Acknowledgements
We thank the numerous field technicians, students, and postdocs who worked in the field helping out with data collection. Special thanks go to Alice MacQueen and other Juenger Lab members for helping improve the manuscript with their comments. This research was supported and funded by the National Science Foundation Plant Genome Research Program (IOS-1444533) and by the US Department of Energy, Office of Science, Office of Biological and Environmental Research Award DESC0014156 to T.E.J. This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494. Support for this research was provided by the National Science Foundation Long-term Ecological Research Program (DEB 1832042) at the Kellogg Biological Station and by Michigan State University AgBioResearch. We thank the Joint Genome Institute and collaborators for prepublication access to thePanicum virgatum v5 AP13 genome reference.
References
Adriani, D. E., Dingkuhn, M., Dardou, A., Adam, H., Luquet, D., & Lafarge, T. (2016). Rice panicle plasticity in Near Isogenic Lines carrying a QTL for larger panicle is genotype and environment dependent.Rice, 9 (1), 28. doi:10.1186/s12284-016-0101-x
Azizi, P., Rafii, M. Y., Maziah, M., Abdullah, S.N.A., Hanafi, M. M., Latif, M. A., Rshid, A. A., & Sahebi, M. (2015). Understanding the shoot apical meristem regulations: A study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development , 135, 1-15.
Auge, G. A., Penfield, S., and Donohue, K. (2019). Pleiotropy in developmental regulation by flowering-pathway genes: is it an evolutionary constraint. New Phytologist , 224: 55-70.
Bai, X., Zhao, H., Huang, Y., Xie, W., Han, Z., Zhang, B., . . . Xing, Y. (2016). Genome-Wide Association Analysis Reveals Different Genetic Control in Panicle Architecture Between Indica and Japonica Rice.The Plant Genome, 9 (2). doi:10.3835/plantgenome2015.11.0115
Bommert, P., & Whipple, C. (2018). Grass inflorescence architecture and meristem determinacy. Seminars in Cell & Developmental Biology, 79 , 37-47. doi:https://doi.org/10.1016/j.semcdb.2017.10.004
Boycheva, I., Vassileva, V., & Iantcheva, A. (2014). Histone acetyltransferases in plant development and plasticity. Current genomics, 15 (1), 28-37. doi:10.2174/138920291501140306112742
Bragg, J., Tomasi, P., Zhang, L. et al.  (2020). Environmentally responsive QTL controlling surface wax load in switchgrass. Theor Appl Genet , 133 3119–3137.
Brown, P. J., Klein, P. E., Bortiri, E., Acharya, C. B., Rooney, W. L., & Kresovich, S. (2006). Inheritance of inflorescence architecture in sorghum. Theoretical and Applied Genetics, 113 (5), 931-942. doi:10.1007/s00122-006-0352-9
Caruso, C. M. (2006). Plasticity of inflorescence traits inLobelia Diphilitica (Lobeliaceae) in response to soil water availability. American Journal of Botany , 93(4): 531-538.
Casler, M. D. (2007). Genetic Diversity, Plant Adaptation Regions, and Gene Pools for Switchgrass. Crop Science, v. 47 (no. 6), pp. 2261-2260-2007 v.2247 no.2266. doi:10.2135/cropsci2006.12.0797
Coen E. S., & Nugent J. M. (1994). The evolution of flowers and inflorescences. Development (Suppl.), 107–118.
Covarrubias-Pazaran, G. (2016). Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLOS ONE, 11 (6), e0156744. doi:10.1371/journal.pone.0156744
Crowell, S., Korniliev, P., Falcão, A., Ismail, A., Gregorio, G., Mezey, J., & McCouch, S. (2016). Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nature Communications, 7 (1), 10527. doi:10.1038/ncomms10527
Das, M. K., & Taliaferro, C. M. (2009). Genetic variability and interrelationships of seed yield and yield components in switchgrass.Euphytica, 167 (1), 95-105. doi:10.1007/s10681-008-9866-3
Deng, W., Liu, C., Pei, Y., Deng, X., Niu, L., & Cao, X. (2007). Involvement of the Histone Acetyltransferase AtHAC1 in the Regulation of Flowering Time via Repression of <em>FLOWERING LOCUS C</em> in Arabidopsis. Plant Physiology, 143 (4), 1660. doi:10.1104/pp.107.095521
Doust, A. & Kellogg, E. A. (2002). Inflorescence diversification in the panicoid ’bristle grass’ clade (Paniceae, Poaceae): Evidence from melecular phylogenies and developmental morphology. American Journal of Botany, 89(8): 1203-1222.
