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Abstract

This paper considers Capacitated Vehicle Routing Problem(CVRP) in an imprecise and random envi-

ronment. The deterministic version of the problem deals with finding a set of routes in such a way that

the demand of all the customers present in the network are satisfied and the cost incurred in performing

these operations comes out to be a minimum. In practical life situations, problems are not always defined

in crisp form. Phenomenons like randomness and impreciseness are quite natural to arise in real life.

This work presents CVRP in such a mixed environment. In this work, the demands of the customers are

assumed to be stochastic in nature and are revealed only upon the arrival of the salesman. Moreover, the

edge weights are representing the time required to traverse the edge and hence are both imprecise and

random in nature. Different traffic conditions, weather conditions and many other factors corresponds

to the random nature of edge weights and varying speed of the vehicle corresponds to the impreciseness.

Thus, in this work, edge weights are represented by discrete fuzzy random variables. In this paper, an

expectation based approach has been used to deal with randomness. A procedure based on Branch and

Bound algorithm has been used to find routes with minimum cost. A numerical example has also been

presented to explain the working of the method proposed.

Keywords: Transportation and logistics, Capacitated Vehicle Routing Problem, Branch and Bound

Algorithm, Network, Triangular Fuzzy Number.

1. Introduction

In a network, the problem of finding the shortest possible tour which starts and ends at origin node and

every node(except origin node) is visited exactly once is known as Traveling Salesman Problem (TSP)[3].

Vehicle routing problem(VRP) was introduced in 1959, approximately 60 years before, by Dantzig and

Ramser [4]. Earlier this was known as Truck Dispatching Problem. Capacitated Vehicle Routing Prob-

lem (CVRP) [27] is one of the most studied version of VRP. In CVRP, a fleet of vehicles with finite

carrying capacity is provided at the origin node. A network is provided in which the customers with

some specific demands are present at the nodes. The motive is to find a set of vehicle routes to perform

all transportation requests with the given fleet at a minimum cost. Finding optimal routes[3] in CVRP

is one of the basic real life problems. Because of its abundant use in route planning, communication
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networks, school bus scheduling etc., it has attracted lots of academic and industrial researchers in last

few decades. The deterministic version of CVRP is simply solvable. Several effective algorithms such as

Branch cut and price algorithm[9], Genetic Algorithm [17] [21], Clark and Wright algorithm [23] [16] etc.

are used by various researchers to solve the classical version of the problem. Apart from few exact solution

approaches, there are various algorithm which includes the use of heuristics and meta heuristics to solve

VRP faster and reduce the time complexity. One of the very early works in heuristics was performed

by Clark and Wright in the year 1964 where a savings heuristics was designed to calculate the path

to be followed. Later on, various algorithms such as Christofides algorithm [8], an improvised version

of nearest neighbour algorithm[18] and several other heuristics were also introduced by various researchers.

The parameters of VRP includes the structure of network, the customers present at the nodes, the

demands of various customers, the cost matrix(time matrix ) and many more. In real life problems, these

parameters of VRP may be uncertain as well as imprecise. Demands of customers, travel time, presence

of customers or service time of the customers are examples of few parameters which can be responsible

for uncertainty and impreciseness of the network. Impreciseness and randomness can be dealt by using

fuzzy set theory[31] and probability theory[20] respectively. In this work,we are considering a network

where only the demands of the customers and the edge weights of the network are random in nature.

The exact demands of the customer is revealed only upon the arrival of the travelling salesman but a

probability distribution function of customers’ demand is very well known to the salesman in advance.

The edge weights denoting the approximate time required to cover a particular edge in a random traffic

condition includes both randomness and impreciseness, and hence are represented by using fuzzy random

variables[19]. In this work, the random traffic conditions on each arc of the network are represented by

using fuzzy linguistic variables[31]such as high, low and medium.

If one or more parameters of VRP are stochastic in nature, then such a VRP is termed as Stochastic

Vehlicle Routing Problem (SVRP)[27]. Under Vehicle routing problem with stochastic demands[6], a

planned route may fail when upon reaching a certain customer, it is realized that the demand of observed

customer is more than the residual capacity of the vehicle. This situation is termed as route failure and

this can be handled by using recourse actions[22]. Recourse actions are usually of two types, reactive

recourse action, when the vehicle executes the return trip to the depot at failure location and refill the

vehicle and start the journey with the remaining customers which are yet to be served; preventive re-

course action, when the vehicle execute a preventive return trip to depot when the residual capacity of

the vehicle falls below a certain threshold. Reactive recourse policy was introduced by Dror and Trudeau

[6] and implemented by Gendreau et. al [10], whereas the preventive recourse policy was introduced by

Yee et. al [29].

VRP itself is a NP hard problem [3], and the introduction of randomness and impreciseness [25, 26, 24]
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only increases the intractability of the problem. So, it is not much surprising that the very first numerical

methods used for solving CVRP included the use of heuristics and meta heuristics. The purpose of this

paper is to propose an algorithm based on Branch and Bound[3] to find routes for CVRP in a mixed

environment. The uncertainty of the network related to edge weights has been handled by using expec-

tation of fuzzy random variables and uncertainty of demands of customers is handled by taking optimal

recourse action. In this paper, reactive recourse action policy has been used.

