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Abstract

We apply the continuation theorem of Mawhin to ensure that a fourth-order nonlinear difference
equation of the form

∆4u(k − 2)− a(k)uα(k) + b(k)uβ(k) = 0,

with periodic boundary conditions possesses at least one nontrivial positive solution, where ∆u(k) =
u(k + 1)− u(k) is the forward difference operator, α, β ∈ N+ and α 6= β. a(k), b(k) are T -periodic
functions and a(k)b(k) > 0. As applications, we will give some examples to illustrate the application
of these theorems.
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1. Introduction

In recent years, the theory of nonlinear difference equations has been widely used in the study
of discrete models in the fields of economics, neural networks, ecology and etc.. In particular, there
are many authors have discussed the existence and multiplicity of periodic solutions for discrete
boundary value problem by exploiting various methods, including the method of upper and lower
solutions, Leray-Schauder degree, fixed point theory, critical theory and variational methods, see
Mawhin [2], Cabada [4], Graef [8, 9] et al.[5, 12, 13, 16, 18, 19] and the references for more details.

Let N+, Z and R denote the sets of all positive integers, integers and real numbers respectively.
This paper considers the following fourth-order nonlinear difference equation

∆4u(k − 2)− a(k)uα(k) + b(k)uβ(k) = 0, (1)

where α, β ∈ N+ and α 6= β, a(k), b(k) are T -periodic functions, ∆u(k) = u(k + 1) − u(k) is the
forward difference operator.

The equation (1) can be considered as a discrete analogue of a special case of the following
fourth-order nonlinear differential equation

u′′′′ − a(t)uα + b(t)uβ = 0, t ∈ R, (2)

which has been studied in [3, 17] when α = 1, β = 3. In [20], Yang and Han proved the existence
of periodic solution to equation (2) when α = n, β = n+ 2, where n is a positive integer.
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When a(k) ≡ 0, β = 1, Peterson and Ridenhour [15] considered the disconjugacy of the following
equation

∆4u(k − 2) + b(k)u(k) = 0, k ∈ Z.
In 2005, Cai et al. [5] studied the fourth-order nonlinear difference equation

∆4u(k − 2) + f(k, u(k)) = 0, k ∈ Z. (3)

By applying linking theorem, they obtained some criteria for the existence and multiplicity of
periodic solutions of the equation (3).

Motivated by the above works, the main aim of this paper is to investigate the existence of at
least one positive T -periodic solution of (1). In order to obtain the main results of (1), we assume
that the coefficient functions a(k) and b(k) satisfy the following condition:

(F1) Suppose a(k), b(k) are T−periodic functions and a(k)b(k) > 0 for all k ∈ Z. Furthermore,
we assume that there exist positive constants a,A, b, B such that

a = min
k∈Z
|a(k)|, A = max

k∈Z
|a(k)|, b = min

k∈Z
|b(k)|, B = max

k∈Z
|b(k)|.

The main results in this paper are next Theorems 1.1-1.2.

Theorem 1.1. Let (F1) hold, if α < β and the period T satisfies

0 < T 4 ≤ 16

κ(ARα−1
1 +BRβ−1

1 )
,

where κ is a positive constant such that ‖u‖ ≤ κ· max
1≤l,j≤T

|u(l)−u(j)| for u 6≡ const, R1 = (A
b
)

1
β−α +ρ,

where ρ > 0 small enough such that ( a
B

)
1

β−α − ρ > 0. Then the equation (1) admits at least one

positive T -periodic solution.

Theorem 1.2. Let (F1) holds, if α > β and the period T satisfies

0 < T 4 ≤ 16

ι(AQα−1
1 +BQβ−1

1 )
,

where κ is a positive constant such that ‖u‖ ≤ ι · max
1≤l,j≤T

|u(l)−u(j)| for u 6≡ const, Q1 = (B
a

)
1

α−β +τ ,

where τ > 0 small enough such that ( b
A

)
1

α−β − τ > 0. Then the equation (1) admits at least one

positive T -periodic solution.

