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Abstract

We  report  a  multi-objective  stochastic  mixed-integer  non-linear  programming  (MINLP)

framework for sustainable retrofit and capability expansion of traditional energy systems in

petrochemical complexes. Multiple uncertainties including energy demands, solar radiations

and wind speeds are considered in the optimization framework, which are characterized by

normal distributions of historical data or normal distributions pre-defined with assumed mean

values  and  standard  variations.  A stochastic  reduced  order  model  sampling  technique  is

introduced to describe the uncertainties by a small number of scenarios and their individual

probabilities. The optimization framework further accounts for system configuration selection

and sizing of the candidate energy conversion equipment, such as thermal storage units, gas

turbines, boilers, steam turbines, as well as their operating capacities in each time period. A

case study is investigated to demonstrate the performance of the proposed strategy and the

optimization  results  under  three  modes  (deterministic,  stochastic  and  semi-stochastic

programs) are compared.
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Highlights

 A multi-objective stochastic  MINLP model framework is  presented for  the sustainable  retrofit  of

energy systems in petrochemical complexes.

 Multiple uncertainties including energy demands and renewable energy loads are considered.

 SROM sampling technique is introduced to describe the uncertain space with less samples.

 Retrofit under deterministic assumptions can lead to almost a 10% underestimation of TAC.
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1. Introduction

Current  energy  reformation  is  forcing  petrochemical  complexes  to  transform  from

producing  common  gasoline  and  diesel  oils  to  producing  more  fine  chemicals  or  basic

chemical materials. This leads to the new processes and units being installed in petrochemical

complexes.  As  a  result,  energy  and  utility  requirements  in  petrochemical  complexes  are

increasing1. Petrochemical complexes consume a lot of energy to produce steam at different

pressure levels and power to meet the process requirements. Fossil fuels, including coal, oils

and natural gas, are the main energy resources of utility systems. For higher energy efficiency

and  lower  economic  cost2,  combined  heating,  cooling  and  power  (CCHP)  generation  in

energy systems has gained considerable interest during recent decades3,4,5. How to expand

such existing energy systems, while considering the sustainability and uncertainty, is very

challenging for the economic and environmental benefits of petrochemical complexes.

The  methodologies  of  synthesizing  energy  systems  can  be  classified  as  deterministic

methods and design under uncertainty. For the deterministic methodology, parameters related

to the systems are all considered unchanged while in the method of design under uncertainty,

the  uncertainty  of  some  parameters  is  taken  into  account6,7,8.  Research  on  deterministic

synthesis  of  CCHP  systems  has  paid  attention  to  synthesis  with  new  processes  or

technologies,  including  organic  ranking  cycle9,  CO2 capture  and  LNG  cold  energy

utilization10,  wastewater  treatment  plant11,  high-temperature  heat  pumps12 and  biomass

gasification13.  For  petrochemical  complexes,  Ponce-Ortega  et  al.14 presented  a  novel

superstructure-based  approach  to  synthesize  sustainable  tri-generation  systems  integrated

with heat exchanger networks. A steam Rankine cycle driven by multiple primary energy

sources  (i.e.  solar,  biofuels,  and  fossil  fuels)  is  considered.  Luo  et  al.3 investigated  a

retrofitted  natural  gas-based cogeneration  system.  Compared  to  the  original  cogeneration

system waste heat recovery is a new addition. Parameters are all treated deterministically in
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these studies, however over the long lifetime of the plant, some parameters are uncertain,

including but not limited to energy demands, fuel and electricity prices, as well as available

loads of energy15,16. Disregarding uncertainty on the system design and operation could lead

to sub-optimal solutions, where the objectives would not keep longstanding optimal values or

reduce financial and environmental risks.

