Acknowledgements
We thank the numerous field technicians, students, and postdocs who
worked in the field helping out with data collection. Special thanks go
to Alice MacQueen and other Juenger Lab members for helping improve the
manuscript with their comments. This research was supported and funded
by the National Science Foundation Plant Genome Research Program
(IOS-1444533) and by the US Department of Energy, Office of Science,
Office of Biological and Environmental Research Award DESC0014156 to
T.E.J. This material is based upon work supported in part by the Great
Lakes Bioenergy Research Center, U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research under Award
Numbers DE-SC0018409 and DE-FC02-07ER64494. Support for this research
was provided by the National Science Foundation Long-term Ecological
Research Program (DEB 1832042) at the Kellogg Biological Station and by
Michigan State University AgBioResearch. We thank the Joint Genome
Institute and collaborators for prepublication access to thePanicum virgatum v5 AP13 genome reference.
References
Adriani, D. E., Dingkuhn, M., Dardou, A., Adam, H., Luquet, D., &
Lafarge, T. (2016). Rice panicle plasticity in Near Isogenic Lines
carrying a QTL for larger panicle is genotype and environment dependent.Rice, 9 (1), 28. doi:10.1186/s12284-016-0101-x
Azizi, P., Rafii, M. Y., Maziah, M., Abdullah, S.N.A., Hanafi, M. M.,
Latif, M. A., Rshid, A. A., & Sahebi, M. (2015). Understanding the
shoot apical meristem regulations: A study of the phytohormones, auxin
and cytokinin, in rice. Mechanisms of Development , 135, 1-15.
Auge, G. A., Penfield, S., and Donohue, K. (2019). Pleiotropy in
developmental regulation by flowering-pathway genes: is it an
evolutionary constraint. New Phytologist , 224: 55-70.
Bai, X., Zhao, H., Huang, Y., Xie, W., Han, Z., Zhang, B., . . . Xing,
Y. (2016). Genome-Wide Association Analysis Reveals Different Genetic
Control in Panicle Architecture Between Indica and Japonica Rice.The Plant Genome, 9 (2). doi:10.3835/plantgenome2015.11.0115
Bommert, P., & Whipple, C. (2018). Grass inflorescence architecture and
meristem determinacy. Seminars in Cell & Developmental Biology,
79 , 37-47. doi:https://doi.org/10.1016/j.semcdb.2017.10.004
Boycheva, I., Vassileva, V., & Iantcheva, A. (2014). Histone
acetyltransferases in plant development and plasticity. Current
genomics, 15 (1), 28-37. doi:10.2174/138920291501140306112742
Bragg, J., Tomasi, P., Zhang, L. et al. (2020). Environmentally
responsive QTL controlling surface wax load in switchgrass. Theor
Appl Genet , 133, 3119–3137.
Brown, P. J., Klein, P. E., Bortiri, E., Acharya, C. B., Rooney, W. L.,
& Kresovich, S. (2006). Inheritance of inflorescence architecture in
sorghum. Theoretical and Applied Genetics, 113 (5), 931-942.
doi:10.1007/s00122-006-0352-9
Caruso, C. M. (2006). Plasticity of inflorescence traits inLobelia Diphilitica (Lobeliaceae) in response to soil water
availability. American Journal of Botany , 93(4): 531-538.
Casler, M. D. (2007). Genetic Diversity, Plant Adaptation Regions, and
Gene Pools for Switchgrass. Crop Science, v. 47 (no. 6), pp.
2261-2260-2007 v.2247 no.2266. doi:10.2135/cropsci2006.12.0797
Coen E. S., & Nugent J. M. (1994). The evolution of flowers and
inflorescences. Development (Suppl.), 107–118.
Covarrubias-Pazaran, G. (2016). Genome-Assisted Prediction of
Quantitative Traits Using the R Package sommer. PLOS ONE, 11 (6),
e0156744. doi:10.1371/journal.pone.0156744
Crowell, S., Korniliev, P., Falcão, A., Ismail, A., Gregorio, G., Mezey,
J., & McCouch, S. (2016). Genome-wide association and high-resolution
phenotyping link Oryza sativa panicle traits to numerous trait-specific
QTL clusters. Nature Communications, 7 (1), 10527.
doi:10.1038/ncomms10527
Das, M. K., & Taliaferro, C. M. (2009). Genetic variability and
interrelationships of seed yield and yield components in switchgrass.Euphytica, 167 (1), 95-105. doi:10.1007/s10681-008-9866-3
Deng, W., Liu, C., Pei, Y., Deng, X., Niu, L., & Cao, X. (2007).