Remark 1.3. The conclusion of Theorems 1.1-1.2 require that u 6≡ const. In fact, if u ≡ const, the

conclusions of the existence of periodic solutions is still valid. See Sections 3-4 for detailed proof.

Theorem 1.4. Suppose a(k)b(k) ≤ 0 and a(k), b(k) are not identical to zero for all k ∈ Z, then

the equation (1) has no positive solution.

This paper is organized as follows: In Section 2, we give some lemmas needed to prove the
main results. Section 3 contains the proof of the Theorem 1.1. Section 4 contains the proof of the
Theorem 1.2. Section 5 contains the proof of the Theorem 1.4.
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2. Preliminary results

In this section, we introduce some notations and well-known results which will be used in the
subsequent section.

Definition 2.1. (See. [7]) Let X, Y be real Banach spaces, L : DomL ⊂ X → Y be a linear

mapping. The mapping L is said to be a Fredholm mapping of index zero if

(a) ImL is closed in Y ;

(b) dim KerL = codim ImL < +∞.

If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X → X
and Q : Y → Y such that

ImP = KerL,

KerQ = ImL = Im(I −Q).

It follows that the restriction LP of L to DomL ∩KerP : (I − P )X → ImL

Definition 2.2. (See. [7]) If Ω is a bounded open subset of X, N is called L−compact on Ω if

QN(Ω) is bounded and KP (I −Q)N : Ω→ X is compact.

Lemma 2.3. (Mawhin’s Continuation Theorem [7]). Let L be a Fredholm mapping of index zero,

Ω ⊂ X is an open bounded set and let N is L−compact on Ω. Suppose

(1) Lu 6= λNu for all u ∈ ∂Ω ∩DomL, and all λ ∈ (0, 1);

(2) QNu 6= 0, for all u ∈ ∂Ω ∩KerL;

(3) deg{JQN,Ω ∩KerL, 0} 6= 0, where J : ImQ→ KerL is an isomorphism.

Then the equation Lu = Nu has at least one solution in Ω ∩DomL.

Let X be all real T -periodic sequences of the form u = {u(k)}k∈Z . Then X is a Banach space
under the norm ‖u‖ = max

k∈[2,T+1]Z
|u(k)|.

Define the operator L : X → X by setting

Lu = ∆4u(k − 2), u ∈ DomL,

where DomL = {u|u ∈ X,∆u(k + T ) = ∆u(k),∆2u(k + T ) = ∆2u(k) and ∆3u(k + T ) = ∆3u(k)}.

By a simple calculation, we know that KerL = R and ImL = {u :
T+1∑
i=2

u(i) = 0}. Since dimX = T

and L is a linear mapping, by the knowledge of linear algebra, we know that dim KerL
⊕

dim ImL =
dimX. It is easy to see that dim KerL = codim ImL = 1, and dim ImL = T − 1. It follows that
ImL is closed in X. Therefore, the operator L is a Fredholm operator with index zero.
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Let us define N : X → X by

(Nu)(k) = a(k)uα(k)− b(k)uβ(k). (4)

We define P : X → KerL and Q : X → X as follows

(Pu)(k) = (Qu)(k) =
1

T

T+1∑
i=2

u(i). (5)

The operators P and Q are projections. Hence, ImP = KerL, KerQ = ImL. It follows that
L|DomL∩KerP : (I −P )X → ImL has an inverse which is denoted by KP . In view of (4) and (5), for
any u ∈ X, we can see that

(QNu)(k) =
1

T

T+1∑
i=2

[a(i)uα(i)− b(i)uβ(i)], (6)

and

((I −Q)Nu)(k) = a(k)uα(k)− b(k)uβ(k)− 1

T

T+1∑
i=2

[a(i)uα(i)− b(i)uβ(i)]. (7)

Since KP is linear. By virtue of (6)-(7), it is not difficult to see that QN and KP (I − Q)N are
continuous on X. Hence, we know that if Ω is an open and bounded subset of X, then QN(Ω)
is bounded. It is follows that KP (I − Q)N : Ω → X is compact. Therefore, the mapping N is
L-compact on Ω with any open and bounded subset Ω ⊂ X.

