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Figure 1 Proposed superstructure of sustainable energy system
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Figure 4 Comparison of the cumulative distribution functions (CDF) for energy demands in

summer, between the SROM samples and the original distribution.

(a) MP steams; (b) Cold Water; (c) LP steams; (d) LLP steams
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Figure 5 Pareto-optimal solutions for DMP
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Figure 6 Configuration for solution of stochastic case
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Figure 7 Distribution of the total annual cost throughout the different scenarios obtained via

the stochastic optimization approach
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Figure 8 The distribution of electricity purchasing cost for the deterministic (DMP) and

stochastic (SMP) cases
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Figure 9 Cumulative probability curve obtained for the optimal economic performance of the

energy system
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Figure 10 Cumulative probability curve for the optimal environmental performance
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