Dorken, M. E., & S. C. H. Barrett. 2004. Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae): a clonal aquatic plant. Journal of Ecology , 92: 32–44.
Doust, A. (2007). Architectural evolution and its implications for domestication in grasses. Ann Bot, 100 (5), 941-950. doi:10.1093/aob/mcm040
El-Soda, M., Malosetti, M., Zwaan, B. J., Koornneef, M., & Aarts, M. G. M. (2014). Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science, 19 (6), 390-398. doi:https://doi.org/10.1016/j.tplants.2014.01.001
Endo-Higashi, N., & Izawa, T. (2011). Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice.Plant & cell physiology, 52 (6), 1083-1094. doi:10.1093/pcp/pcr059
Friedman, J., & Harder, L. D. (2004). Inflorescence architecture and wind pollination in six grass species. Functional Ecology, 18 (6), 851-860. doi:10.1111/j.0269-8463.2004.00921.x
Glemin, S., & Bataillon, T. (2009). A comparative view of the evolution of grasses under domestication. New Phytol, 183 (2), 273-290. doi:10.1111/j.1469-8137.2009.02884.x
He, Q., Yang, L., Hu, W., Zhang, J., & Xing, Y. (2018). Overexpression of an auxin receptor OsAFB6 significantly enhanced grain yield by increasing cytokinin and decreasing auxin concentrations in rice panicle. Scientific Reports, 8 (1), 14051. doi:10.1038/s41598-018-32450-x
Hohenstein, W. G., & Wright, L. L. (1994). Biomass energy production in the United States: an overview. Biomass and Bioenergy, 6 (3), 161-173. doi:https://doi.org/10.1016/0961-9534(94)90073-6
Hong, D., & Yan, L. (2004). Genetic Analysis of Heterosis for Number of Spikelets per Panicle and Panicle Length of F1 Hybrids in japonica Rice Hybrids. Rice Science , 11(5-6): 255-260. Hopkins, A. A. (1995). Genotypic Variability and Genotype × Environment Interactions among Switchgrass Accessions from the Midwestern USA. Crop Science, v. 35 (no. 2), pp. 565-560-1995 v.1935 no.1992. doi:10.2135/cropsci1995.0011183X003500020047x
Kellogg, E. A. (2000). Molecular and morphological evolution in the Andropogoneae. In S. W. L. Jacobs and J. Everett [eds.],Grasses: systematics and evolution ,149–158.CSIRO,Melbourne,Australia..
Klingenberg, C. P (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics , 39 (1): 115-132.
Komatsu, M., Maekawa, M., Shimamoto, K., & Kyozuka, J. (2001). The LAX1 and FRIZZY PANICLE 2 Genes Determine the Inflorescence Architecture of Rice by Controlling Rachis-Branch and Spikelet Development.Developmental Biology, 231 (2), 364-373. doi:https://doi.org/10.1006/dbio.2000.9988
Leng, Y., Xue, D., Huang, L., Chen, L., Ren, D., Yang, Y., . . . Zeng, D. (2017). Mapping QTL with main effect, digenic epistatic and QTL × environment interactions of panicle related traits in rice (Oryza sativa). International Journal of Agriculture and Biology, 19 (6), 1608-1614.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25 (14), 1754-1760. doi:10.1093/bioinformatics/btp324
Liu, G., Mei, H., Liu, H. et al.  (2010). Sensitivities of rice grain yield and other panicle characters to late-stage drought stress revealed by phenotypic correlation and QTL analysis. Mol Breeding,  25 603–613.
