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Abstract: Co-degradation  of  coal  and  straw  could  produce  significantly  higher

methane which was potential to increase biogenic CBM. In this study, the success of

microflora and organic compounds during co-degradation was determined by MiSeq

and GC-MS, and compared with cultivations with only coal (C) and with only straw

(RS). The results showed that the methane production in co-degradation was 12 times

higher than that in cultivation C. A shift of dominant methanogen was caused by the

addition  of  straw  from  acetoclastic  Methanosaeta in  inoculum  to  methylotrophic

Methanomethylovorans in  7  days,  then  hydrogenotrophic  Methanobacterium.  The

bacteria  and fungi  with ability  to degrade macromolecules in coal and metabolize

VFAs were  enriched  which  would  facilitate  methanogenesis.  VFAs,  especially

butanoic acid, were dominant in intermediates of co-degradation which contributed to

methane  production  as  their  content  were  negatively  corelated  with  methane

production.  The  different  component  of  intermediates  and  microbial  communities

among co-degradation, cultivations C and RS suggested that the metabolic pathway in

co-degradation  was  distinctive and  the  fracture  of  coal  molecules  was  almost

completed  in the first  7 days  of  cultivation. Coal might also  serve as the suitable

microhabitat for microorganisms to avoid the threat from environment in addition to

function as methanogenic substrates. 

Keywords:  Biogenic  coalbed  methane;  Co-degradation;  Rice  straw;  Microbial

communities; Organic intermediates
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1. Introduction

As an important unconventional nature gas resource, coalbed methane (CBM) plays

an  increasing  role  in  the  improvement  of  energy-supplying  structure  all  over  the

world. It can be divided into two types: biogenic CBM and thermogenic CBM. The

former is produced by microbially degrading coal which has attracted the interest of

more and more experts from CBM exploitation, biology, chemistry, and geology . The

technology of microbially enhanced CBM (MECBM) has been put forward based on

the formation of  biogenic CBM . It  can not  only increase the CBM reserves and

prolong the service life of CBM wells, but also improve the permeability of coal seam

and enhance the recovery rate of CBM . 

However, the biomethane production reported by previous studies are relatively low .

It is generally believed that the main limiting factors to coal biodegradation are the

complexity of coal structure . A series of measures have been carried out to increase

methane production, including chemical, physical, and biological pretreatment, and

supplying extra carbon resources . Among them, co-degradation of coal and straw has

been reported to significantly increase methane production under different coal ranks

and different types of straw . Yoon et al. first reported the feasibility of enhancing

biogenic CBM by co-degradation and the mass ratio of rice to lignite needed to be

more than 33.3% to increase methane production . Then, the significant increment of

biomethane production was observed in co-degradation of maize straw with lignite

and two bituminous coals that the maximum methane production reached 2.69 mmol/

g coal which was 448.98% higher than that from only coal . The straw type, straw
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part,  and  particle  size  of  coal  and  straw  were  also  found  to  affect  the  methane

production in co-degradation of anthracite and straw, and straw probably stimulated

coal degradation . It was reported that the addition of corn straw in co-degradation

promoted  the  complementary  advantages  of  archaeal  genera  and  decreased  the

adverse bacterial genera compared with the fermentation system of only coal . These

studies  strongly  proved  that  co-degradation  of  coal  and  straw  is  a  good  way  to

increase methane production. However, there are just a few reports until now resulting

in the mechanism of co-degradation unclear. 

Biomethane is one of final products of coal biodegradation by synergistic action of

methanogenic archaea, bacteria, and fungi .  Complex macromolecular polymers in

coal  are  first  degraded  into  simpler  long-chain  alkanes  and  monocyclic  aromatic

compounds  by  various  bacteria  and  fungi,  and  further  decomposed  into  simple

compounds with small molecular such as CO2, H2, and acetic acid, which are finally

utilized by methanogens to produce methane . Various methanogens with all three

types  of  methanogenesis,  more  than  ten  bacterial  phylum and  diverse  fungi  with

potential to involve in coal hydrolysis, hydrocarbon metabolism, and generation of

methanogenic substrates have been found in cultures, coal mines, and groundwater .

Due to the complex composition of coal, many organic intermediates are produced

during  biodegradation,  such  as  alkanes,  aromatics,  hexadecanoic  acid,  long-chain

fatty  acids,  and  olefins which  has  been  detected  in  produced  water  and  culture

medium . 