This paper is organized as follows: In section 2, some basic definitions regarding fuzzy set theory have

been reviewed. This section also comprises of the definition of fuzzy random variables and the concept

of expectation of random variable has been extended to the concept of expectation of fuzzy random

variable. In this section, a brief review about Branch and Bound algorithm which is used to find routes

for TSP is also provided. In section 3, various assumptions for solving CVRP have been discussed and

a mathematical model for solving CVRP in a mixed environment has also been presented. Section 4

proposes the descriptive algorithms for the methodology presented in the paper. In this section, a flow

chart of the method has also been presented. In section 5, a numerical example with 5 customers has

been presented to explain the working of the method. The later part of the section compares the results

of the method used with other methods and provides useful insights. The last section comprises of the

concluding remarks.

2. Preliminaries

2.1. Fuzzy Set [31]

Definition 1. If X is a universe of discourse and x is a particular element of X, then a fuzzy set Ã

defined on X can be defined as a set of ordered pairs, i.e.

Ã = {(x, µÃ(x)), x ∈ X}

where, µÃ(x) : X → [0, 1] is known as membership function.

2.2. Fuzzy Number [13]

Definition 2. A fuzzy set Ã on R is said to be a fuzzy number, if the following three properties are

satisfied:

1. Fuzzy set Ã must be normal, i.e. ∃ x such that supµÃ(x) = 1, where sup stands for supremum.

2. The support of fuzzy set i.e. the set of all the elements with non zero degree of membership must

be bounded.

3. α level set, Aα, i.e. the set of all the elements with membership degree greater than α must be a

closed interval for α ∈ [0, 1].

3



2.3. Triangular Fuzzy Number [13]

Definition 3. A fuzzy number Ã is said to be a triangular fuzzy number if the graph of its membership

function is triangular in shape.

The membership function of a triangular fuzzy number Ã = (a, b, c) is defined by 1 and its graph is

represented by figure 1.

µÃ(x) =



0 if x < a

x− a
b− a

if a ≤ x ≤ b
c− x
c− b

if b ≤ x ≤ c

0 if x ≥ c

(1)

Figure 1: Triangular Fuzzy Number Ã = (a, b, c)

2.4. Operations on Triangular Fuzzy numbers [13]

Definition 4. Let Ã = (a, b, c) and B̃ = (p, q, r) are two triangular fuzzy numbers, then the arithmetic

operations on them are defined in the following way:

1. Addition:

(a, b, c)⊕ (p, q, r) = (a+ p, b+ q, c+ r)

2. Subtraction:

(a, b, c)	 (p, q, r) = (a− r, b− q, c− p)

3. Scalar multiplication:

k(a, b, c) = (ka, kb, kc) when k > 0
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2.5. Graded Mean Integration Representation Method [12]

Definition 5. Let L−1 and R−1 are the inverse functions of L(left) and R(right) respectively, then the

graded mean integration representation of a generalized triangular fuzzy number Ã is given by:

G(Ã) =

∫ 1

0
h(L

−1(h)+R−1(h)
2 )dh∫ 1

0
hdh

.

Here,

L(x) =
x− a
b− a

, a ≤ x ≤ b,

and

R(x) =
c− x
c− b

, b ≤ x ≤ c,

then

L−1(h) = a+ (b− a)h, 0 ≤ h ≤ 1,

R−1(h) = c− (c− b)h, 0 ≤ h ≤ 1,

Thus, the graded mean integration representation[12] of Ã is given by

G(Ã) =
a+ 4b+ c

6
(2)

2.6. Comparison of Two Triangular Fuzzy Numbers

Definition 6. Based on the graded mean integration representation of a triangular fuzzy number, two

TFNs Ã and B̃ can be compared in the following manner:

If G(Ã) > G(B̃), then Ã > B̃

If G(Ã) < G(B̃), then Ã < B̃

If G(Ã) = G(B̃), then Ã = B̃

(3)

2.7. Fuzzy Linguistic Variable [30]

Definition 7. There are linguistic variables whose states are fuzzy numbers. Fuzzy variables representing

linguistic concepts such as young, middle aged, old etc. with respect to age are known as fuzzy linguistic

variables. The figure 2 represents few fuzzy linguistic variables corresponding to age.

Example 1. Consider a survey where individuals are questioned about weather conditions of a specific

area. The responses of individuals are classified into three categories, namely:

1. Hot

2. Cold

3. Pleasant

In the above example, the anonymity about the opinion of individual gives rise to randomness. Once the

opinion of an individual is known, there is still some uncertainty about accurate meaning of the response.

This lack of preciseness denotes the fuzziness of random variable weather conditions [15].
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Figure 2: Fuzzy Linguistic Variable

2.8. Expectation of a Fuzzy Random Variable [19]

Definition 8. Let X̃ be a fuzzy random variable. Then the expectation of X̃ is denoted by E[X̃], can

formally be defined as

E[X̃] =
∑
x̃

x̃� p(x̃) (4)

where p(x̃) denotes the probability of fuzzy random variable X̃ taking the value x̃

2.9. Branch and Bound Algorithm [3]

In order to solve combinatorial optimization problems, one of the algorithm used is Branch and Bound

algorithm. Typically, the time complexity of combinatorial optimization problems is exponential and in

worst cases, exploration of all possible nodes may be required. Branch and Bound technique solve such

problems relatively quickly. In Branch and Bound method, for a current node in the tree, a lower bound

is calculated which gives the best possible solution that can be obtained if a path through that node is

traversed. If the bound on best possible solution is worse than current best, then the sub tree obtained

with that node is ignored and the nodes giving better lower bounds are only traversed.