Involvement of the Histone Acetyltransferase AtHAC1 in the Regulation of
Flowering Time via Repression of <em>FLOWERING LOCUS
C</em> in Arabidopsis. Plant Physiology, 143 (4), 1660.
doi:10.1104/pp.107.095521
Doust, A. & Kellogg, E. A. (2002). Inflorescence diversification in the
panicoid ’bristle grass’ clade (Paniceae, Poaceae): Evidence from
melecular phylogenies and developmental morphology. American
Journal of Botany, 89(8): 1203-1222.
Dorken, M. E., & S. C. H. Barrett. 2004. Phenotypic plasticity of
vegetative and reproductive traits in monoecious and dioecious
populations of Sagittaria latifolia (Alismataceae): a clonal
aquatic plant. Journal of Ecology , 92: 32–44.
Doust, A. (2007). Architectural evolution and its implications for
domestication in grasses. Ann Bot, 100 (5), 941-950.
doi:10.1093/aob/mcm040
El-Soda, M., Malosetti, M., Zwaan, B. J., Koornneef, M., & Aarts, M. G.
M. (2014). Genotype × environment interaction QTL mapping in plants:
lessons from Arabidopsis. Trends in Plant Science, 19 (6),
390-398. doi:https://doi.org/10.1016/j.tplants.2014.01.001
Endo-Higashi, N., & Izawa, T. (2011). Flowering time genes Heading date
1 and Early heading date 1 together control panicle development in rice.Plant & cell physiology, 52 (6), 1083-1094.
doi:10.1093/pcp/pcr059
Friedman, J., & Harder, L. D. (2004). Inflorescence architecture and
wind pollination in six grass species. Functional Ecology, 18 (6),
851-860. doi:10.1111/j.0269-8463.2004.00921.x
Glemin, S., & Bataillon, T. (2009). A comparative view of the evolution
of grasses under domestication. New Phytol, 183 (2), 273-290.
doi:10.1111/j.1469-8137.2009.02884.x
He, Q., Yang, L., Hu, W., Zhang, J., & Xing, Y. (2018). Overexpression
of an auxin receptor OsAFB6 significantly enhanced grain yield by
increasing cytokinin and decreasing auxin concentrations in rice
panicle. Scientific Reports, 8 (1), 14051.
doi:10.1038/s41598-018-32450-x
Hohenstein, W. G., & Wright, L. L. (1994). Biomass energy production in
the United States: an overview. Biomass and Bioenergy, 6 (3),
161-173. doi:https://doi.org/10.1016/0961-9534(94)90073-6
Hong, D., & Yan, L. (2004). Genetic Analysis of Heterosis for Number of
Spikelets per Panicle and Panicle Length of F1 Hybrids in japonica Rice
Hybrids. Rice Science , 11(5-6): 255-260. Hopkins, A. A. (1995).
Genotypic Variability and Genotype × Environment Interactions among
Switchgrass Accessions from the Midwestern USA. Crop Science, v.
35 (no. 2), pp. 565-560-1995 v.1935 no.1992.
doi:10.2135/cropsci1995.0011183X003500020047x
Kellogg, E. A. (2000). Molecular and morphological evolution in the
Andropogoneae. In S. W. L. Jacobs and J. Everett [eds.],Grasses: systematics and
evolution ,149–158.CSIRO,Melbourne,Australia..
Klingenberg, C. P (2008). Morphological integration and developmental
modularity. Annual Review of Ecology, Evolution, and Systematics ,
39 (1): 115-132.
Komatsu, M., Maekawa, M., Shimamoto, K., & Kyozuka, J. (2001). The LAX1
and FRIZZY PANICLE 2 Genes Determine the Inflorescence Architecture of
Rice by Controlling Rachis-Branch and Spikelet Development.Developmental Biology, 231 (2), 364-373.
doi:https://doi.org/10.1006/dbio.2000.9988
Leng, Y., Xue, D., Huang, L., Chen, L., Ren, D., Yang, Y., . . . Zeng,
D. (2017). Mapping QTL with main effect, digenic epistatic and QTL ×
environment interactions of panicle related traits in rice (Oryza
sativa). International Journal of Agriculture and Biology, 19 (6),
1608-1614.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics, 25 (14),
1754-1760. doi:10.1093/bioinformatics/btp324
Liu, G., Mei, H., Liu, H. et al. (2010). Sensitivities of rice
grain yield and other panicle characters to late-stage drought stress
revealed by phenotypic correlation and QTL analysis. Mol
Breeding, 25, 603–613.