Lemma 2.4. (see [18]) Let {u(k)}k∈Z be a real T -periodic sequence, then

max
2≤i,j≤T+1

|u(i)− u(j)| ≤ T 3

16

T+1∑
k=2

|∆4u(k − 2)|.

3. Proof of Theorem 1.1

Proof. In the preceding assumption, we assume that α < β. From the condition (F1) we know

that a(k)b(k) > 0, which include both positive and negative cases. So we need to classify the cases

where both a(k) and b(k) are positive and both negative.

Case 1: If coefficient functions a(k) and b(k) are positive T -periodic functions. In view of (F1),

we have that 0 < a ≤ a(k) ≤ A, 0 < b ≤ b(k) ≤ B.

Let

Ω1 = {u ∈ X : H1 < u(k) < R1}, (8)

which is an open set in X, where

R1 = R + ρ, R = (
A

b
)

1
β−α , (9)
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H1 = H − ρ, H = (
a

B
)

1
β−α , (10)

where ρ > 0 small enough such that ( a
B

)
1

β−α − ρ > 0. Obviously, H1 and R1 are well defined.

By α < β, 0 < a ≤ a(k) ≤ A and 0 < b ≤ b(k) ≤ B, we obtain

0 < H1 < H ≤ (
a(k)

b(k)
)

1
β−α ≤ R < R1 (11)

uniformly for k ∈ Z.

We prove that the condition (1) of Lemma 2.3 holds. Let 0 < λ < 1 and u be such that

∆4u(k − 2)− λa(k)uα(k) + λb(k)uβ(k) = 0.

Summing from 2 to T + 1, we can see that

T+1∑
i=2

[∆4u(i− 2)− λa(i)uα(i) + λb(i)uβ(i)] = 0.

Firstly, we claim that for each λ ∈ (0, 1) and u ∈ ∂Ω1 ∩DomL, Lu 6= λNu. In fact, in view of

(8), if u 6≡ const and u ∈ ∂Ω1 ∩DomL, then H1 ≤ ‖u‖ ≤ R1. Further,

0 =
T+1∑
i=2

∣∣∣∆4u(i− 2)− λa(i)uα(i) + λb(i)uβ(i)
∣∣∣

≥
T+1∑
i=2

∣∣∆4u(i− 2)
∣∣− T+1∑

i=2

∣∣∣λa(i)uα(i) + λb(i)uβ(i)
∣∣∣

>
T+1∑
i=2

∣∣∆4u(i− 2)
∣∣− T+1∑

i=2

∣∣∣a(i)uα(i) + b(i)uβ(i)
∣∣∣

≥ 16

T 3
max

2≤l,j≤T+1
|u(l)− u(j)| − T (ARα−1

1 +BRβ−1
1 )‖u‖

≥ 16

T 3κ
‖u‖ − T (ARα−1

1 +BRβ−1
1 )‖u‖

=
[ 16

T 3κ
− T (ARα−1

1 +BRβ−1
1 )

]
‖u‖

≥0,

where κ is a constant such that ‖u‖ ≤ κ · max
2≤l,j≤T+1

|u(l) − u(j)| for u ∈ ∂Ω1 ∩ DomL. This is a

contradiction.

If u ≡ const, since u ∈ ∂Ω1, it follows from (9), (10) and (11) that

a(k)− b(k)Hβ−α
1 ≥ a−BHβ−α

1 > 0.
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a(k)− b(k)Rβ−α
1 ≤ A− bRβ−α

1 < 0.

Therefore,

a(k)− b(k)Hβ−α
1 > 0, a(k)− b(k)Rβ−α

1 < 0, (12)

which is the desired conclusion.

If u ∈ ∂Ω1 ∩KerL, then u = {H1}k∈Z or u = {R1}k∈Z . By virtue of (12) we conclude that

(QNu)(k) =
1

T

T+1∑
i=2

uα(i)[a(i)− b(i)uβ−α(i)] 6= 0.

Hence, QNu 6= 0 for each u ∈ ∂Ω1 ∩KerL.