As  a  mixed  carbon  substrate,  the  addition  of  straw  would  affect  the  microbial
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structure and intermediates during methanogenic process. In this paper, the succession

of microflora and intermediates during co-degradation of coal and straw were studied

by MiSeq and GC-MS. And the distinct methanogenic mechanism in co-degradation

was discussed by comparing with the cultivations with only coal or with only straw. 

2. Materials and Methods

2.1. Experimental samples and microflora

Anthracite sample was obtained from No.3 coal seam located at  southern Qinshui

Basin, China (see the location map in Guo, Yu, Thompson, Zhang [22]  ). Coal sample

was crushed, and then sifted through 100 to 200 meshes. Rice straw sample was taken

from the suburb of Jiangsu Province,  China,  and cut  into approximate 5 mm. All

samples were dried at 60 oC for 6 h before used. The results of industrial analysis and

elemental analysis of coal and rice straw were shown in our previous study .

The methanogenic microflora was enriched from produced water obtained from active

CBM wells in southern Qinshui Basin using anthracite as the sole carbon source. The

anaerobic medium was prepared according to the previous study .

2.2. Methane production and pH determination

The anaerobic cultivations were performed in 500 mL serum bottles containing 216

mL of culture medium and 24 mL of microflora inoculums. Co-degradation of coal

and straw was carried out with 8.0 g coal and 4.8 g straw (CRS). The cultivations with

only 8.0 g coal (C) or only 4.8 g straw (RS) were set as controls. Methane production

and pH were measured at 7-day intervals, and fermentation broth samples were also
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taken at the same time to determine the microbial structure and intermediates. These

samples were labeled combining substrates and sampling days as shown in Table 1.

All  the  cultivations  were  performed  in  triplicate  and  cultivated  at  35  °C  without

shaking. 

2.3. DNA Extraction and MiSeq Sequencing

Fermentation broth samples were filtered with a 0.22 μm membrane filter (Millipore,

United States) to collect the microorganisms. The genome DNA of each filter was

extracted  using  the  UltraClean  Soil  DNA Isolation  Kit  (Mobio,  United  States)

according to the manufacturer’s instructions. The archaea-specific primer sets 344F-

915R , the bacteria-specific primer sets 515F-907R , and the fungi-specific primer sets

ITS1F-ITS2R  were used to respectively amplify the 16S rRNA genes of archaeal and

bacterial communities, and ITS genes of fungal communities in culture solutions. The

PCR conditions were set as follows: initial denaturation at 95 °C for 2 min, followed

by 25 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, and a final extension

at 72 °C for 5 min. The obtained PCR products were purified by AxyPrep DNA gel

extraction  kit  (Axygen  Biosciences,  Union  City,  CA,  U.S.)  after  2% agarose  gel

electrophoresis. 

All  amplified  fragments  were  quantitatively  determined  using  Qubit  3.0  (Life

Invitrogen). Then the double-ended sequencing library was constructed and PE300

sequencing was performed on Illumina MiSeq platform. The 16S rRNA gene and ITS

gene  sequences  derived  from  MiSeq  sequencing  were  deposited  in  the  NCBI
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Sequence Read Archive with the accession number PRJNA552164.

2.4. TOC and GC-MS analysis

The obtained fermentation broth samples were filtered by 0.7 μm membrane filter

(Millipore, United States) and then the content of total organic carbon (TOC) in the

filtrate  was  determined  by  TOC-VCPH  analyzer  (TOC-VCPH,  Shimadzu

Corporation, Kyoto, Japan). The filtrate was extracted using CH2Cl2 for three times at

neutral,  alkaline,  and  acidic  conditions,  respectively.  All  the  separated  liquid  was

mixed.  Excess  anhydrous  sodium sulfate  was  added  in  the  mixed liquid,  and  the

sealed bottle was placed at 4 °C for 12 h before rotary evaporation at a temperature of

40 °C. The obtained solution was evaporated to about 5 mL and concentrated to about

1 mL by nitrogen purge. Then, the organics in the extracted samples were analyzed by

GC-MS system (7890B/5977B, Agilent, USA). The GC column was operated in a

temperature programmed mode by maintaining the temperature at 60 °C for 3 min,

then increasing to 150 °C with an increment of 20 °C/min, finally increasing to 230

°C with an increment of 5 °C/min, and then maintaining for 5 min. The identification

of  the  organic  compounds  was  undertaken  with  reference  of  National  Institute

Standard and Technology (NIST 14L).