Methods for optimization under uncertainty have been proposed to handle the uncertainty

in process  optimization,  the main techniques  include robust  optimization17,18,19,  parametric

programming20,21,22 and stochastic programming23,24,25. For parametric programming, uncertain

space is given by ranges of uncertain parameters (usually their upper and lower bounds) and

the solution is given by parametric profiles, while for the other two methods, some forms of

data  are  required to  characterize the uncertain space,  such as  probability  distributions  or

uncertainty sets.  These methods are mature enough to be used in  practical  applications26.

According to the literature27, robust programming is more favorable for short-term problems,

whereas stochastic programming is more favorable for long-term production planning and

strategic design problems. Onishi et al.15 introduced a new time-independent scenario-based

modelling approach for the synthesis and optimization of CCHP systems under long-term

uncertainty in energy load demands and prices. They assume that all uncertain parameters can

follow normal correlated and/or uncorrelated distributions without considering their historical

data. The new scenario-based modelling approach can individually reduce the data scale, but

the physical meaning deserves further consideration. Fuentes-Cortés et al.28 investigated the

optimal design of residential co-generation systems in an hourly seasonal period of a typical

day  under  uncertainty,  while  taking  economic  and  environmental  objectives  into

consideration at the same time. Uncertain ambient temperature, energy demands and prices of

the  local  energy  market  are  incorporated,  and  their  normal  distributions  based  on  the

historical data were used to generate the uncertain scenarios. Mavromatidis et al.29 presented
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a  two-stage  stochastic  programming  approach  for  design  of  distributed  energy  systems.

Energy carrier  prices and emission factors,  building heating and electricity demands,  and

incoming solar radiation patterns are considered as uncertain parameters. In this literature

scenario reduction techniques  are  introduced for  development  of  probabilistic  uncertainty

scenarios.

To the best of our knowledge, very little work has been attempted for sustainable retrofit of

energy systems under multiple uncertainty for petrochemical industries whilst  considering

enough possible mature energy conversion equipment in the market. Especially, the synthesis

of energy systems in past research usually considered heating demands as a virtual stream of

heat. In this article, renewable energy and as many mature devices as possible are considered

to construct the superstructure of the sustainable energy system to be retrofitted.  Heating

demand is described as steam at different pressure levels.

For the sampling process, the Monte Carlo sampling technique is widely used in previous

studies to generate scenarios28,30,31. However, its main disadvantage is that a large number of

samples  is  needed  to  accurately  reproduce  the  uncertain  space,  which  could  hinder  the

computation29. Therefore, in this paper, a different scenario generation approach, based on a

stochastic reduced order modelling sampling technique is applied to obtain a smaller number

of scenarios with different probabilities.

The rest of the paper is structured as follows: in section 2 the problem statement of optimal

sustainable  retrofit  design and operation  of  petrochemical  energy systems under  multiple

uncertainty  is  introduced.  The  proposed  methodology  regarding  the  superstructure

construction  and  scenarios  generation  framework  is  then  proposed  in  section  3,  and  the

stochastic multi-period mathematical model is formulated in section 4. In section 5 we focus

on the application of the proposed framework of the case study. Finally,  some important

conclusions are drawn.
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2. Description of the sustainable retrofit problem

2.1 Superstructure of sustainable retrofit

Figure  1  displays  the  general  superstructure  for  the  sustainable  synthesis,  retrofit  and

operation of an energy system in petrochemical complexes, where the grey part is the existing

steam  system  to  be  retrofitted,  composed  of  coal/gas  fired  boilers,  steam  turbines  and

pressure reducing valves. The green part is the new device introduced to the energy system

for sustainable retrofit. During the retrofit process, the existing devices are kept in place but

their operational states are determined by the optimization results. The equipment with the

same model and capacity as the old one can be introduced, the number of which is denoted by

n. Renewable energy (i.e. solar and wind) and other energy conversion devices are introduced

to achieve the environmental and economic goals. For the variation of solar radiation, thermal

energy storage tanks are considered to store solar energy in the daytime and release it at

night. Extraction steam turbines can be installed between the pressure levels of 9.5 and 3.5

MPa, where middle and low-pressure steams can be extracted, while back-pressure turbines

are considered between 3.5 and 1.0 MPa pressure levels. Heating and cooling demand should

be satisfied while a bi-directional grid connection is considered to allow electricity purchase

or sale. Electric and absorption chillers can both be used to produce cold water. Except for the

heat storage, refrigeration and solar heat collector units, maximum and minimum capacity

limits are considered for boilers, steam turbines and gas turbines.