Next let us consider H1+R1

2
, the arithmetic mean of H1 and R1. We define G : X × R → X as

follows

G(u, µ) = −(1− µ)

(
u− H1 +R1

2

)
+ µ

1

T

T+1∑
i=2

uα(i)[a(i)− b(i)uβ−α(i)], µ ∈ [0, 1].

Clearly, we find that

G(u, µ) 6= 0, ∀ u ∈ ∂Ω1 ∩KerL.

By using the homotopy invariance theorem, it is easy to see that

deg(QN,Ω1 ∩KerL, 0) = deg (G(u, 1),Ω1 ∩KerL, 0)

= deg (G(u, 0),Ω1 ∩KerL, 0)

=− 1 6= 0.

Therefore, conditions (1)-(3) of Lemma 2.3 hold for Ω1.

Furthermore, according to the above reasoning, we deduce that (1) has at least one positive

solution in Ω1.

Case 2: If the coefficient functions a(k), b(k) are negative T -periodic functions. In view of (F1),

we have that −A ≤ a(k) ≤ −a < 0, −B ≤ b(k) ≤ −b < 0.

Let ã(k) = −a(k), b̃(k) = −b(k), then, we see that

0 < a ≤ ã(k) ≤ A, 0 < b ≤ b̃(k) ≤ B. (13)

It is obvious that (1) is equivalent to the equation

∆4u(k − 2) + ã(k)uα(k)− b̃(k)uβ(k) = 0. (14)
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Let 0 < λ < 1 and u be such that

∆4u(k − 2) + λã(k)uα(k)− λb̃(k)uβ(k) = 0.

Summing from 2 to T + 1, we can see that

T+1∑
i=2

[∆4u(i− 2) + λã(i)uα(i)− λb̃(i)uβ(i)] = 0.

Firstly, we claim that for each λ ∈ (0, 1) and u ∈ ∂Ω1 ∩DomL, Lu 6= λNu. In fact, in view of

(8), if u 6≡ const and u ∈ ∂Ω1 ∩DomL, then H1 ≤ ‖u‖ ≤ R1. Further,

0 =
T+1∑
i=2

∣∣∣∆4u(i− 2) + λã(i)uα(i)− λb̃(i)uβ(i)
∣∣∣

≥
T+1∑
i=2

∣∣∆4u(i− 2)
∣∣− T+1∑

i=2

∣∣∣λã(i)uα(i) + λb̃(i)uβ(i)
∣∣∣

>
T+1∑
i=2

∣∣∆4u(i− 2)
∣∣− T+1∑

i=2

∣∣∣ã(i)uα(i) + b̃(i)uβ(i)
∣∣∣

≥ 16

T 3
max

2≤l,j≤T+1
|u(l)− u(j)| − T (ARα−1

1 +BRβ−1
1 )‖u‖

≥ 16

T 3κ
‖u‖ − T (ARα−1

1 +BRβ−1
1 )‖u‖

=
[ 16

T 3κ
− T (ARα−1

1 +BRβ−1
1 )

]
‖u‖

≥0,

where κ is a constant such that ‖u‖ ≤ κ · max
2≤l,j≤T+1

|u(l) − u(j)| for u ∈ ∂Ω1 ∩ DomL. This is a

contradiction.

If u ≡ const, since u ∈ ∂Ω1, it is easy to know that

−ã(k) + b̃(k)Hβ−α
1 < 0

and

−ã(k) + b̃(k)Rβ−α
1 > 0.

The remaining proof is similar to the proof of case 1, and so we omit it. Furthermore, according

to the above reasoning, we deduce that (14) has at least one positive solution in Ω1.
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4. Proof of Theorem 1.2

Similarly, in the case of α > β, we need to discuss the case where the coefficient functions a(k)
and b(k) are both positive and negative, respectively.

Case 1: If coefficient functions a(k) and b(k) are positive T -periodic functions, we have that
0 < a ≤ a(k) ≤ A, 0 < b ≤ b(k) ≤ B.