Lovell, J., Healy A., Schmutz J. and Juenger T. (2020). Switchgrass v5 4-way (AP13 x DAC, WBC x VS16) genetic map v2, Dryad, Dataset. http://doi.org/10.5061/dryad.ghx3ffbjv
Lovell, J., MacQueen, A., et al. (2020). Multiple genomic paths to climate adaptation in the biofuel crop, switchgrass. Nature (in review).
Lowry, D. B., Lovell, J. T., Zhang, L., Bonnette, J., Fay, P. A., Mitchell, R. B., . . . Juenger, T. E. (2019). QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proceedings of the National Academy of Sciences, 116 (26), 12933. doi:10.1073/pnas.1821543116
Mal, T. K., & J. Lovett-Doust. 2005. Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. American Journal of Botany, 92: 819–825.
McLaughlin, S. (1993). New switchgrass biofuels research program for the southeast. In: Proceedings of the annual automative technology development contractors coordinating meeting, Nov. 2–5, 1992, Dearborn , 111–115.
McSteen, P. (2006). Branching out: The ramosa pathway and the evolution of grass inflorescence morphology. The Plant Cell , 18(3): 518-522.
Milano, E. R., Lowry, D. B., & Juenger, T. E. (2016). The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum).G3 (Bethesda, Md.), 6 (11), 3561-3570. doi:10.1534/g3.116.032763
Mitchell, R., Moore, K., Moser, L., Fritz, J., & Redfearn, D. (1997). Predicting developmental morphology in switchgrass and big bluestem.Agronomy Journal, 89, 827-832.
Mitchell, R., Vogel, K. P., & Uden, D. R. (2012). The feasibility of switchgrass for biofuel production. Biofuels, 3 (1), 47-59. doi:10.4155/bfs.11.153
Miura, K., Ikeda, M., Matsubara, A., Song, X. J., Ito, M., Asano, K., . . . Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 42 (6), 545-549. doi:10.1038/ng.592
Paaby, A. B., & Rockman, M. V. (2003). The many faces of pleiotropy.Trends in genetics , 29 (2), 66-73.
Peng, Y., Hou, F., Bai, Q., Xu, P., Liao, Y., Zhang, H., . . . Wu, X. (2018). Rice Calcineurin B-Like Protein-Interacting Protein Kinase 31 (OsCIPK31) Is Involved in the Development of Panicle Apical Spikelets.Frontiers in plant science, 9 , 1661-1661. doi:10.3389/fpls.2018.01661
Pigliucci, M. & Preston, D. (eds). 2004. Phenotype integration: studying the ecology and evolution of complex phenotypes. Oxford Press, New York
Porter Jr, C. L. (1966). An Analysis of Variation Between Upland and Lowland Switchgrass, Panicum Virgatum L., in Central Oklahoma.Ecology, 47 (6), 980-992. doi:10.2307/1935646
Price, D. L. (2014). Predictive Relationships between Plant Morphological Traits and Biomass Yield in Switchgrass. Crop Science, v. 54 (no. 2), pp. 637-630-2014 v.2054 no.2012. doi:10.2135/cropsci2013.04.0272
Robertson, G. P., Hamilton, S. K., Barham, B. L., Dale, B. E., Izaurralde, R. C., Jackson, R. D., . . . Tiedje, J. M. (2017). Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science, 356 (6345). doi:10.1126/science.aal2324
Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., Matsuoka, M. (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol , 134(4), 1642-53.
Shrestha, R., Gomez-Ariza, J., Brambilla, V., & Fornara, F. (2014). Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Annals of Botany, 114, 1445-1458.
Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5 (12), 537-542. doi:https://doi.org/10.1016/S1360-1385(00)01797-0
Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi‐Tanaka, M., Ashikari, M., Matsuoka, M. and Ueguchi, C. (2003). The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal , 33, 513-520. doi:10.1046/j.1365-313X.2003.01648.x
Tan, J., Jin, M., et al. (2016). OsCOL10  , a CONSTANS-Like  gene,functions as a flowering time repressor downstream of Ghd7  in rice. Plant and Cell Physiology , 57(4), 798–812.