In Traveling Salesman Problem, the bound on best possible solution can be obtained by using the

given formula:

lower bound =

⌈
Sum of two minimum weighted edges adjacent to every vertex

2

⌉
(5)

Without the loss of generality, we assume that the starting vertex is 0(depot node) and a lower bound

for the solution can be obtained by the formula given by (5). After this, we compute the lower bound

when a particular vertex i is traversed after 0 for each i. In calculation of that lower bound, cost of

0− i and i− 0 is considered (even if they are not the minimum). The vertex which gives minimum lower

bound will be traversed next until and unless the best solution down the node become worse than any
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other solution which have been obtained in another part of the sub tree. This process is continued until

all the nodes of the network are traversed.

3. CVRP in an imprecise and random environment

Deterministic version of CVRP generally focuses on the distribution of goods from a single source

node to a given set of n other nodes. The source node is usually known as depot node and other n

nodes are known as customer nodes. These customers have some predefined demands. On the depot

node, a fleet of vehicle is present which is used to fulfil the demands of the customers located at different

nodes. In CVRP, the motive is to find a set of routes in a way such that every customer is visited exactly

once and by one vehicle only and their demands are fulfilled in that visit only and the cost incurred in

executing such routes is minimum.

Impreciseness and randomness are two of the major phenomenons occurring in real life problems. In

order to bridge the gap between real world problems and their corresponding mathematical problem, the

mathematical model of such problems should also consider about how to tackle the issues like imprecise-

ness and randomness. In this work, the demands of customers have been assumed to be stochastic in

nature i.e. the demand of customers can only be known upon the arrival of the vehicle. Here, the cost

matrix stores the time required to cover the path. Time taken to cover the path is imprecise and random

in nature, since it is affected by traffic conditions, weather conditions, nature of road etc.. Here, in this

work, we are considering traffic conditions to be the only reason of stochastic nature of edge weights. In

addition to randomness, the edge weights are also imprecise in nature, the varying speed of the vehicle

corresponds to the impreciseness of edge weights. Thus, the edge weights in the network are given by fuzzy

random variables[14] whose value is the approximate time required, to cover the edge in a random traf-

fic condition. The random traffic conditions in the network are given by discrete fuzzy linguistic variables.

A function f̃ij denotes the fuzzy random variable for each edge eij joining the nodes i and j. The

domain of this fuzzy random variable is the different types of traffic conditions and the value of this fuzzy

random variable is the approximate time taken to traverse the edge eij in the specific traffic condition.

This introduces both randomness and impreciseness in the network.

i.e.

f̃ij(D)→ F̃k(R)

The domain of this function is D = {High, Low, Medium} which is the set of different traffic con-

ditions on the edge. The value of the fuzzy random variable is a fuzzy number which informs about the

approximate time taken to cover that edge in the respective traffic conditions. The customers present at

various nodes have uncertain demands and are denoted by using discrete random variables. The uncertain
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demands of the customers are also a reason of randomness.

3.1. Service Policies in CVRP

There are two major service policies in CVRP, first one is full delivery, which means that if a vehicle

arrives at a customer, then the demands of the customer is fully accomplished in that trip only and in

such case, the assumption of demands of the customers to be lesser than the carrying capacity of the

vehicle is mandatory for the feasibility of the problem, This service policy is mostly widely used in the

literature. Second service policy is split delivery where demands of one customer can either be fulfilled

by several vehicles or by several visits of the same vehicle. In the case of split delivery, the assumption

that a customer is visited exactly once and by only one vehicle no longer holds. The problem of Vehicle

Routing under split delivery has been very less studied.

3.2. Stages of CVRP

In addition to the service policies, one of the important attribute of the SVRP is the time at which de-

mand becomes known. On the basis of demand revelation, there are two extreme cases. First is advanced

information, in which the demands of the customers are known even before the routes are planned and this

leads to the classical case of CVRP. The second case is about the late information in which the demand

of the customers are revealed only after the arrival of the vehicle. In between these 2 extreme cases, there

is a whole spectrum of possibilities, i.e. when the demand becomes known one, two, three steps ahead, etc.

Several policy and availability of information determine the number of stages in which SVRP may be

solved. In SVRP with advanced information with full delivery, there is only one stage. In SVRP with

late information and full delivery, there are n stages, where each stage corresponds to delivery of goods

at one customer and at each stage decisions are to be taken regarding either going to next customer node

or returning back to the depot on the basis of residual capacity of the vehicle. In the case of split delivery

with late information, there can be more than n stages, where n is the number of customers in the network.

3.3. Assumptions of the model

Before formulating the mathematical model of CVRP in a mixed environment, we state few assump-

tions that will be used throughout the paper. The very first assumption is regarding the non-divisibility

of goods, i.e. the goods to be delivered to customers are already in the smallest possible unit available.

