)| ≤ (T − t0)α

α
ε+ Lf

∫ t

t0

(s− t0)α−1|x(s)− y(s)|ds

+ Lf

∫ t

t0+τ

(s− t0)α−1|y(s− τ)− x(s− τ)|ds.

Set u(t) = sup
θ∈[−τ,0]

|y(t+ θ)− x(t+ θ)|, then it yields that

u(t) ≤ (T − t0)α

α
ε+ 2Lf

∫ t

t0

(s− t0)α−1u(s)ds,

then we get the following inequality via the Gronwall inequality in Lemma 2.5

|y(t)− x(t)| ≤ u(t) ≤ (T − t0)α

α
Eα(2Lf , T − t0)ε, t ∈ [t0 + τ, T ].

From the above discussion, we can conclude that for all t ∈ [t0 − τ, T ],

|y(t)− x(t)| ≤ (T − t0)α

α
Eα(2Lf , T − t0)ε,

which implies that the Eq.(1.1) is Ulam-Hyers stable with Λ = (T−t0)α
α Eα(2Lf , T − t0).

3.2 Ulam-Hyers’ conformable exponential stability for (1.1)

In this subsection, we first define a concept of Ulam-Hyers conformable exponential stability, an extension

of Ulam-Hyers stability for fractional ODEs. Then the method of Picard operator and the generalized

Gronwall inequality presented in Lemma 2.6 will be used to study the Ulam-Hyers conformable exponen-

tiable stability of the Equation (1.1).

Definition 3.4. The Equation (1.1) is called Ulam-Hyers conformable exponentially stable with respect

to the conformable fractional exponential function Eα(λ, t − t0)(λ 6= 0) if there exists a constant Ω > 0

such that for each ε > 0 and for each solution y ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) of

|Tαt0y(t)− f(t, y(t), y(t− τ))| ≤ εEα(λ, t− t0), t ∈ [t0, T ], (3.3)

there exists a solution x ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) of the Eq.(1.1) with

|y(t)− x(t)| ≤ Ω · εEα(λ, t− t0), t ∈ [t0 − τ, T ]. (3.4)

Lemma 3.5. If y ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) satisfies (3.3), then

|y(t)− y(t0)− Iαt0f(t, y(t), y(t− τ))| ≤ ε (T − t0)α

α
Eα(λ, t− t0), t ∈ [t0, T ].

Proof.
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|y(t)− y(t0)− Iαt0f(t, y(t), y(t− τ))|

= |Iαt0
(
Tαt0y(t)− f(t, y(t), y(t− τ))

)
|

≤ Iαt0 |T
α
t0y(t)− f(t, y(t), y(t− τ))|

≤
∫ t

t0

(s− t0)α−1εEα(λ, s− t0)ds

= ε

∫ t

t0

(s− t0)α−1
∞∑
k=0

λk(s− t0)kα

αk · k!
ds

= ε

∞∑
k=0

λk(t− t0)(k+1)α

αk+1 · (k + 1)!

=
ε(t− t0)α

α

∞∑
k=0

λk(t− t0)kα

αk · k!(k + 1)

≤ ε(T − t0)α

α

∞∑
k=0

λk(t− t0)kα

αk · k!

=
ε(T − t0)α

α
Eα(λ, t− t0).

Theorem 3.6. Under the assumptions in Theorem 3.3, the Equation (1.1) is Ulam-Hyers conformable

exponentially stable with respect to Eα(λ, t− t0) provided that λ 6= 2Lf .

Proof. Let y ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) be the solution of (3.3) and x ∈ C([t0 − τ, T ],R) ∩
C1([t0, T ],R) be the unique solution of (1.1) satisfying the initial condition x(t) = y(t), t ∈ [t0 − τ, t0],

hence,

x(t) =

{
y(t), t ∈ [t0 − τ, t0],

y(t0) +
∫ t
t0

(s− t0)α−1f(s, x(s), x(s− τ)ds, t ∈ [t0, T ].

For all t ∈ [t0 − τ, t0], |y(t) − x(t)| = 0. When t ∈ [t0, T ], it follows Lemma 3.5 and the discussion in

Theorem 3.3 that

|y(t)− x(t)| ≤ ε (T − t0)α

α
Eα(λ, t− t0) + Lf

∫ t

t0

(s− t0)α−1
(
|y(s)− x(s)|+ |y(s− τ)− x(s− τ)|

)
ds.