2.2 Given conditions

The problem of sustainable retrofit of energy systems in petrochemical complexes under

multiple uncertainty can be stated as follows:

(1) Given is an existing refinery energy system with periodic heating, cooling and power

demand. The heating demand is described as steams under different pressure levels.
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For example, steam of four pressure levels, 9.5 MPa, 3.5 MPa, 1.0 MPa and 0.4 MPa,

is often used in refineries.

(2) Taking account of the capacity expansion of process units in refineries, the demand

increases of heating and power is involved in the sustainable retrofit. In this study, 35%

increase of heating load and 25% increase of power demand are considered.

(3) A set of available fuels or renewable energy to the system, including natural gas, coal,

solar, etc. Their specific cost and carbon dioxide emissions (GHGE) are considered.

(4) The exiting energy conversion equipment  with their  hardware capacities,  including

coal-fired boilers (CFB), gas-fired boilers (GB), extraction condensing steam turbines

(ST) and back-pressure turbines (BT).

(5) For  sustainable  retrofit,  new  possible  energy  conversion  and  storage  units  are

considered  for  heating,  cooling,  power  generation  and  thermal  storage,  including

natural gas-fired gas turbines (GT), wind turbines (WT), solar heat collectors (SHC),

heat recovery steam generators (HRSG), electric compression chiller (EC), absorption

chiller (AC), and thermal energy storage tank (TES).

(6) All devices are provided with known technological characteristics (i.e. maximum or

minimum capacities in commercial and nominal efficiencies) and their capital costs.

(7) For the thermal energy storage unit, also given are the minimum approach temperature

for heat exchange and heat storage efficiency.

2.3 Assumptions

For this large-scale optimization problem of sustainable retrofit of energy systems, several

assumptions are proposed as follows:

(1) Land cost is negligible in economic analysis for this retrofit problem.

(2) The operation status of equipment is treated as a continuous variable.
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(3) The air and flue gas are treated as ideal gas.

3. Solution framework of sustainable retrofit problem under uncertainty

3.1 Solution framework

Due to the long-term operational horizon, uncertainty is almost inevitable at the sustainable

retrofit design stage. Uncertain energy carrier prices, energy demands, and incoming solar

radiation  patterns  have  been  studied  in  the  literature15,28,29.  Onishi  et  al.15 assumes  that

uncertain  energy  demands  and  prices  can  follow  normal  correlated  and/or  uncorrelated

distributions without considering their historical data. In this way, the uncertain parameters

can be mathematically modelled through multi-variate normal probability distributions16,32. In

addition, Fuentes-Cortés et al.33 generate scenarios of uncertain ambient temperature with the

probability  density  function  based  on  historical  data.  In  this  paper, we  consider  energy

demands  (i.e.  heating  and  cooling  demands)  along  with  random  wind  speeds  and  solar

radiation as uncertain parameters. For the reason that production planning and scheduling in

refineries are significantly affected by the petrochemical product market, heating and cooling

demands are assumed as  random variables  following the given normal  distributions  with

corresponding mean values and standard variances15,16. For the characterization of uncertain

wind speed and solar radiation, normal distribution based on historical data is adopted.