3. Results and Discussion

3.1. Methane production and the success of TOC and pH 

After  35  days  of  anaerobic  cultivation,  methane  production  in  cultivation CRS

reached 749.16 μmol (Fig. 1a), which was more than 12 times higher than that in
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cultivation  C  (62.09  μmol).  The  maximum  methane  production  rate  of  41.22

μmol/day occurred between the 14th-21st day in co-degradation.  These results were

consistent with the previous studies  and further proved the significant effect of co-

degradation on biomethane production. However, there was barely methane observed

in  cultivation  RS  which  was  not  expected,  as  straw  has  been  widely  utilized  to

generate methane and hydrogen under anaerobic condition . 

The changes of TOC and pH were shown in Fig. 1b. The highest TOC was observed

in cultivation RS while the lowest was found in cultivation C. The TOC changed a

little  in  cultivation  CRS  which  gradually  increased  and  then  decreased  with  the

highest of 1292 mg/L on the 21th day. The TOC in cultivation RS gradually increased

from 1366 mg/L to 1882 mg/L, while that in cultivation C decreased gradually over

time from 123 mg/L to 21 mg/L. The change of TOC was not consistent with gas

production  in  cultivations  CRS and  RS  that  high  content  of  TOC remained  after

methane production completed. It might be due to the generation of toxic substances

to  methanogenesis  in  CRS  which  inhibited  the  degradation  of  intermediates  and

would be overcome by adding new nutrient . No methane production in cultivation RS

led to the accumulation of organic matters. The value of pH in cultivations CRS and

RS were both acidic and decreased with time, while that in cultivation C was alkaline.

The lowest pH was observed in cultivation RS with the value of 4.11 and the highest

pH was found in cultivation C with the value of 8.43. 

Compared  with  cultivation  C,  the  value  and  changing  trend  of  TOC  and  pH  in

cultivations CRS and RS were close. But distinct methane production was observed
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(Fig. 1a), which suggested that biomethane production was not positively correlated

with the amount of dissolved organic carbon. And coal would be essential to methane

production in  co-degradation.  Besides  that  the organic matters in  coal  function as

methanogenic substrates, coal pore or coal surface might also serve as the suitable

microhabitat for microorganisms , and the existence of such charged surface groups as

carboxylic acid in coal would result in the different pH values between coal surface

and fermentation broth to avoid the threat from low pH .

3.2. Evolution of microbial communities revealed by MiSeq

3.2.1. MiSeq data of 16S rRNA and ITS genes

MiSeq provided a rich data set (Table S1). For all samples, the number of bacterial

OTUs was generally much higher than that of archaea, but lower than that of fungi.

Consistently, the same phenomenon was observed in Shannon indexes, suggesting the

highest  diversity  of  fungi  and  lowest  diversity  of  archaea.  Rarefaction curves  of

archaeal, bacterial,  and fungal sequencing results were shown in  Fig. S1. With the

increment of sequencing depth, the  rarefaction curves became flatten, showing that

the test data was reliable . Besides, the diversity of microbial community was higher

on the 7th day which would promote biodegradation of coal and increase biomethane

production.

3.2.2. Evolution of archaeal community 

All the archaea sequence reads were classified into methanogen (Fig. 2a). However,

the structure of archaeal communities varied with time during methane production.
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The dominant archaea in co-degradation CRS changed from acetoclastic methanogen

Methanosaeta in  sample  CRS0 with  74.17% of  sequence  reads  to  methylotrophic

methanogen Methanomethylovorans in sample CRS7 with 74.92% of sequence reads,

and  then  to  hydrogenotrophic  methanogen Methanobacterium in  samples  CRS14,

CRS21, CRS28, and CRS35 ranging from 68.80% to 98.53%. These results suggested

that the addition of straw made a significant effect on the structure of methanogens

which would lead to the variation of methanogenesis. Similar phenomenon was also

found in co-digestion of vegetable and fruit residues that the dominant methanogen

changed from Methanosaeta to  Methanobacterium . It was a pity that archaeal 16S

rRNA gene was not successfully amplified from cultivation RS which might be due to

the low value of pH (Fig. 1b). It suggested that methanogens were not survive in

cultivation RS which would be the reason to no methane production observed. 