The journey of fleet of vehicle is assumed to originate and terminate only at the depot node and the fleet

of vehicles is also assumed to be homogeneous i.e. operational costs and capacity of vehicles are assumed

to be same. The service policy has been assumed to be full delivery policy in which the customer is to be

visited exactly once and by one vehicle only. The stochastic demand Di of the customer follows a discrete
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probability distribution with a finite support, defined as {Di
1, Di

2, . . . Di
n} where Di

k ≤ Q, where Q is

the carrying capacity of the vehicle, i.e. only those customers are considered whose demands are lesser

than the capacity of vehicle. The demands of customers are also assumed to be positive and indepen-

dent, i.e. demand of a customer is not influenced by the demand of other customers. pi
k represents the

probability of ith customer observing the kth demand. i.e. P [Di = Di
k] = pi

k.

The traveling cost along an arc (vi, vj) ∈ E is denoted by a fuzzy random variable, f̃ij , where cost

matrix C = [f̃ij ] is symmetric and satisfies triangle inequality. An expectation based approach 4 has

been used in this work to compare two fuzzy random variables and 2 and 3 are used to compare two

fuzzy numbers. Since the demands of customers are only revealed upon the arrival, so there are chances

of failure and recourse actions are adopted to handle those failures. In this work, the possibility of

occurrence of more than one failure has been assumed while executing the planned route. In this work,

reactive recourse policy has been used, i.e. a return trip is performed only upon the failure.

3.4. Real life applications of CVRP in mixed environment

Real world applications of the SVRP include among others the planning of cash collection from various

branches of a bank in a city [2], and, in this case, the amount of the cash to be collected from various

branches is a random variable and there is a bound on the amount of the cash that can be carried in a

vehicle. The nature of the network, which is stored by the cost matrix(storing the time) is imprecise as

well as random because of varying speed of vehicle and different traffic conditions respectively. Another

applications include distribution of cash to different automatic teller machines (ATMs) in the city, where

the nature of the network and the problem remains the same. This situation is represented by the use

of Figure 3.Other examples include the delivery of essential commodity (milk, oil) where daily customer

consumption is random in nature but can be predicted with the use of discrete random variable. The

objective of the task is to find the traveling salesman tour in a mixed (imprecise and random) network

when the demand of the customer is stochastic in such a way that the cost incurred comes out to be a

minimum.
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Figure 3: Money distribution to various ATM machines

3.5. Properties of the problem

It has already been observed by various researchers that a number of properties of optimal TSP does

not hold true for VRP with stochastic demands even if the first stage of the problem corresponds to

finding an optimal solution of TSP.

Property 1: The route designed by using Branch and Bound algorithm is the least cost route.

For the SVRP, the a priori route designed by using Branch and Bound algorithm does not, always,

corresponds to a least cost route. This can be illustrated with the help of the Figure 4.

Consider a network of customers in which there are 3 customers and the coordinates for depot and

customers 1, 2 and 3 are given by (0,0), (-4,0), (0,6) and (0,-7) respectively. Suppose there is only one ve-

hicle of capacity 10 units. Distance between the points are calculated by using Euclidean distance norm.

Then the a priori route designed by using Branch and Bound algorithm is 0-3-1-2-0. Suppose, while

executing the routes the demands at the customers 3, 1 and 2 are realized as 3 units, 8 units and 5 units

respectively and the demands are realized only when the delivery vehicle arrives at the corresponding

customer. Then, while executing the route, when vehicle arrives at customer 3, it fulfils its demand and

then move to customer 1 and then a route failure happens and hence the vehicle is bound to return to

depot node and perform the refilling. After refilling, the execution of route starts from customer 1 and

after fulfilling the demand of customer 1, the vehicle moves to customer 2, where again a failure of route

is realized and thus routing to depot and refilling is performed again. After fulfilling the demands of all

the customers, the vehicle returns to depot node. Thus, while executing the route 0-3-1-2-0 with given

stochastic demands, the cost of the tour comes out to be 48.2732, whereas executing the 0-3-2-1-0, with

the given stochastic demands the cost of the tour comes out to be 39.211; of course lower than the cost
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Figure 4: A network with 3 customers

of least cost tour obtained by using Branch and Bound algorithm.

Property 2 : The route direction has no impact on the cost of the route.

For the SVRP, the cost of the route designed by using the Branch and Bound algorithm is not always

independent of the direction of the route. This can also be illustrated with the help of the above figure. In

the above example, the cost incurred while executing the route 0-3–1-2-0 is 48.2732 and the cost incurred

while executing the route 0-2-1-3-0(the same route in opposite direction) is 42.2732.

Thus, with the help of above two properties, we can clearly say that an optimal a priori route might

not always result in a least cost tour in the presence of stochastic demands and the direction of traver-

sal of route also comes out as an important factor while deciding the cost of the route under consideration.

3.6. Mathematical Model

A CVRP in an imprecise and random environment is represented by a complete weighted graph

G = (V,E) where V is the set of vertices and E is the set of edges. V = {v0} ∪ {v1, v2, . . . vn}, where

{v0} is the depot node and {v1, v2, . . . vn} are the customers with stochastic demands. Di is the random
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variable representing the demand of customer located at node i and its expected value and variance are

given by E[Di] and V ar[Di] respectively.