(3.5)

Consider v ∈ X+ := C([t0 − τ, T ],R+) ∩ C1([t0, T ],R+) and define the operator Q : X+ → X+ as

(Qv)(t) =

{
0, t ∈ [t0 − τ, t0],

ε (T−t0)
α

α Eα(λ, t− t0) + Lf
∫ t
t0

(s− t0)α−1
(
v(s) + v(s− τ)

)
ds, t ∈ [t0, T ].

Then we demonstrate that Q is a Picard operator. In fact, according to the investigation in Theorem

3.3, for all v1, v2 ∈ X+ and t ∈ [t0, T ], we have

‖(Qv1)(t)− (Qv2)(t)‖X ≤
2Lf (T − t0)α

α
‖v1 − v2‖X .
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Therefore, Q is a contraction on X+. Moreover, we know that Q is a Picard operator from the Banach

contraction principle and SQ = {v̂}. Then for all t ∈ [t0, T ], we have

v̂(t) = ε
(T − t0)α

α
Eα(λ, t− t0) + Lf

∫ t

t0

(s− t0)α−1
(
v̂(s) + v̂(s− τ)

)
ds.

Next, we need to verify that v̂ is increasing. For any t1, t2 ∈ [t0, T ], and t1 < t2, if we let m :=

min
θ∈[t0,T ]

(
v̂(θ) + v̂(θ − τ)

)
∈ R+, then

v̂(t2)− v̂(t1) = ε
(T − t0)α

α

(
Eα(λ, t2 − t0)− Eα(λ, t1 − t0)

)
+ Lf

∫ t2

t1

(s− t0)α−1
(
v̂(s) + v̂(s− τ)

)
ds

= ε
(T − t0)α

α
Eα(λ, t1 − t0)

(
Eα(λ, t2 − t0)

Eα(λ, t1 − t0)
− 1

)
+ Lf

∫ t2

t1

(s− t0)α−1
(
v̂(s) + v̂(s− τ)

)
ds

≥ ε (T − t0)α

α
Eα(λ, t1 − t0)

(
exp
(
λ

(t2 − t0)α − (t1 − t0)α

α

)
− 1

)
+mLf

(t2 − t0)α − (t1 − t0)α

α

> 0,

which implies that v̂ is increasing, and hence, v̂(t− τ) ≤ v̂(t) since t− τ ≤ t, then we have

v̂(t) ≤ ε (T − t0)α

α
Eα(λ, t− t0) + 2Lf

∫ t

t0

(s− t0)α−1v̂(s)ds.

Gronwall inequality in Lemma 2.6 yields that

v̂(t) ≤ ε(T − t0)α

α
Eα(λ, t− t0) + 2

(T − t0)α

α
LfEα(2Lf , t− t0)

∫ t

t0

Eα(λ, s− t0)Eα(−2Lf , s− t0)(s− t0)α−1ds

=
ε(T − t0)α

α
Eα(λ, t− t0)

[
1 +

2LfEα(2Lf , t− t0)

Eα(λ, t− t0)

∫ t

t0

Eα(λ, s− t0)Eα(−2Lf , s− t0)(s− t0)α−1ds

]
≤ εEα(λ, t− t0)

(T − t0)α

α

{
1 +

2LfEα(2Lf , T − t0)

|λ− 2Lf |
Eα(λ− 2Lf , T − t0)

}
.

Particularly, if we let v = |y − x|, then (3.5) deduces that v ≤ Q(v) and Lemma 2.8 ensures that v ≤ v̂.

That is to say,

|y(t)− x(t)| ≤ Ω · Eα(λ, t− t0)ε.

Thus, the Equation (1.1) is Ulam-Hyers conformable exponentially stable with respect to Eα(λ, t − t0)

with the constant

Ω =
(T − t0)α

α

{
1 +

2LfEα(2Lf , T − t0)

|λ− 2Lf |
Eα(λ− 2Lf , T − t0)

}
.

3.3 Ulam-Hyers stability for (1.2)

In this subsection, by introducing the definition about the Ulam-Hyers stability into the nonlinear Volterra

delay integro-differential problem (1.2), we propose a class of iterated integral inequality in the sense of

CFI to deal with the Ulam-Hyers stability.