3.2.3. Evolution of bacterial community 

Similar with the changes in archaeal communities, the dominant bacteria at genetic

level  in  co-degradation  changed  significantly  (Fig.  2b),  from  Macellibacteroides

(23.39%)  in sample CRS0 to  Paraclostridium (29.15%)  in sample CRS7,  then  to

Caproiciproducens in samples CRS14, CRS21, CRS28, and CRS35 which contained

36.43% to 55.02% of sequence reads. The proportion of Macellibacteroides gradually

decreased with time.  It would syntrophically degrade coal to produce methane with

Methanosaeta by acetoclastic methanogenesis in inoculum as it can produce acetate,

lactic  acid,  butyrate,  and  isobutyrate  from  sugars  hydrolyzed  from  cellulose  and

hemicelluloses . It is also the main component during gas production process from
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lignite   and  the  key  functional  genus  in  the  treatment  of  textile  dyeing  industry

wastewater  .  Paraclostridium is  more  likely  to  metabolize  syntrophically  with

methylotrophic  methanogens  as Paraclostridium  and Methanomethylovorans were

both  dominant  in  CRS7  and  then  decreased  gradually.  However,  only  a  few  of

literatures  have  reported  the  methylotrophic  methanogenesis  in  coal  seam  whose

mechanisms was still unclear . 

Caproiciproducens,  a  strict  anaerobic bacterium, might  be the  key bacteria  in  co-

degradation as it was the most abundant genus since the 14th day of cultivation when

methane production increased rapidly and hydrogenotrophic methanogen dominated.

Caproiciproducens can use glucose and galactitol  to  produce acetic  acid,  butanoic

acid,  hexanoic  acid,  and  H2  .  Clostridium also  maintained  a  high  abundance

throughout co-degradation process. The presence of  Clostridium might promote the

enrichment of Caproiciproducens as the growth of Caproiciproducens was reported to

be enhanced when co-cultured with other  anaerobic strains  that  produced ethanol,

acetic acid or butanoic acid . Clostridium can grow in a wide range of pH from 3.7 to

6.9 with the final products of butyrate,  lactate, acetate, formate, H2 and CO2  and

oxidize  acetic  acid  to  generate  CO2 and  H2 in  the  presence  of  hydrogenotrophic

methanogens . The two bacteria might have a joint relationship during degradation,

and facilitate methane production. 

The bacterial community in sample RS35 was different from that in inoculum and co-

degradation. Paraclostridium was the most abundant genus accounting for 39.28% of

the  sequence  reads,  following  by  Clostridium (35.49%),  Bacillus  (10.02%),
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Caproiciproducens (6.52%), and Desulfotomaculum (5.77%).

3.2.4. Evolution of fungal community 

Diverse  fungal  communities  were  detected  (Fig.  2c).  The  structure  of  fungal

communities, in general, did not change significantly during co-degradation. At the

end  of  co-degradation, Cryptococcus, Cladosporium,  Fusarium, Petriella,

Aspergillus,  and  Mortierella were  mainly  enriched,  which  was  close  to  that  in

cultivation RS, but a little different from that in inoculum. Cryptococcus is known as

a crude oil degrading fungus for lipid production . Cladosporium is good at degrading

polycyclic aromatic hydrocarbons (PAHs) . Fusarium can effectively degrade PAHs

and is widely used in soil treatment in coal mining areas . The enrichment of them

suggested  that  co-degradation  enhanced  coal  biodegradation  especially  the

degradation of aromatics in coal which is consistent with our previous study . The

other genera detected in co-degradation were also able to degrade compounds with

high  molecular  weight.  Aspergillus has  been  reported  to  degrade  plant-derived

carbohydrates  and effectively produce organic acids . Mortierella produces microbial

lipids  using  a  variety  of  substrates,  including  monomeric  sugars,  glycerol,  and

lignocellulosic biomass hydrolysates .

3.3. The success of intermediates during methane production detected by GC-MS

The GC-MS chromatograms of organics in cultivations CRS, C, and RS were shown

in Fig. S2, S3, and S4, respectively. The corresponding compounds with serial number

were described in detail in Table 2, S2, and S3, respectively. Only a small number of
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organics  were  detected  in  samples  CRS0,  C0,  and  RS0  with  the  dominance  of

aromatics (36.22-58.61%) and aliphatics (33.50-54.09%). In the process of methane

production, VFAs were important intermediates regardless of the substrates were coal

and straw, or only coal, or only straw. The success of VFAs in cultivations CRS, C,

and RS was shown in Fig. 3. A large amount of VFAs were produced on the 7th day

which accounted for 88.52%, 57.47%, and 70.31% of organics in CRS, C, and RS,

respectively. Then, it decreased gradually to 80.11%  at the end of cultivation CRS

(Fig. 3a) while  even disappeared in cultivation C (Fig. 3b), which were negatively

corelated with methane production (Fig. 1). On the contrary, it increased to 82.95% in

RS14  and  remained  about  79.5% for  the  rest  of  cultivation  (Fig.  3c) which  was

consistent with that no methane production was observed in cultivation RS (Fig. 1).