A route is defined as a path of the form r = (i1, i2, . . . , i|r|) where i1 = i|r|=Depot node with ik ∈ V

for k ∈ {2, 3, · · · | r | −1}. Given such a route, we let TD(µik , σ
2
ik) =

∑k
l=1Dil denote the random

variable indicating the total actual cumulative demand at customer ik for k ∈ {2, 3, · · · | r |}. Since the

demands of customers are independent, thus we have µik =
∑k
l=1E[Dil ] and σ2

ik
=
∑k
l=1 V ar[Dil ]. It

can be easily seen that failures are separated by vehicles and that all the vehicles are identical. Given a

route r = (i1, i2, . . . , i|r|), we let EFCik(µik , σ
2
ik

) denote expected failure cost at customer ik. So, we can

write

EFCik(µik , σ
2
ik

) = 2c0ik

∞∑
u=1

(P{TD(µik−1
, σ2
ik−1

) ≤ uQ} − P{TD(µik , σ
2
ik

) ≤ uQ}) (6)

where P{E} denotes the probability of occurrence of event E. P{TD(µik−1
, σ2
ik−1

) ≤ uQ}−P{TD(µik , σ
2
ik

) ≤

uQ} can therefore be interpreted as probability of having uth failure at ik given that it has not occurred

on any previously visited customer along the route. Thus, an a priori model for CVRP with fuzzy

stochastic travel times and stochastic demands is given by:

Minimize
∑

E[f̃ij ].xij +
∑

EFCih+1
(µih+1

, σ2
ih+1

)

subject to

n∑
j=2

xij = 2m (7)

∑
i<k

xik +
∑
k<j

xkj = 2 (8)

∑
vi,vj∈S

xij ≤ | S | −
∑
vi∈S E[Di]

Q
S ⊂ V − {v0}; 2 ≤| S |≤ n− 2 (9)

xij = {0, 1} j = 2, . . . , n (10)

x0j = {0, 1, 2} ∀{0, j} ∈ E (11)

x = xij an integer array (12)

In the mathematical model represented above, constraint 7 ensures that exactly m vehicles start their

tour from depot node and end their tour at depot node. Constraint 8 ensures that every customer is con-

nected to 2 other vertices. Constraint 9 eliminates the infeasible routes with excessive capacity demand.

First stage of a priori approach deals with finding the routes for traveling salesman/vehicle without con-

sidering the stochastic demands of the customers. Since the edge weights in the network are represented

by fuzzy random variables. Hence, for the comparison of edge weights, expected value of fuzzy random

variables have been compared. The first stage deterministic cost for travelling all the customers exactly
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once is given by
∑
E[f̃ij ].xij where xij is a binary decision variable whose value is 1 if edge ij is traversed

and 0 otherwise. (11) entails that the variable x0j takes the value 1 if the edge 0 − j is traversed only

once, i.e. j is the vertex from where the service starts. x0j takes the value 2 if a failure at node j occurs

because in such a case the path 0− j is traversed twice, once for replenishment of goods and then for the

resumption of the delivery and x0j takes the value 0 if edge 0− j is never traversed. The first stage of the

a priori approach corresponds to finding the minimum weighted traveling salesman tour visiting all the

customers exactly once and the first component of the objective function corresponds to this deterministic

cost. In first stage, the demands of customers are ignored.

The first stage solution was obtained without considering the demands of the customers. However,

in the presence of stochastic demands of the customers, a route designed earlier may fail because the

observed demands of the customer may exceed the residual capacity of the vehicle and in such cases,

recourse actions need to be taken. Thus, the total cost of operation increases. Hence, the total cost

of operation is given by the sum of deterministic cost, which is obtained in the first stage of a priori

approach and expected cost of recourse actions, which is calculated in second stage and is denoted by

second component of the objective function.

4. Flowchart of the Method

The flowchart of the method discussed is given by Figure 5
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Figure 5: Flowchart of the model

5. Algorithm and Methodology of the Method

In the given algorithm, the symbols used along with their descriptions are provided in Table 1.
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Table 1: Symbols used in the algorithm with their descriptions

Sr. no. Symbols Description

1. Ã[ ][ ] Adjacency matrix with low traffic conditions

2. B̃[ ][ ] Adjacency matrix with usual traffic conditions

3. C̃[ ][ ] Adjacency matrix with high traffic conditions

4. p[ ][ ][ ] Matrix storing pmf values for different traffic conditions

5. n Number of Vertices

6. Cost[ ][ ] Adjacency matrix storing expected time taken to cover every edge.

7. cost Deterministic cost of tour in stage 1.

8. TEFC Total effective failure cost

9. Tcost Total cost

10. Final-path Route

The methodology to solve such a problem has been divided into two parts, part A and part B and

part A is further subdivided into 2 parts.

In part A, we find the a priori sequence of nodes which are to be followed while execution. The

sequence of nodes is obtained by using Branch and Bound algorithm, which can only be applied when the

edge weights are deterministic. So to reduce the edge weights from fuzzy random variables to deterministic

weights, we find the expected edge weights first by using expectation of a fuzzy random variable by using

(4) and then convert them into a crisp form by using GMIR method (3). This part of the methodology

has been represented by Algorithm 1

Algorithm 1 An algorithm to handle the cost matrix

Input: Ã[ ][ ], B̃[ ][ ], C̃[ ][ ], p[ ][ ][ ], number of vertices

Output: Cost[ ][ ].

1: Start.