Definition 3.7. The Equation (1.2) is called Ulam-Hyers stable if there exists a constant ∆ > 0 such

that for each ε > 0 and for each solution y ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) of the following inequality
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|Tαt0y(t)− g
(
t, y(t), y(t− τ),

∫ t

t0

(s− t0)α−1h(t, s, y(s), y(s− τ))

)
| ≤ ε, t ∈ [t0, T ], (3.6)

there exists a solution x ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) of the Equation (1.2) with

|y(t)− x(t)| ≤ ∆ · ε, t ∈ [t0 − τ, T ]. (3.7)

Lemma 3.8. If y ∈ C([t0 − τ, T ],R) ∩ C1([t0, T ],R) satisfies (3.6), then for all t ∈ [t0, T ], we have

|y(t)− y(t0)−
∫ t

t0

(s− t0)α−1g

(
s, y(s), y(s− τ),

∫ s

t0

(θ − t0)α−1h(s, θ, y(θ), y(θ − τ))dθ

)
ds| ≤ (T − t0)α

α
ε.

Proof. This proof is completely similar to Lemma 3.2.

Now, we establish the following iterated integral inequality in the frame of CFI which will play a key

role to get the main result in this subsection.

Theorem 3.9. Let α ∈ (0, 1), u, v, w ∈ C([t0, T ],R+) and c ≥ 0 be a real constant satisfying

u(t) ≤ c+

∫ t

t0

(s− t0)α−1v(s)

[
u(s) +

∫ s

t0

(θ − t0)α−1w(θ)u(θ)dθ

]
ds, t ∈ [t0, T ].

Then

u(t) ≤ c · exp
(∫ t

t0

(θ − t0)α−1
(
v(θ) + w(θ)

)
dθ

)
Proof. Let

z(t) = c+

∫ t

t0

(s− t0)α−1v(s)

[
u(s) +

∫ s

t0

(θ − t0)α−1w(θ)u(θ)dθ

]
ds.

Then u(t) ≤ z(t), and

Tαt0z(t) = v(t)

[
u(t) + Iαt0w(t)u(t)

]
≤ v(t)

[
z(t) + Iαt0w(t)z(t)

]
.

Let Φ(t) = z(t) + Iαt0w(t)z(t). Then Φ(t0) = z(t0) = c, z(t) ≤ Φ(t), Tαt0z(t) ≤ v(t)Φ(t) and Φ(t) is

nondecreasing and differentiable, hence,

(t− t0)1−αΦ′(t) = Tαt0Φ(t) = Tαt0z(t) + w(t)u(t)

≤ v(t)Φ(t) + w(t)z(t)

≤
(
w(t) + v(t)

)
Φ(t),

which implies that

Φ(t) ≤ c · exp
(∫ t

t0

(θ − t0)α−1
(
v(θ) + w(θ)

)
dθ

)
.

Therefore,

u(t) ≤ z(t) ≤ c · exp
(∫ t

t0

(θ − t0)α−1
(
v(θ) + w(θ)

)
dθ

)
.

This completes the proof.

Before deriving our main result, let us list the following assumptions:

(H1): There exists a function Lg ∈ C([t0, T ],R+) such that for all t ∈ [t0, T ] and xi, yi ∈ R(i = 1, 2, 3)
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|g(t, x1, x2, x3)− g(t, y1, y2, y3)| ≤ Lg(t)
( 3∑
i=1

|xi(t)− yi(t)|
)
.

(H2): There exists a function Lh ∈ C([t0, T ],R+) such that for all t ∈ [t0, T ] and xj , yj ∈ R(j = 1, 2)

|h(t, s, x1, x2)− h(t, s, y1, y2)| ≤ Lh(t)
( 2∑
j=1

|xj(t)− yj(t)|
)
.

(H3):

M = 2

{∫ T

t0

(s− t0)α−1Lg(s)

[
1 +

∫ T

t0

(θ − t0)α−1Lh(θ)dθ

]
ds

}
< 1.

Theorem 3.10. Suppose that (H1), (H2) and (H3) are satisfied. Then the Equation (1.2) has a unique

solution in C([t0 − τ, T ],R) ∩ C1([t0, T ],R) and is Ulam-Hyers stable.

Proof. (i) First of all, the problem (1.2) is equivalent to the following integral equations

x(t) =


φ(t), t ∈ [t0 − τ, t0],

φ(t0) +
∫ t
t0

(s− t0)α−1g

(
s, x(s), x(s− τ),

∫ s
t0

(θ − t0)α−1h(s, θ, x(θ), x(θ − τ))dθ

)
ds, t ∈ [t0, T ].