These results suggested that VFAs contributed to methane generation which might

provide substrates for methanogens. The higher content of VFAs in cultivation CRS

and the different changes during methane production between cultivations CRS and

RS demonstrated that part of VFAs in cultivation CRS would come from coal. 

Specifically, VFAs in sample CRS7 was dominated by butanoic acid with 57.42%.

These VFAs might be produced by the oxidative breakdown of various functional

groups . The increment of relative abundance of acid-producing bacteria in sample

CRS7  including  Paraclostridium  ,  Caproiciproducens ,  Clostridium  ,

Lachnoclostridium , Anaerotruncus , and Anaerocolumna  (Fig. 2b) would contribute

to the high yields of VFAs. The large amount of VFAs in culture might be the reason

of the accumulation of Cryptococcus as it can use VFAs to increase cell quality and
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produce microbial lipids . In sample CRS14, butanoic acid decreased to 36.82% when

acetic acid increased to 17.82% from 8.94% in sample CRS7 and methane production

began to sharply increase, suggesting that butanoic acid might contribute significantly

to  biomethane  formation  by  converting  to  acetic  acid  to  supply  substrate  for

methanogens.  The change of acetic acid was consistent with the trend of Firmicutes

(Fig.  2b).  Firmicutes could  produce  extracellular  enzymes,  including  cellulases,

lipases,  and proteases,  to  hydrolyze cellulose,  proteins,  lignin,  and lipids,  and use

butanoic acid and its analogs for acetic acid production (Garcia-Peña et al.  2011).

After 14 days, acetic acid continued to decrease while the methanogenic pathway was

changed to hydrogenotrophic methanogenesis. Acetic acid would be oxidized by such

acetic acid-consuming bacteria as  Clostridium to H2 and CO2 which was utilized by

Methanobacterium to produce methane. 

In  cultivation  C,  propanoic  acid  dominated  in  samples  C7,  C14,  and  C21  with

26.93%,  26.27%,  and  24.56%,  respectively,  and  disappeared  in  sample  C28.

Isohexanoic acid, pentanoic acid, and isobutanoic acid were exhausted in sample C21.

Isopentanoic acid, butanoic acid, and acetic acid were accumulated before 28 th day

and used up on the 35th day. In general, the VFAs with high molecular weight were

gradually converted into low molecular compounds which was more likely to produce

acetic  acid.  The  low  content  of  acetic  acid  would  be  due  to  the  utilization  by

Methanosaeta. Similar phenomenon was observed previously that Methanosaeta was

dominate when acetic acid concentration was low  , and anaerobic microorganisms

began to convert propanoic acid and butanoic acid into acetic acid when acetic acid
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concentration was low, and continued to use acetic acid to produce methane . VFAs in

sample RS7 were dominated by butanoic acid (39.77%). It significantly increased in

sample RS14, and remained unchanged after 14 days (Fig. 3c). The other VFAs also

remained almost constant after 14 days. 

3.4. The unique metabolic characteristics in co-degradation

PCA distributions of organic compounds in all samples were shown in Fig. 4a. The

cumulative variance contribution rates for the first  two principal components were

60.2% and 14.3%, respectively. It was shown that three groups from the 7th day to 35th

day were well distinguished as shown in red, blue, and green circles. The samples

CRS7 and RS7 were  overlapped.  The samples  of  cultivations  CRS and RS were

respectively clustered in a small range after 14 days, indicating that the organics did

not  changed  significantly  which  was  consistent  with  the  composition  of  organic

compounds  (Table  2  and  S3).  However,  the  samples  of  cultivation  C  were not

clustered tightly. They could be divided into three subgroups including C7 and C14,

C21 and C28, and C35, which indicated a significant change of metabolic pathway in

methane production from coal and was consistent with methane production (Fig. 1a). 