2: Declare variables i, j

3: i← 0, j ← 0;

4: for all i ≤ n do

5: for all j ≤ n do

6: Fuzzy − Cost[i][j] = p[i][j][1]� Ã[i][j]⊕ p[i][j][2]� B̃[i][j]⊕ p[i][j][3]� C̃[i][j];

7: Cost[i][j] = G(C̃[i][j]);

8: end for

9: end for

We then use the cost matrix obtained by Algorithm 1 and find a sequence of nodes which is to be

followed by using the Branch and Bound Algorithm. This part of the methodology has been represented

by Algorithm 2
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Algorithm 2 An algorithm to find the a priori route

Input: Cost[ ][ ], number of vertices

Output: A minimum cost tour and its cost.

1: def RecTour(Cost[][], curr-bound, curr-cost, l, curr-path, visited):

2: Declare global variable cost;

3: if level==n:

4: if (Cost[curr-path[level-1]][curr-path[0]]!=0)

5: curr-res=curr-cost+Cost[curr-path[level-1]][curr-path[0]]

6: if (curr-res < cost)

7: Final-path= curr-path.append(curr-path[0]);

8: cost = curr-res;

9: for all i ≤ n do

10: if (Cost[curr-path[level-1]][i]!=0 and visited[i]==False)

11: temp=curr-bound

12: curr-weight= curr-weight+Cost[curr-path[level-1]][i]

13: if level==1:

14: curr-bound = curr-bound - ((firstmin(Cost,curr-path[level-1])+firstmin(Cost,i))/2)

15: else

16: curr-bound = curr-bound - ((secondmin(Cost,curr-path[level-1])+(firstmin(Cost,i)))/2)

17: RecTour(Cost, curr-bound, curr-weight, level+1, curr-path, visited)

18: else:

19: curr-weight = curr-weight - Cost[curr-path[level-1]][i]

20: curr-bound =temp, visited = [False]*len(visited)

21: for all j ≤ level

22: if (curr-path)[j]!=-1

23: visited[curr-path[j]]=True

24: def Tour(C[ ][ ])

25: curr-bound ← 0, curr-path ← [-1]* N+1, visited ← [False]*N

26: for all i ≤ n do

27: curr-bound = curr-bound+(firstmin(Cost,i)+secondmin(Cost,i)

28: curr-bound = ceil(curr-bound/2)

29: visited[0]← True, curr-path[0]←0;

30: RecTour(Cost[][], curr-bound, 0, 1, curr-path, visited)

31: return cost, Final-path

After finding the sequence of routes, the execution of routes starts and in this procedure, there is the

possibility of failure, the failure occurs because the vehicle may have lesser quantity than the demand

revealed by the customer and that will be realized only when the vehicle arrives at that customer. In
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such a case, the vehicle is bound to return to the depot and after replenishing, the vehicle resumes its

service. This cost is named as the effective failure cost and the sum of effective failure cost and the cost

of tour obtained in 2 gives us the total cost of the operation. The calculation of effective failure cost and

total cost is represented in Algorithm 3

Algorithm 3 An algorithm for calculating total cost of the tour

Input: Final-path and cost from 31 of Algorithm 2.

Output: Total cost of the tour.

1: Start

2: i← 1;

3: for all i ≤ n do

4: EFC[Fpath[i]]=2cost[0][Fpath[i]](
∑∞
u=1 P(TD at Fpath[i-1] ≤ 60u - P(TD at Fpath[i] ≤ 60u ))

5: TEFC ← TEFC + EFC[Fpath[i]]

6: end for

7: Tcost ← cost + TEFC

8: return Tcost

6. Numerical Example

Let us consider an instance when there are 5 customers and there is a single depot. Suppose that

the customers in the network have stochastic demands, i.e. the demand of a customer is revealed only

when that customer is visited. In this example, the cost matrix store the information about the time

required to traverse the edge, which usually depends upon the random traffic conditions and is also given

imprecisely (here, impreciseness has been handled by using Triangular Fuzzy Numbers). The matrix Ã,

B̃ and C̃ stores the information about time required to traverse the edges when traffic conditions are low,

medium and high respectively.

Ã =



∞ (0, 2, 4) (4, 6, 8) (0, 1, 3) (5, 7, 9) (2, 4, 6)

(0, 2, 4) ∞ (5, 7, 9) (2, 4, 6) (6, 8, 10) (0, 1, 3)

(4, 6, 8) (5, 7, 9) ∞ (4, 6, 8) (0, 2, 4) (4, 6, 8)

(0, 1, 3) (2, 4, 6) (4, 6, 8) ∞ (5, 7, 9) (4, 6, 8)

(5, 7, 9) (6, 8, 10) (0, 2, 4) (5, 7, 9) ∞ (7, 9, 11)

(2, 4, 6) (0, 1, 3) (4, 6, 8) (4, 6, 8) (7, 9, 11) ∞



B̃ =



∞ (2, 4, 6) (6, 8, 10) (1, 3, 5) (7, 9, 11) (4, 6, 8)

(2, 4, 6) ∞ (7, 9, 11) (4, 6, 8) (8, 10, 12) (1, 3, 5)

(6, 8, 10) (7, 9, 11) ∞ (6, 8, 10) (2, 4, 6) (6, 8, 10)

(1, 3, 5) (4, 6, 8) (6, 8, 10) ∞ (7, 9, 11) (6, 8, 10)

(7, 9, 11) (8, 10, 12) (2, 4, 6) (7, 9, 11) ∞ (9, 11, 13)

(4, 6, 8) (1, 3, 5) (6, 8, 10) (6, 8, 10) (9, 11, 13) ∞
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C̃ =