Tsuji, H., Taoka, K., & Shimamoto, K. (2010). Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology , 14, 1-8.
Tu, C., Li, T., & Liu, X. (2019). Genetic and epigenetic regulatory mechanism of rice panicle development. AIP Conference Proceedings, 2079 (1), 020001. doi:10.1063/1.5092379
Ungerer, M. C., Halldorsdottir, S. S., Modliszewski, J. L., Mackay, T. F., & Purugganan, M. D. (2002). Quantitative Trait Loci for Inflorescence Development in Arabidopsis thaliana. Genetic, 160: 1133-1151.
Van Esbroeck, G. A. (2003). Variation between Alamo and Cave-in-Rock Switchgrass in Response to Photoperiod Extension. Crop Science, v. 43 (no. 2), pp. 639-630-2003 v.2043 no.2002. doi:10.2135/cropsci2003.6390
Vogel, K. (2000). Improving warm-season forage grasses using selection, breeding, and biotechnology. In: Moore KJ, Anderson BE (eds) Native warm-season grasses: research trends and issues., 30 (CSSA Spec. Publ., Madison, WI), 83-106.
Vogler, D. W., S. Peretz, & A. G. Stephenson. 1999. Floral plasticity in an iteroparous plant: the interactive effects of genotype, environment, and ontogeny in Campanula rapunculoides(Campanulaceae). American Journal of Botany . 86: 482–494
Vollbrecht, E., Springer, P., Goh, L. et al.  (2005). Architecture of floral branch systems in maize and related grasses. Nature,  436,  1119–1126. https://doi.org/10.1038/nature03892
VSN, International. (2019). Genstat for Windows 19th Edition. VSN International, Hemel Hempstead, UK (Web page: Genstat.co.uk).
Wadgymar, S. M., Lowry, D. B., Gould, B. A., Byron, C. N., Mactavish, R. M., & Anderson, J. T. (2017). Identifying targets and agents of selection: innovative methods to evaluate the processes that contribute to local adaptation. Methods in Ecology and Evolution, 8 (6), 738-749. doi:10.1111/2041-210X.12777
Wang, Y., & Li, J. (2005). The Plant Architecture of Rice (Oryza sativa). Plant Molecular Biology, 59 (1), 75-84. doi:10.1007/s11103-004-4038-x
Wang, Y., & Li, J. (2008). Molecular basis of plant architecture.Annu. Rev. Plant Biol , 59: 253-279.
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11 , 398-411.
Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., . . . Peng, S. (2017). Heat-Induced Cytokinin Transportation and Degradation Are Associated with Reduced Panicle Cytokinin Expression and Fewer Spikelets per Panicle in Rice. Frontiers in plant science, 8 , 371-371. doi:10.3389/fpls.2017.00371
Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., . . . Peng, S. (2016). Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice.Scientific Reports, 6 , 34978. doi:10.1038/srep34978
Xue, Z., Liu, L., & Zhang, C. (2020). Regulation of shoot apical meristem and axillary meristem development in plants. Int, J. Mol. Sci., 21 (8), 2917.
Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., . . . Matsuoka, M. (2019). GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture.Proceedings of the National Academy of Sciences , 201904964. doi:10.1073/pnas.1904964116
Yu, H., Qiu, Z., Xu, Q., Wang, Z., Zeng, D., Hu, J., . . . Ren, D. (2017). Fine mapping of LOW TILLER 1, a gene controlling tillering and panicle branching in rice. Plant Growth Regulation, 83 (1), 93-104. doi:10.1007/s10725-017-0286-z
Zhang, D., & Yuan, Z. (2014). Molecular Control of Grass Inflorescence Development. Annual Review of Plant Biology, 65 (1), 553-578. doi:10.1146/annurev-arplant-050213-040104
Zhao, X., Peng, Y., Zhang, J. et al. (2017). Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under different watering environments. Mol Breeding, 37, 91
Table 1. The latitude, longitude, site code, soil texture, and source of weather data for the 10 experimental fields in the study.