The difference of  organic compounds was further  analyzed by heatmap clustering

(Fig. 4b). Four groups were detected. The first group included samples CRS0, C0,

RS0 and C35. The second group included samples C7, C14, C21, and C28. The third

group included samples CRS14, CRS21, CRS28, CRS35, and RS7. The fourth group

included samples RS14, RS21, RS28, RS35, and CRS7. The samples were grouped
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according to the substrates except samples CRS7 and RS7, which was consistent with

the PCA results (Fig. 4a).

The  results  of  PCA  and  heatmap  analysis  on  intermediates  showed  that  the

components  and  succession  of  intermediates  in  CRS  were  distinct  from  that  in

cultivations  C  and  RS,  especially  after  14  days.  Combing  with  the  success  of

microbial  communities  (Fig.  2),  these  results  suggested  that  the  metabolic

characteristics of co-degradation was unique. The structure of archaeal communities

showed  that  methane  in  co-degradation  CRS  was  mainly  produced  by

hydrogenotrophic methanogenesis, while acetoclastic methanogenesis was dominant

in  inoculum  and  no  methanogens  survived  in  cultivation  RS.  The  structures  of

bacterial  and fungal  communities  were  changed in  CRS comparing  with those  in

cultivation C. Although their roles in methane production were similar that they were

all  potential  to  function  in  the  fragment  of  coal  molecule  and  fermentation  of

intermediates,  the  ability  of  fungi  to  degrade macromolecular  compounds and the

ability of bacteria to syntrophically ferment with methanogen were enhanced in CRS

as its methane production was much higher than that in cultivation C. 

The results of microbial communities and intermediates also suggested that the first 7

days were essential to methane production. A large amount of organic matters were

produced on the 7th day of cultivations CRS, RS, and C as shown by the results of

TOC. After then, the content of TOC either changed a little or declined with time. At

the same time, various organic compounds were generated in all three groups which

mainly  distributing  in  the  retention  time of  7-11 minutes  (Figs.  S2,  S3,  S4).  The
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content of VFAs reached the peak on the 7th day while no VFAs was detected at the

beginning of cultivation. Accordingly, methane production was also accelerated and

hydrogenotrophic methanogenesis became dominant in co-degradation from the 7th

day (Fig. 1a and 2). It seems that the fragment of macromolecules in coal and straw

was mostly implemented in 7 days by diverse bacteria and fungi. Then, microbes

mainly fermented the intermediates and generated methane.  Thus,  the first  7 days

would be the crucial period as the fragment of coal structure was considered as the

limited step in coal biodegradation .

4. Conclusions

A significant methane production was observed in co-degradation of coal and straw

which was  12 times higher than that in cultivation with only coal. The structure of

archaea,  bacteria,  and fungi  were altered by the addition of straw resulting in the

change  of  methanogenic  pathway  to  hydrogenotrophic  methanogenesis  in  co-

degradation.  The  bacterial  and  fungal  communities  were  also  changed  by  the

enrichment  of  Caproiciproducens,  Clostridium,  Cryptococcus,  Thielavia,

Cladosporium, and Fusarium, which were all potential to function in the fragment of

coal  molecule  and  fermentation  of  intermediates.  VFAs  were  the  dominant

intermediates  whose  contents  were  negatively  corelated  with  methane  production,

suggesting that VFAs contributed to methane generation. The intermediates generated

in co-degradation were different from cultivations with only coal and with only straw

which suggested together with the results of microbial communities that the metabolic

pathway in co-degradation was distinctive. Besides of functioning as methanogenic
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substrates, coal might also  serve as the suitable microhabitat for microorganisms to

avoid the threat from environment.  And the fracture of coal molecules was  almost

completed in the first 7 days of co-degradation. 
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Table  1 The  labeled  names  for  samples  obtained  from  anaerobic  cultivations  at

different time a

Time (days)

Substrates
0 7 14 21 28 35

Coal and Rice Straw CRS0 CRS7 CRS14 CRS21 CRS28 CRS35

Coal C0 C7 C14 C21 C28 C35

Rice Straw RS0 RS7 RS14 RS21 RS28 RS35

a The naming rule is that letter C represents coal, letter RS represents rice straw, and the number

represents the sampling days (0 days, 7 days, 14 days, 21 days, 28 days and 35 days)
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Table 2 Organic compounds identified by GC-MS and their relative abundances (%) 

at different stages of co-degradation of coal and straw (CRS).