Consider the Banach space X defined in Theorem 3.3 and define a new operator W : X → X as

(Wx)(t) =


φ(t), t ∈ [t0 − τ, t0],

φ(t0) +
∫ t
t0

(s− t0)α−1g

(
s, x(s), x(s− τ),

∫ s
t0

(θ − t0)α−1h(s, θ, x(θ), x(θ − τ))dθ

)
ds, t ∈ [t0, T ].

Notice that for all t ∈ [t0 − τ, t0] and x, z ∈ X, |(Wx)(t)− (Wz)(t)| = 0. Then for t ∈ [t0, T ],

|(Wx)(t)− (Wz)(t)| =|
∫ t

t0

(s− t0)α−1g

(
s, x(s), x(s− τ),

∫ s

t0

(θ − t0)α−1h(s, θ, x(θ), x(θ − τ))dθ

)
ds

−
∫ t

t0

(s− t0)α−1g

(
s, z(s), z(s− τ),

∫ s

t0

(θ − t0)α−1h(s, θ, z(θ), z(θ − τ))dθ

)
ds

≤
∫ t

t0

(s− t0)α−1Lg(s)

{
|x(s)− z(s)|+ |x(s− τ)− z(s− τ)|

+

∫ s

t0

(θ − t0)α−1Lh(θ)

[
|x(θ)− z(θ)|+ |x(θ − τ)− z(θ − τ)|

]
dθ

}
ds

≤
∫ t

t0

(s− t0)α−1Lg(s)

{
max
t0≤σ≤s

|x(σ)− z(σ)|+ max
t0≤σ≤s

|x(σ − τ)− z(σ − τ)|

+

∫ s

t0

(θ − t0)α−1Lh(θ)

[
max
t0≤ς≤θ

|x(ς)− z(ς)|+ max
t0≤ς≤θ

|x(ς − τ)− z(ς − τ)|
]
dθ

}
ds

≤
∫ t

t0

(s− t0)α−1Lg(s)

{
max

t0−τ≤σ≤T
|x(σ)− z(σ)|+ max

t0−τ≤σ≤T
|x(σ − τ)− z(σ − τ)|

+

∫ s

t0

(θ − t0)α−1Lh(θ)

[
max

t0−τ≤ς≤T
|x(ς)− z(ς)|+ max

t0−τ≤ς≤T
|x(ς − τ)− z(ς − τ)|]dθ

}
ds

≤
∫ T

t0

(s− t0)α−1Lg(s)

{
2‖x− z‖X + 2

∫ T

t0

(θ − t0)α−1Lh(θ)2‖x− z‖Xdθ
}
ds

=2

{∫ T

t0

(s− t0)α−1Lg(s)

[
1 +

∫ T

t0

(θ − t0)α−1Lh(θ)dθ

]
ds

}
‖x− z‖X

=M‖x− z‖X .
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Therefore, for all x, z ∈ X and t ∈ [t0 − τ, T ], the following

‖(Wx)− (Wz)‖X ≤M‖x− z‖X

holds true. Hence, W is a contraction on X, then the Eq.(1.2) has a unique solution in X.

(ii) Let y ∈ C([t0−τ, T ],R)∩C1([t0, T ],R) is the solution of (3.6) and x ∈ C([t0−τ, T ],R)∩C1([t0, T ],R)

be the unique solution of (1.2) satisfying the initial condition x(t) = y(t), t ∈ [t0 − τ, t0], that is,

x(t) =


y(t), t ∈ [t0 − τ, t0],

y(t0) +
∫ t
t0

(s− t0)α−1g

(
s, x(s), x(s− τ),

∫ s
t0

(θ − t0)α−1h(s, θ, x(θ), x(θ − τ))dθ

)
ds, t ∈ [t0, T ].