In terms of stochastic programming, the description of random variables defines a set of

different scenarios. By incorporating the uncertainty into the deterministic design problem,

Liu et al.34 presented the two-stage stochastic programming problem, which is then reformed

into a multi-period problem, as illustrated in Eq. (1):
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 (1)

where  Bsen  can approximately be the probability  of scenario  sen,  and  N is  the number of

scenarios.  The  deterministic  term  fd represents  decisions  at  the  design  stage  and  the

expectation of a stochastic term fo depends on the realization of uncertain parameter θ at the

operation stage. Discrete variables y and continuous variable d are “here-and now” (design)

variables  which  should  be  decided  at  the  first-stage  problem  before  the  realization  of

uncertain parameter  θ  occurs, and  xt is a vector of “wait  and see” (operational)  variables

which can be decided at the time interval t  of the second-stage problem where all uncertain

parameters have been observed34. In the context of sustainable retrofit design of an energy

system in this article,  y are often binary variables determining whether a device should be

installed/operated or not, continuous variable  d often represents the designed capacities of

equipment while “wait and see” variables xt often refer to operating variables, such as molar

flowrates, power generated and actual loads of equipment.

Then, the problem consists of determining the optimal retrofit configuration and operation

scheme  of  the  energy  system  under  multiple  uncertainties.  Factors  such  as  sizing  and

selection of the equipment and the scheme of purchase-sale of power to the grid are also

considered, while accounting for the simultaneous assessment of the financial risk through

the values of the total annual cost and the analysis of the environmental risk using carbon

dioxide emissions.
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3.2 Samples generation for uncertainty

We treat the available renewable energy loads along with heating and cooling demands as

uncertain parameters. To generate samples, Monte Carlo sampling technique has been used in

the previous CCHP system studies15,29,31. However, the main disadvantage of the Monte Carlo

sampling technology is that typically a large number of samples is needed, which leads to

high computational costs. 

In this paper random values of uncertain parameters are generated via a different approach

which  is  characterized  as  the  stochastic  reduced  order  modelling  (SROM)  sampling

technique36,37,38. Unlike the Monte Carlo sampling technique which generates many scenarios

with equal probability, the SROM sampling technique generates a small number of scenarios

with  unequal  probability  based  on  optimization  theory.  The  defining  SROM  parameters

(scenarios  and probabilities)  are  chosen through the  following  optimization  problem and

more details can be found in the literature38:

(2)

where  SROM  , a  finite  collection  of  samples   and  corresponding

probabilities  ,  is  an  optimal  representation  of  d-dimensional  vector  X  in  a

statistical sense;  e1, e2, and  e3 quantify the error between the SROM and target cumulative

distribution  functions  (CDFs),  moments  and  correlation  matrix  of  X,  respectively.  αi are

weighting factors and n is referred to as the SROM size.
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4. Detailed stochastic multiperiod model of sustainable retrofit

In this section, formulation of the stochastic multi-period model for the task of optimal

retrofit  and  operation  of  a  sustainable  energy  system  under  multiple  uncertainties  is

presented.  The  proposed  model  formulation,  a  mixed-integer  non-linear  programming

problem (MINLP),  is  based  on the  superstructure  illustrated  in  Fig  1.  In  the  model,  the

indexes  representing  coal-fired  boilers,  gas-fired  boilers,  steam  turbines,  back-pressure

turbines,  gas  turbines,  wind turbines  are cb,  gb,  st,  bt,  gt,  nw,  respectively.  The index  p

represents seasons (Summer and Winter) and h represents day and night. Heating demand and

cold water are represented by index  s for  HP (high pressure steam),  MP (middle pressure

steam), LP (low pressure steam),  LLP (very low-pressure steam) and CW (cold water). The

index used to denote samples is sen.

4.1 Modelling of existing steam system

Coal-Fired Boilers (CFB). The energy released by the coal burning in the CFB boilers Qb

is used for water heating in three stages: before vaporizing Qwp, water vaporizing (Qwv), and

steam  overheating  (Qoh).  Heat  loss  is  considered  in  three  parts:  heat  loss  from  boiler

blowdown (Qbd), heat loss from the wall (Qwl), and heat loss from flue gas (Qsk). This energy

balance is expressed in Eq. (3). The heat released by the coal is calculated in Eq. (4), where

Hlcv is the lower calorific value of standard coal,  mc is the mass flowrate of coal burned in

CFBs. The detailed expressions of Qwp, Qwv, Qoh, Qbd and Qwl are given as Eqs. (A1) - (A5) in

Appendix A of the supplementary information. Qsk can be calculated with the composition of

the  flue  gas  after  burning  of  coal,  given  as  Eqs.  (A6)  -  (A10)  in  Appendix  A of  the

supplementary information.