Lovell, J., Healy A., Schmutz J. and Juenger T. (2020). Switchgrass v5
4-way (AP13 x DAC, WBC x VS16) genetic map v2, Dryad, Dataset.
http://doi.org/10.5061/dryad.ghx3ffbjv
Lovell, J., MacQueen, A., et al. (2020). Multiple genomic paths to
climate adaptation in the biofuel crop, switchgrass. Nature (in
review).
Lowry, D. B., Lovell, J. T., Zhang, L., Bonnette, J., Fay, P. A.,
Mitchell, R. B., . . . Juenger, T. E. (2019). QTL × environment
interactions underlie adaptive divergence in switchgrass across a large
latitudinal gradient. Proceedings of the National Academy of
Sciences, 116 (26), 12933. doi:10.1073/pnas.1821543116
Mal, T. K., & J. Lovett-Doust. 2005. Phenotypic plasticity in
vegetative and reproductive traits in an invasive weed, Lythrum
salicaria (Lythraceae), in response to soil moisture. American
Journal of Botany, 92: 819–825.
McLaughlin, S. (1993). New switchgrass biofuels research program for the
southeast. In: Proceedings of the annual automative technology
development contractors coordinating meeting, Nov. 2–5, 1992,
Dearborn , 111–115.
McSteen, P. (2006). Branching out: The ramosa pathway and the
evolution of grass inflorescence morphology. The Plant Cell ,
18(3): 518-522.
Milano, E. R., Lowry, D. B., & Juenger, T. E. (2016). The Genetic Basis
of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum).G3 (Bethesda, Md.), 6 (11), 3561-3570. doi:10.1534/g3.116.032763
Mitchell, R., Moore, K., Moser, L., Fritz, J., & Redfearn, D. (1997).
Predicting developmental morphology in switchgrass and big bluestem.Agronomy Journal, 89, 827-832.
Mitchell, R., Vogel, K. P., & Uden, D. R. (2012). The feasibility of
switchgrass for biofuel production. Biofuels, 3 (1), 47-59.
doi:10.4155/bfs.11.153
Miura, K., Ikeda, M., Matsubara, A., Song, X. J., Ito, M., Asano, K., .
. . Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher
grain productivity in rice. Nat Genet, 42 (6), 545-549.
doi:10.1038/ng.592
Paaby, A. B., & Rockman, M. V. (2003). The many faces of pleiotropy.Trends in genetics , 29 (2), 66-73.
Peng, Y., Hou, F., Bai, Q., Xu, P., Liao, Y., Zhang, H., . . . Wu, X.
(2018). Rice Calcineurin B-Like Protein-Interacting Protein Kinase 31
(OsCIPK31) Is Involved in the Development of Panicle Apical Spikelets.Frontiers in plant science, 9 , 1661-1661.
doi:10.3389/fpls.2018.01661
Pigliucci, M. & Preston, D. (eds). 2004. Phenotype integration:
studying the ecology and evolution of complex phenotypes. Oxford Press,
New York
Porter Jr, C. L. (1966). An Analysis of Variation Between Upland and
Lowland Switchgrass, Panicum Virgatum L., in Central Oklahoma.Ecology, 47 (6), 980-992. doi:10.2307/1935646
Price, D. L. (2014). Predictive Relationships between Plant
Morphological Traits and Biomass Yield in Switchgrass. Crop
Science, v. 54 (no. 2), pp. 637-630-2014 v.2054 no.2012.
doi:10.2135/cropsci2013.04.0272
Robertson, G. P., Hamilton, S. K., Barham, B. L., Dale, B. E.,
Izaurralde, R. C., Jackson, R. D., . . . Tiedje, J. M. (2017).
Cellulosic biofuel contributions to a sustainable energy future: Choices
and outcomes. Science, 356 (6345). doi:10.1126/science.aal2324
Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M.,
Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao,
A., Hirochika, H., Kitano, H., Ashikari, M., Matsuoka, M. (2004). An
overview of gibberellin metabolism enzyme genes and their related
mutants in rice. Plant Physiol , 134(4), 1642-53.
Shrestha, R., Gomez-Ariza, J., Brambilla, V., & Fornara, F. (2014).
Molecular control of seasonal flowering in rice, arabidopsis and
temperate cereals. Annals of Botany, 114, 1445-1458.
Sultan, S. E. (2000). Phenotypic plasticity for plant development,
function and life history. Trends in Plant Science, 5 (12),
537-542. doi:https://doi.org/10.1016/S1360-1385(00)01797-0
Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi‐Tanaka, M.,
Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003). The OsTB1 gene
negatively regulates lateral branching in rice. The Plant
Journal , 33, 513-520.
doi:10.1046/j.1365-313X.2003.01648.x
Tan, J., Jin, M., et al. (2016). OsCOL10 ,
a CONSTANS-Like gene,functions as a flowering time repressor
downstream of Ghd7 in rice. Plant and Cell Physiology ,
57(4), 798–812.