Clearly, for all t ∈ [t0 − τ, t0], |y(t)− x(t)| = 0. For t ∈ [t0, T ], it can be deduced from Lemma 3.8 that

|y(t)− x(t)| =|y(t)− y(t0)−
∫ t

t0

(s− t0)α−1g

(
s, y(s), y(s− τ),

∫ s

t0

(θ − t0)α−1h(s, θ, y(θ), y(θ − τ))dθ

)
ds

+ y(t0) +

∫ t

t0

(s− t0)α−1g

(
s, y(s), y(s− τ),

∫ s

t0

(θ − t0)α−1h(s, θ, y(θ), y(θ − τ))dθ

)
ds− x(t)|

≤ (T − t0)α

α
ε+

∫ t

t0

(s− t0)α−1
∣∣∣∣g(s, y(s), y(s− τ),

∫ s

t0

(θ − t0)α−1h(s, θ, y(θ), y(θ − τ))dθ

)
− g
(
s, x(s), x(s− τ),

∫ s

t0

(θ − t0)α−1h(s, θ, x(θ), x(θ − τ))dθ

)∣∣∣∣ds
≤ (T − t0)α

α
ε+

∫ t

t0

(s− t0)α−1Lg(s)

{
|y(s)− x(s)|+ |y(s− τ)− x(s− τ)|

+

∫ s

t0

(θ − t0)α−1Lh(θ)

[
|y(θ)− x(θ)|+ |y(θ − τ)− x(θ − τ)|

]
dθ

}
ds.

Consider ν ∈ X+ and define the operator B : X+ → X+ as

(Bν)(t) =


0, t ∈ [t0 − τ, t0],

(T−t0)αε
α +

∫ t
t0

(s− t0)α−1Lg(s)

{
ν(s) + ν(s− τ)

+
∫ s
t0

(θ − t0)α−1Lh(θ)

[
ν(θ) + ν(θ − τ)

]
dθ

}
ds, t ∈ [t0, T ].

Next, we prove that B is a Picard operator. Indeed, with the help of the discussion in (i), for all

ν1, ν2 ∈ X+ and t ∈ [t0, T ], we have

‖(Bν1)(t)− (Bν2)(t)‖X ≤M‖ν1 − ν2‖X .

Therefore, B is a contraction on X+. Moreover, we know that Q is a Picard operator from the Banach

contraction principle and SB = {ν̂}. Then for all t ∈ [t0, T ], we have

ν̂(t) =
(T − t0)αε

α
+

∫ t

t0

(s− t0)α−1Lg(s)

{
ν(s) + ν(s− τ) +

∫ s

t0

(θ− t0)α−1Lh(θ)

[
ν(θ) + ν(θ− τ)

]
dθ

}
ds.

Further, we need to verify that v̂ is increasing. In fact, d
dt [ν̂(t)] ≥ 0 on [t0, T ] implies that ν̂ is increasing,

and hence, ν̂(t− τ) ≤ ν̂(t) since t− τ ≤ t, then we have

ν̂(t) ≤ (T − t0)αε

α
+

∫ t

t0

(s− t0)α−12Lg(s)

{
ν̂(s) +

∫ s

t0

(θ − t0)α−1Lh(θ)ν̂(θ)dθ

}
ds.

Applying the Theorem 3.9 to the above inequality with u(t) = ν̂(t), c = (T−t0)αε
α , 2Lg(t) = v(t) and

Lh(t) = w(t), it yields that
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ν̂(t) ≤ (T − t0)α

α
exp

(∫ t

t0

(θ − t0)α−1
(
2Lg(θ) + Lh(θ)

)
dθ

)
ε

≤ (T − t0)α

α
exp

(∫ T

t0

(θ − t0)α−1
(
2Lg(θ) + Lh(θ)

)
dθ

)
ε.

Specially, if we set ν = |y − x|, then ν ≤ B(ν) and Lemma 2.8 guarantees that ν ≤ ν̂. That is to say,

|y(t)− x(t)| ≤ ∆ · ε.

Thus, the Equation (1.2) is Ulam-Hyers with the constant

∆ =
(T − t0)α

α
exp

(∫ T

t0

(θ − t0)α−1
(
2Lg(θ) + Lh(θ)

)
dθ

)
.

4 Illustrative examples

In this section, some examples will be shown to demonstrate our main results.

Example 4.1. Let α = 1
2 , t0 = 0, τ = 1

3 , T = 2, we consider the following problem

 T
1
2

0+x(t) =
|x(t)|+|x(t− 1

3 )|
10 , t ∈ (0, 2],

x(t) = t, t ∈ [− 1
3 , 2].

(4.1)

Note that for all t ∈ [0, 2] and x, y ∈ R, we obtain

|(f(t, x(t), x(t− 1

3
))− f(t, y(t), y(t− 1

3
))| = 1

10

∣∣(|x(t)| − |y(t)|) + (|x(t− 1

3
)| − |y(t− 1

3
)|)
∣∣

≤ 1

10

(
|x(t)− y(t)|+ |x(t− 1

3
)− y(t− 1

3
)|
)
.