 (3)
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(4)

Pressure Relief Valve (Vl). Pressure relief valves are designed between steams of different

pressure levels. Energy balance for this pressure reducing process is described in Eq. (5),

where Fvs,p,h,sen is the molar flowrate of higher-pressure steam s to lower-pressure steam s-1.

Dethwt and Deths are molar enthalpy values for 25°C water and steam s, respectively.

(5)

Condensing/Back-Pressure steam turbines (ST/BST). As shown in Figure 1, it is supposed

that  MP and  LP steams  can  be  extracted  from  the  HP steam turbines.  The  real  power

generated by HP steam turbines WrST
st,p,h,sen can be calculated using Eq. (6). WvST

s=HP,st,p,h,sen, W
vST
s=MP,st,p,h,sen

and  WvST
s=LP,st,p,h,sen are  the power produced by the virtual  HP,  MP and  LP steam condensing

turbines without extraction, respectively.

(6)

Relationship3 between power generation and steam consumption of turbines is described in

Eq. (7). Continuous variables  WvST
s,st,p,h,sen and  Fs,st,p,h,sen denote the power produced by turbine  st

with the input steam s and the molar flowrate of steam s, respectively. Fmax
st  denotes the steam

consumed by turbine st. Parameter Gs is the specific isentropic enthalpy change of steam s.

Binary variable Zst,s is introduced to denote the presence of the turbine. Eq. (8) denotes that

only when the high-pressure steam turbines are in operation (Zst,HP  =1) can the medium and

low-pressure steam can be extracted. Eq. (9) indicates that molar flowrate of the inlet steam

must be larger than, or equal to, that of the total extracted steam. Eq. (10) is used to constrain

the hardware capacity of condensing turbines st. The mathematical models of back pressure

turbines are given as Eqs. (A11) - (A12) in Appendix A of the supplementary information.
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 (7)

 (8)

 (9)

 (10)

4.2 New possible equipment and energy sources

Renewable energy solar and wind are considered in the superstructure. As shown in Figure

1, the solar is designed to generated LLP steam through the solar heat collectors and the wind

is  used  for  power  generation.  The  Hottel-Whillier  equation39 describing  the  relationship

between collector heat gain rate and area, considering heat losses from the collector is used

here.  A is the surface area of the collector,  Fr is the heat removal factor,  ief is the optical

efficiency,  rad is the solar radiation and USHC is the overall collector loss coefficient40. The

molar flowrate of water heated up by the collector Fsw can be calculated in Eqs. (11) and (12).

ZSHC
h  is equal to 1 when index h indicates the day and 0 when h indicates the night.

 (11)

 (12)

The amount of power generated by a wind turbine is  estimated using the power curve

equation41, denoted by Eq. (13). Wer is the rated electrical power, V is the wind speed, Vc is the

cut-in wind speed; Vr is the rated wind speed and Vf is the cut-out wind speed. According to

the  literature41,  exponents  m and  n are  often set  to  2 and 3.  The total  amount  of  power

generated by nw wind turbines is calculated by Eq. (14). Znw is a binary variable.
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 (13)

(14)

A gas turbine cycle  (as shown in Figure A1 available in supplementary information) is

mainly used to convert chemical energy of fossil fuels into power and heat, while the latter is

often  in  the  form of  flue  gas.  The gas  turbine  cycle  can be  divided into three parts:  air

compressor (ACm), combustion chamber (CC) and gas turbine (GT).  Energy balance40 of

ACm, CC and GT are given as Eqs. (A13) - (A25) in Appendix A of the supplementary

information.