Tsuji, H., Taoka, K., & Shimamoto, K. (2010). Regulation of flowering
in rice: two florigen genes, a complex gene network, and natural
variation. Current Opinion in Plant Biology , 14, 1-8.
Tu, C., Li, T., & Liu, X. (2019). Genetic and epigenetic regulatory
mechanism of rice panicle development. AIP Conference Proceedings,
2079 (1), 020001. doi:10.1063/1.5092379
Ungerer, M. C., Halldorsdottir, S. S., Modliszewski, J. L., Mackay, T.
F., & Purugganan, M. D. (2002). Quantitative Trait Loci for
Inflorescence Development in Arabidopsis thaliana. Genetic, 160:
1133-1151.
Van Esbroeck, G. A. (2003). Variation between Alamo and Cave-in-Rock
Switchgrass in Response to Photoperiod Extension. Crop Science, v.
43 (no. 2), pp. 639-630-2003 v.2043 no.2002.
doi:10.2135/cropsci2003.6390
Vogel, K. (2000). Improving warm-season forage grasses using selection,
breeding, and biotechnology. In: Moore KJ, Anderson BE (eds)
Native warm-season grasses: research trends and issues., 30 (CSSA Spec.
Publ., Madison, WI), 83-106.
Vogler, D. W., S. Peretz, & A. G. Stephenson. 1999. Floral plasticity
in an iteroparous plant: the interactive effects of genotype,
environment, and ontogeny in Campanula rapunculoides(Campanulaceae). American Journal of Botany . 86: 482–494
Vollbrecht, E., Springer, P., Goh, L. et al. (2005). Architecture
of floral branch systems in maize and related
grasses. Nature, 436, 1119–1126.
https://doi.org/10.1038/nature03892
VSN, International. (2019). Genstat for Windows 19th Edition. VSN
International, Hemel Hempstead, UK (Web page: Genstat.co.uk).
Wadgymar, S. M., Lowry, D. B., Gould, B. A., Byron, C. N., Mactavish, R.
M., & Anderson, J. T. (2017). Identifying targets and agents of
selection: innovative methods to evaluate the processes that contribute
to local adaptation. Methods in Ecology and Evolution, 8 (6),
738-749. doi:10.1111/2041-210X.12777
Wang, Y., & Li, J. (2005). The Plant Architecture of Rice (Oryza
sativa). Plant Molecular Biology, 59 (1), 75-84.
doi:10.1007/s11103-004-4038-x
Wang, Y., & Li, J. (2008). Molecular basis of plant architecture.Annu. Rev. Plant Biol , 59: 253-279.
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution
of senescence. Evolution, 11 , 398-411.
Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., . . . Peng, S.
(2017). Heat-Induced Cytokinin Transportation and Degradation Are
Associated with Reduced Panicle Cytokinin Expression and Fewer Spikelets
per Panicle in Rice. Frontiers in plant science, 8 , 371-371.
doi:10.3389/fpls.2017.00371
Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., . . . Peng, S.
(2016). Heat-induced phytohormone changes are associated with disrupted
early reproductive development and reduced yield in rice.Scientific Reports, 6 , 34978. doi:10.1038/srep34978
Xue, Z., Liu, L., & Zhang, C. (2020). Regulation of shoot apical
meristem and axillary meristem development in plants. Int, J. Mol.
Sci., 21 (8), 2917.
Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., .
. . Matsuoka, M. (2019). GWAS with principal component analysis
identifies a gene comprehensively controlling rice architecture.Proceedings of the National Academy of Sciences , 201904964.
doi:10.1073/pnas.1904964116
Yu, H., Qiu, Z., Xu, Q., Wang, Z., Zeng, D., Hu, J., . . . Ren, D.
(2017). Fine mapping of LOW TILLER 1, a gene controlling tillering and
panicle branching in rice. Plant Growth Regulation, 83 (1),
93-104. doi:10.1007/s10725-017-0286-z
Zhang, D., & Yuan, Z. (2014). Molecular Control of Grass Inflorescence
Development. Annual Review of Plant Biology, 65 (1), 553-578.
doi:10.1146/annurev-arplant-050213-040104
Zhao, X., Peng, Y., Zhang, J. et al. (2017). Mapping QTLs and meta-QTLs
for two inflorescence architecture traits in multiple maize populations
under different watering environments. Mol Breeding, 37, 91
Table 1. The latitude, longitude, site code, soil texture, and source of
weather data for the 10 experimental fields in the study.