∞ (4, 6, 8) (8, 10, 12) (3, 5, 7) (9, 11, 13) (6, 8, 10)

(4, 6, 8) ∞ (9, 11, 13) (6, 8, 10) (10, 12, 14) (3, 5, 7)

(8, 10, 12) (9, 11, 13) ∞ (8, 10, 12) (4, 6, 8) (8, 10, 12)

(3, 5, 7) (6, 8, 10) (8, 10, 12) ∞ (9, 11, 13) (8, 10, 12)

(9, 11, 13) (10, 12, 14) (4, 6, 8) (9, 11, 13) ∞ (11, 13, 15)

(6, 8, 10) (3, 5, 7) (8, 10, 12) (8, 10, 12) (11, 13, 15) ∞


The matrix p stores the information about the random traffic conditions. It stores the probability of

different traffic conditions. For example, the element in the fourth row and third column (which stores

the information about the edge 3-2) i.e. (0.2, 0.5, 0.3) represents that the probability of traffic conditions

being low, medium and high on the edge 3-2 are 0.2, 0.5 and 0.3 respectively.

p =



∞ (0.4, 0.2, 0.4) (0.3, 0.4, 0.3) (0.2, 0.5, 0.3) (0.6, 0.3, 0.1) (0.6, 0.1, 0.3)

(0.4, 0.2, 0.4) ∞ (0.5, 0.2, 0.3) (0.4, 0.3, 0.3) (0.2, 0.6, 0.2) (0.3, 0.4, 0.3)

(0.3, 0.4, 0.3) (0.5, 0.2, 0.3) ∞ (0.2, 0.5, 0.3) (0.7, 0.2, 0.1) (0.3, 0.5, 0.2)

(0.2, 0.5, 0.3) (0.4, 0.3, 0.3) (0.2, 0.5, 0.3) ∞ (0.4, 0.4, 0.2) (0.3, 0.3, 0.4)

(0.6, 0.3, 0.1) (0.2, 0.6, 0.2) (0.7, 0.2, 0.1) (0.4, 0.4, 0.2) ∞ (0.7, 0.1, 0.2)

(0.6, 0.1, 0.3) (0.3, 0.4, 0.3) (0.3, 0.5, 0.2) (0.3, 0.3, 0.4) (0.7, 0.1, 0.2) ∞


An expectation based approach has been used to handle the randomness of edge weights, i.e. expected

time to cover every edge is calculated first and then a shortest route traversing every vertex exactly once

is calculated by the use of Branch and Bound algorithm in the first stage of a priori approach. For

example, Consider the edge 0-2, the matrix p tells that the probability of having low, medium and high

traffic conditions is 0.3, 0.4 and 0.3 respectively. The matrices Ã, B̃ and C̃ stores the time required to

traverse the edges in these traffic conditions. Thus the expected time to cover the edge 0-2 is given by:

E02[T ] = 0.3� (4, 6, 8) + 0.4� (6, 8, 10) + 0.3� (8, 10, 12) = (6, 8, 10)

Reducing it to a crisp number by the use of Graded mean integration representation method gives

the expected time to cover the edge 0-2 is 8 units.

After finding the expected time to cover every edge in a crisp form, Branch and Bound algorithm

can be used to find out the shortest route that visits every vertex exactly once. A schematic diagram

representing the Branch and Bound algorithm for the network in the consideration is given by 6 and the

route that should be taken is 0-1-5-2-4-3-0 and the cost of traversal of this route is 29.4 units.

In the first stage of a priori approach, the demands of the customers were not considered. In the

second stage, the demands of the customers are also considered. The stochastic demands of the customers
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are given by Table 2. For example, the third row of the table informs that the demand of third customer

is 15, 20 with the probability 0.2 and 0.8 respectively. The demand of depot node has been considered

to be 0 units.

Figure 6: The path obtained in stage 1

Table 2: Demands of the customers

Node Demand Probability

1 (20, 25) (0.4, 0.6)

2 (30, 35) (0.3, 0.7)

3 (15, 20) (0.2, 0.8)

4 (25, 30) (0.7, 0.3)

5 (10, 15) (0.8, 0.2)

While dealing with the stochastic demands, the route obtained in first stage is traversed and whenever

a failure occurs, a trip to depot node is made to refill the vehicle and continue the service. In such case,

an effective failure cost gets associated with every vertex which represents the cost of route if a failure

failure occurs at that specific node, assuming that the failure has yet not occurred on any other previous

node of the route. The formula to calculate the effective failure cost is given by 6. The carrying capacity

of the vehicle is 60 units. Calculating the effective failure cost at every node gives
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For the customer waiting at vertex 1:

EFC1 = 2c01{
∞∑
u=1

P (Total Demand at 0) ≤ 60u− P (Total Demand at 0 and 1) ≤ 60u}

= 0

For the customer waiting at vertex 5:

EFC5 = 2c05{
∞∑
u=1

P (Total Demand at 0 and 1) ≤ 60u− P (Total Demand 0, 1 and 5) ≤ 60u}

= 0

For the customer waiting at vertex 2:

EFC2 = 2c02{
∞∑
u=1

P (Total Demand at 1 and 5) ≤ 60u− P (Total Demand at 1, 5 and 2) ≤ 60u}

= 14.464

For the customer waiting at vertex 4:

EFC4 = 2c04{
∞∑
u=1

P (Total Demand at 0, 1, 5 and 2) ≤ 60u− P (Total Demand at 0, 1, 5, 2 and 4) ≤ 60u}

= 1.536

For the customer waiting at vertex 3:

EFC3 = 2c03{
∞∑
u=1

P (Total Demand at 0, 1, 5, 2 and 4) ≤ 60u− P (Total Demand at 0, 1, 5, 2, 4 and 3) ≤ 60u}

= 0.129204

Total effective failure cost =

n∑
i=1

EFCi

= 16.129024

Then the sum of effective failure cost of every vertex gives the total effective failure cost and the sum

of total effective failure cost and cost obtained in stage 1 gives the total cost of traversal in the given

mixed environment.