Heat  Recovery  Steam  Generator  (HRSG).  Flue  gas  out  of  the  gas  turbine  is  of  high

temperature and worthy of heat recovery. Therefore, a waste heat boiler is installed after the

gas turbine to recover the waste heat. The heat recovery steam generator works like a boiler,

and the energy balance can be expressed in Eq. (15), where Tf is the temperature of flue gas

out  of the HRSG, and  ηR is  the efficiency.  Parameters  CpR,wt,  CpR,mps and  ΔHR,mps are  the

specific heat capacities of water and middle-pressure steam, and the latent heat of water,

respectively. Variable FR,mps
p,h,sen denotes the molar flowrate of MP steams generated by the HRSG.

(15)

Refrigeration  Devices.  An  electric  compression  chiller  and  an  absorption  chiller  are

compared in this paper with different energy conversion coefficients  COPec and  COPac, as

described by Eqs. (16) and (17). DethLLP is the molar enthalpy value of LLP steam.

(16)
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(17)

4.3 Demand constraints of energy sink

The net production of MP steams can be calculated by Eq. (18):

 (18)

where Deths denotes molar enthalpy value of steam s, Fmps
gb,p,h,sen denotes molar flowrate of steam

generated  by  gas-fired  boilers.  According  to  Eq.  (18),  MP steams  are  produced  by  the

extraction  condensing  turbines,  gas  boilers,  HRSG and  the  valves  between  HP and  MP

steams. However, the back-pressure turbines and valves between MP and LP steams consume

some of the MP steams. Similarly, the net production of LP, LLP, CW and power is given as

Eqs. (A26) - (A29) in Appendix A of the supplementary information.

The net  output of heating and cooling energy should satisfy the needs of the refinery.

Parameter  Dmds,p denotes demand of steam s in season p, as illustrated in Eq. (19). For the

existing thermal storage tanks, the energy balance of LLP steams is different from the other

steams. As presented in Eq. (20), Qtkin
p,h,sen and Qtkout

p,h,sen are the amounts of thermal input and output

of the storage tanks, respectively. ηtk is the heat exchange efficiency.

(19)

(20)

On the other hand, net power output  Woutp
p,h,sen is not asked to satisfy the electricity demand,

for the reason that the system can purchase (or sell) the lack (or excess) electricity from the

grid, expressed by Eq. (21). Wpd
p  denotes the demand for electricity. Win

p,h,sen and Wout
p,h,sen refers to

the amount of electricity purchased from the grid and sold to the grid respectively, as follows:
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(21)

The tri-generation system is not allowed to purchase and sell electricity in the same period,

which means that one of the two variables  Win
p,h,sen and  Wout

p,h,sen must be 0. This relationship is

described by binary variables Zin
p,h,sen and Zout

p,h,sen, as illustrated in Equation set (22).

(22)

4.4 Thermal energy storage (TES)

In this paper, a year is divided into two upper-level time intervals according to Summer

and Winter, denoted by set p. In order to express the great change of solar radiation in a day,

the lower-level time interval is a typical day divided into day and night, denoted by set h. For

the variation of solar radiation in a day, a thermal storage unit is designed. Supposing that the

heat storage process can be approximated as the heat transfer process, thus, the amount of

thermal energy stored in the TES tank Qtk
p,h,sen is given by Eqs. (23) and (24), where ηk is the

heat storage efficiency, DH refers to the length of a period h in hour and Qtk
0  is the amount of

thermal energy stored at the beginning of a day. 

(23)

(24)

The logical relation between thermal energy put in TES  Qtkin
p,h,sen and out of TES  Qtkout

p,h,sen is

given as Eqs. (A30) - (A32) in Appendix A of the supplementary information. Only when the

temperature of the thermal stream is higher than that of the heat storage medium, the heat can

be  transferred  into  the  tank.  Conversely,  only  when  the  temperature  of  the  heat  storage

medium is higher than the heat flow temperature, can the heat be output to satisfy the heating
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demand. These logical constraints are expressed in Eqs. (25) and (26).