Let
Ω2 = {u ∈ X : P1 < u(k) < Q1}, (15)

which is an open set in X, where

Q1 = Q+ τ, Q = (
B

a
)

1
α−β , (16)

P1 = P − τ, P = (
b

A
)

1
α−β , (17)

where τ > 0 small enough such that ( b
A

)
1

α−β − τ > 0. Obviously, P1 and Q1 are well defined.
By α > β, 0 < a ≤ a(k) ≤ A and 0 < b ≤ b(k) ≤ B, we obtain

0 < P1 < P ≤ (
a(k)

b(k)
)

1
α−β ≤ Q < Q1

uniformly for k ∈ Z.
By virtue of (16) and (17) we obtain

a(k)Pα−β
1 − b(k) ≤ APα−β

1 − b < 0

and
a(k)Qα−β

1 − b(k) ≥ aQα−β
1 −B > 0.

Therefore,
a(k)Pα−β

1 − b(k) < 0, a(k)Qα−β
1 − b(k) > 0,

uniformly for k ∈ Z.
The remaining proof is similar to the proof of Theorem 1.1, and so we omit it. Furthermore, we

deduce that (1) has at least one positive T -periodic solution in Ω2.

Case 2: If the coefficient functions a(k), b(k) are negative T -periodic functions, we have that

−A ≤ a(k) ≤ −a < 0, −B ≤ b(k) ≤ −b < 0. Let ã(k) = −a(k), b̃(k) = −b(k), then, we can see
that

0 < a ≤ ã(k) ≤ A, 0 < b ≤ b̃(k) ≤ B.

It is obvious that

−ã(k)Pα−β
1 + b̃(k) > 0, −ã(k)Qα−β

1 + b̃(k) < 0,

uniformly for k ∈ Z.
The remaining proof is similar to the proof of Theorem 1.1, and so we omit it. Furthermore, we

conclude that (1) has at least one positive T -periodic solution in Ω2.

8



5. Proof of Theorem 1.4

Proof. Summing the equation (1) from 2 to T + 1, we obtain that

T+1∑
i=2

[∆4u(i− 2)− a(i)uα(i) + b(i)uβ(i)] = 0.

In view of DomL = {u|u ∈ X,∆u(k + T ) = ∆u(k),∆2u(k + T ) = ∆2u(k) and ∆3u(k + T ) =

∆3u(k)}. Hence,

T+1∑
i=2

[−a(i)uα(i) + b(i)uβ(i)] = 0. (18)

If a(k) > 0, b(k) ≤ 0, it follows from (18) that (1) does not have any positive solutions. Other cases

are similar.

6. Example

Example 6.1. The difference equation

∆4u(k − 2)− (
1

100
sin(

2kπ

T
) +

1

50
)u(k) + (

1

200
| cos(

2kπ

T
)|+ 1

100
)u3(k) = 0 (19)

is one of the form (1), where a = 1
100
, A = 3

100
, b = 1

100
, B = 3

200
, α = 1 and β = 3. Letting ρ =

√
6
6

,

hence we obtain

0 < T 4 ≤ 6400

κ(31 + 6
√

2)
,

where κ = 1 +
√
2
6

. Therefore, we can prove that (19) has at least one positive T -periodic solution

in Ω1, where Ω1 = {u ∈ X|
√
2
6
< u(k) < 6

√
3+
√
6

6
}.

Example 6.2. The difference equation

∆4u(k − 2) + (
1

5000
cos(

2kπ

T
) +

1

2500
)u3(k)− (

1

2000
sin(

2kπ

T
) +

1

500
)u(k) = 0 (20)

is one of the form (1), where −a = − 1
5000

,−A = − 3
5000

,−b = − 3
2000

, −B = − 1
400
, α = 3 and β = 1.

Letting τ =
√
10
4

, hence we obtain

0 < T 4 ≤ 128000

ι(83 + 12
√

5)
,

where ι = 1 +
√
5

10
. Therefore, we can prove that (20) has at least one positive T -periodic solution

in Ω2, where Ω2 = {u ∈ X|
√
10
4
< u(k) < 10

√
10+
√
10

4
}.
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