Total cost = Total effective failure cost + Deterministic Cost obtained in stage 1

= 45.52

Thus, the total cost of traversal is 45.52 units and and the route that should be taken is 0-1-5-2-4-3-0.
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7. Discussion and Analysis

In the presented work, the traveling salesman path in first stage is obtained by using Branch and

Bound algorithm, which is an optimal solution method for combinatorial optimization problems. The

time complexity of the algorithm is O(n22n), which is exponential in nature, but no algorithm with lesser

time complexity than Branch and Bound [11] gives optimal solution for TSP. The major advantage of

the algorithm is that we can control the quality of the solution to be expected, even if it is not yet found.

Only in worst case scenario, the exploration of all possible permutations is required. In other classical

methods of solving VRP, random nature of the network has never been clubbed with impreciseness. In

this work, a mixed environment has been considered where expectation of fuzzy random variables and

GMIR method has been used to deal with randomness and impreciseness respectively.

Apart from the exact methods like Dynamic programming methods [1], Branch and Bound[11], several

approximation algorithms such as Christofides algorithm[8] and algorithms based on heuristics like Near-

est Neighbour Algorithm[18], Clark and Wright algorithm[23] can also be used to find out the traveling

salesman path. Several methods based on meta-heuristic like Genetic algorithm [17], tabu search methods

[28], Simulated annealing methods [7], Particle Swarm optimization[7] and Ant colony optimization[5]

can also be used to solve the stage 1 of the problem considered. Table 3 comprises of the comparison of

the method presented in this paper with several other algorithms. The comparison has been done on the

network presented in Numerical Example.

Table 3: Comparison of Various Methods

Method Path Det Cost EFC Total Cost Time Complexity

Brute Force [11]
0-3-4-2-5-1-0

0-1-5-2-4-3-0

29.4

29.4

16.129024

16.1728

45.52

45.57
O(n!)

Bellman Held Karp Algorithm [1]
0-3-4-2-5-1-0

0-1-5-2-4-3-0

29.4

29.4

16.129024

16.1728

45.52

45.57
O(n22n)

Christofides Algorithm [8] 0-2-4-3-5-1-0 34.6 8.57728 43.17728 O(n4)

Clark and Wright Algorithm [16] 0-1-5-2-4-3-0 29.4 16.129024 45.52 O(n2logn)

Nearest Neighbour [18] 0-3-1-5-2-4-0 30.6 16.3456 46.9456 O(n2)

Genetic Algorithm [17] 0-3-4-2-1-5-0 31.6 16.217728 47.817728 O(n2logn)

Proposed method 0-1-5-2-4-3-0 29.4 16.129024 45.52 O(n22n)

The algorithm like Bellman Held Karp algorithm gives the optimal solutions but the method has ex-

ponential time complexity (same as that of Branch and Bound) and it explores all possible permutations

in all cases, thus requiring more space in the memory as compared to Branch and Bound Algorithm.

The Brute force approach gives optimal solution by exploring all possible permutations and thus have
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a time complexity of O(n!), which is worse than that of Branch and Bound. Other algorithms such as

Christofides algorithm, nearest neighbour algorithm, Clark and Wright algorithm and Genetic algorithm

have polynomial time complexity but the solution obtained by these methods is not always guaranteed

to be optimal.

8. Conclusion

In this work, the mathematical model of fuzzy stochastic vehicle routing problem and the algorithm

to solve such a problem has been presented. In practical life, to traverse a route, different paths may

be taken which may have different traffic conditions. In mathematical modelling of CVRP in mixed

environment, the objective is to find a minimum weighted travelling salesman tour starting as well as

terminating at the origin node, in such a way that the demands of all the customers present in the network

are fulfilled. In this work, different traffic conditions occur on different edges with certain probabilities

and in those traffic conditions, time taken to cover every edge is given by triangular fuzzy number. The

demands of the customers present at the nodes are stochastic in nature and here are given by probability

mass function. Randomness and Impreciseness in this work are dealt by using expectation approach and

GMIR method respectively.

The approach used in this paper is a priori i.e. the route designing has been done first and while

serving the customers on that route,an effective failure cost has been calculated. Branch and Bound

algorithm has been used to find the route that the traveling salesman should follow when the demands

are not known such that cost of traversal is minimum. The recourse policy used is reactive in nature, i.e.

the return trip to the depot are only performed upon the occurrence of the failure of the route planned by

using Branch and Bound. A numerical example is also been solved using proposed approach. This result

may be useful to find the minimum weighted tour for any commodity delivery problem in a network, when

the demands of the customers are stochastic in nature and the nature of the network under consideration

is imprecise and random.
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