Obviously, Lf = 0.1 and
2Lf (T−t0)α

α = 0.5657 < 1, then the conditions in Theorem 3.3 are fulfilled, hence

the Equation (4.1) has a unique solution and is Ulam-Hyers stable on [− 1
3 , 2] with

Λ =
(T − t0)α

α
Eα(2Lf , T − t0) = 2

√
2E 1

2
(0.2, 2) = 4.9799.

Example 4.2. Consider the following conformable fractional system with delay T
1
2

0+x(t) = 1
10

x2(t−1)
1+x2(t−1) + 1

10 cos(2x(t)), t ∈ (0, 32 ],

x(t) = 0, t ∈ [−1, 0],
(4.2)

and the following inequality

|T
1
2

0+y(t)− 1

10

y2(t− 1)

1 + y2(t− 1)
− 1

10
cos(2y(t))| ≤ εE 1

2
(−1, t).

Obviously, α = 1
2 , t0 = 0, T = 3

2 , τ = 1, Lf = 1
5 and λ = −1. Then it is easy to verify that

2Lf (T−t0)α
α = 0.9798 < 1 and λ 6= Lf . Now all the conditions in Theorem 3.6 are satisfied, then the

Equation (4.2) is is Ulam-Hyers conformable exponentially stable with respect to E 1
2
(−1, t), that is,

|y(t)− x(t)| ≤ Ω · εE 1
2
(−1, t), t ∈ [−1,

3

2
],

where
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Ω =
(T − t0)α

α

{
1 +

2LfEα(2Lf , T − t0)

|λ− 2Lf |
Eα(λ− 2Lf , T − t0)

}
= 0.6456.

Example 4.3. Consider the following nonlinear delay Volterra integro-differential equations T
1
2

0+x(t) = x(t)
25 + sin(x(t−2))

25 + 1
25

∫ t
0

1
20 [sin2(x(s))− cos(x(s− 2))]s−

1
2 ds, t ∈ (0, π],

x(t) = 0, t ∈ [−2, 0].
(4.3)

It is not difficult to verify that Lg(t) = Lh(t) = 1
10 , and

M = 2

{∫ T

t0

(s− t0)α−1Lg(s)

[
1 +

∫ T

t0

(θ − t0)α−1Lh(θ)dθ

]
ds

}
= 0.9603 < 1.

Then all the conditions in Theorem 3.10 are satisfied, then the Equation (4.3) has a unique solution and

is Ulam-Hyers stable with

∆ =
(T − t0)α

α
exp

(∫ T

t0

(θ − t0)α−1
(
2Lg(θ) + Lh(θ)

)
dθ

)
= 36.8360.

5 Conclusion

This paper mainly investigates the Ulam’s type stabilities of two classes of conformable fractional de-

lay differential equations, including the Ulam-Hyers stability of (1.1) and (1.2) and the Ulam-Hyers’

conformable exponential stability of (1.1). It is worthwhile noting that the CFEF plays an equivalent

role as the well-known Mittag-Leffler function in classical fractional calculus, while the parameter λ in

Eα(λ, t − t0)(λ 6= 0) has a significant benefit in terms of studying the Ulam-Hyers’ conformable expo-

nential stability compared to the works [24,27-28] involved the Ulam-Hyers-Mittag-Leffler stability with

respect to Eα(tα). Indeed, according to the definition about the Ulam-Hyers stability, we know: if y

is an approximate solution of (1.1), then there exists an exact solution x of (1.1) near to y. As for

the Ulam-Hyers’ conformable exponential stability, the main result in Section 3.2 and the Table 5.1 in

Example 4.2 may give more smaller error when λ < 0 with a larger absolute value.
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Tab. 5.1 The variation trend of the variables involved with λ when ε is chosen as 0.1 in Example 4.2

λ 1 2
3 0.1 − 2

3 -1 -e −π -3.325 -3.675

Ω 21.3641 21.2583 6.6221 2.6285 2.5099 2.4499 2.4496 2.4495 2.4492

E 1
2
(λ, T − t0) 11.5824 5.1192 1.2776 0.2938 0.0863 0.00128 0.000455 0.00029 0.0001

εΩE 1
2
(λ, T − t0) 24.7445 10.8825 0.8460 0.07722 0.002166 0.000313 0.00011 0.00007 0.00003
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