Code

RT

(min)

molecular

formula

Compound CRS0 CRS7 CRS14 CRS21 CRS28 CRS35

1 4.69 C4H10O 1-Butanol - - 1.59 0.77 1.06 0.74

2 7.43 C2H4O2 Acetic acid - 8.94 17.82 18.26 14.85 9.59

3 8.12 C3H6O2 Propanoic acid - 2.06 5.65 6.84 6.06 6.04

4 8.33 C4H8O2 Isobutanoic acid - 1.54 3.81 4.26 4.03 4.59

5 8.76 C4H8O2 Butanoic acid - 57.42 36.82 35.01 33.24 36.18

6 9.03 C4H8O3

Butanoic acid, 4-

hydroxy-

- - - - 0.63 -

7 9.19 C5H10O2 Isopentanoic acid - 4.72 10.64 13.11 11.99 13.99

8 9.83 C5H10O2 Pentanoic acid - - 0.70 0.55 0.97 0.94

9 10.51 C6H12O2 Isohexanoic acid - 11.84 5.63 4.78 5.20 4.45

10 10.97 C6H12O2 Hexanoic acid - 2.00 3.65 4.02 7.27 5.27

11 11.21 C7H8O2 Phenol, 2-methoxy- - 0.75 - - - -

12 11.69 C15H24O

Butylated

Hydroxytoluene

8.81 - 0.38 - - 0.77

13 14.87 C5H9NO 2-Piperidinone - - 0.46 0.38 - 0.62

14 17.13 C23H44O2 Methacrylic acid, - - - - 0.41 -
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nonadecyl ester

15 17.38 C4H8O2S

Propanoic acid, 3-

(methylthio)-

- - 1.12 0.72 0.41 1.02

16 17.44 C14H22O 2,4-Di-tert-butylphenol 45.81 1.65 3.04 3.03 3.01 1.79

17 18.69 C24H44O6

Pentanoic acid, 2,2-

dimethyl-, 1,2,3-

propanetriyl ester

- 0.67 0.61 0.44 0.54 0.50

18 20.18 C5H8O3

5-

Hydroxymethyldihydro

furan-2-one

24.52 - - - - -

19 20.25 C7H10O4

5-Oxotetrahydrofuran-

2-carboxylic acid, ethyl

ester

- 1.36 2.53 3.17 2.78 6.49

20 21.41 C8H8O2 Benzeneacetic acid - - 2.14 1.71 1.21 1.98

21 22.00 C7H13NO4

Propanedioic acid,

amino-, diethyl este

9.37 - - - - -

22 22.07 C4H6O3

2(3H)-Furanone,

dihydro-4-hydroxy-

- 0.62 0.99 1.23 1.31 2.89

23 22.34 C9H10O2 Hydrocinnamic acid - 3.86 0.91 0.61 1.42 0.73

24 26.05 C16H33NO Hexadecanamide 11.47 - - - - -
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25 26.96 C16H32O2 n-Hexadecanoic acid - 0.72 0.91 0.70 - 1.42

26 27.99 C28H46O4

1,2-

Benzenedicarboxylic

acid, bis(8-

methylnonyl) ester

- 1.19 - - 2.55 -
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Figure Captions:

Fig. 1 Methane productions and the success of TOC and pH in co-degradation of coal

and straw (CRS), cultivation with only coal (C), and cultivation with only straw (RS).

(a) methane productions; (b) TOC and pH. The columnar represents the change of

TOC while the line represents the change of pH.

Fig.  2 Phylogenetic  composition  of  archaeal  (a),  bacterial  (b),  and  fungal  (c)

communities  on  the  0th (CRS0),  7th (CRS7),  14th (CRS14),  21st (CRS21),  28th

(CRS28), and 35th (CRS35) day of co-degradation of coal and straw, and at the end of

cultivation with only straw (RS35) at the genetic level.

Fig.  3 The  success  of  VFAs  in  co-degradation  of  coal  and  straw  (CRS,  (a)),

cultivation with only coal (C, (b)), and cultivation with only straw (RS, (c)). 

Fig.  4 PCA distributions and heatmap of samples obtained on the 0th, 7th, 14th, 21st,

28th, and 35th day of  co-degradation of coal and straw (CRS),  cultivation with only

coal (C),  and cultivation  with  only  straw  (RS).  (a)  PCA distributions;  and  (b)

heatmap. 
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