(25)

 (26)

where  Tsteam and  Dtmin are  temperatures  of  heat  streams  and  the  minimum  heat  transfer

temperature approach, respectively.

Many devices depend on periods and scenarios, but the sizing of equipment is period and

scenario independent. For example, dimensioning of a gas turbine mWGT
gt  is determined by its

highest capacity available in the market  WGT-Tec and the largest load required for operation

during all time periods and for all scenarios. The sizing of GT is defined in Eq. (27):

(27)

4.5 Objective functions

Total annual cost (TAC). The total annual cost for each scenario TACsen is determined by

the sum of the fixed costs CAP and the operating expenditures OPsen, stated in Eq. (28):

(28)

where CAP and OPsen can be calculated using Eqs. (29) and (30). fr is the fractional interest

rate per year during the operation year n.  FI is the overall installation factor for the retrofit

project while DP represents the number of days in Summer or Winter. fgsen, fcsen, fwt, pcost
sen  and

psell
sen are the unit prices for natural gas, coal, water, electricity purchase cost and unit selling

price, respectively. Furthermore, BC is the purchasing cost9,40,42,43,44 for each equipment, given

in Table A1 in Appendix A of the supplementary information.
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 (29)

 (30)

Then,  the  expected  value  of  TAC is  stated  in  Eq.  (31),  where  probsen stands  for  the

occurrence probability of scenario sen.

(31)

Green House Gas Emissions (GHGE). The greenhouse gas emissions of renewable energy

are assumed to be zero, however, when fossil fuels are burned, they release carbon dioxide

and make an adverse effect on the environment. Furthermore, the purchased electricity also

has greenhouse gas emissions in the generation progress. For sustainable retrofit and design,

the effect on the environment should be considered at the design stage. The greenhouse gas

emissions for each scenario GHGEsen is calculated in Eq. (32), as follows:

(32)

where  Gng,  Gcl and  Ge are greenhouse gas emissions of natural gas, coal and purchased

electricity, given in units of metric tons (t) of CO2 equivalent reduction per kilojoule (kJ)

provided14.

Then, the expected greenhouse gas emissions of all the analyzed scenarios can be written

as Eq. (33):

 (33)
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The proposed stochastic MINLP model involves the sustainable retrofit and operation of

energy  systems  under  uncertain  environmental  and  economic  parameters.  The  model  is

denoted as SMP and presented below:

(SMP) min TAC & GHGE

s.t. Eqs. (3)-(10) (A1)-(A12) Superstructure of the Existing Steam System

Eqs. (11)-(17) (23)-(27) (A13)-(A25) New Possible Equipment

Eqs.  (18)-(22)  (A26)-(A29)  Heating,  Cooling  and  Power  Demand

Constraints

Eqs. (28)-(31) Economic Constraints

Eqs. (32)-(33) Environmental Constraints

4.6 Optimization strategy

The proposed formulation is a stochastic multi-period MINLP problem accounting for the

economic  and  environmental  objectives  sustainability.  The  first  economic  objective  is  to

minimize the expected TAC, while the next target is minimizing the mean GHGE. These two

objectives usually contradict each other. The constraint method is used to carry out the multi-

objectives task and the strategy of multi-objective optimization is illustrated in Figure C1

(available in Appendix C of the supplementary information), which can be stated as follows:

 (36)

The optimization framework is shown in Figure 2. Three parallel strategies are presented to

deal  with  the  supposed  uncertain  space  θR.  They  are  deterministic  multi-period  and  -

objectives  program  (DMP),  stochastic  multi-period  program  (SMP)  and  semi-stochastic

multi-period program (SSMP). First, the uncertain space is described by the supposed normal
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distributions or historical data set. Then the SROM sampling technique is used to generate

the  reduced scenarios  and corresponding probabilities  for  the SMP, and mean values  are

individually  assigned  to  uncertain  parameters  to  formulate  the  DMP.  A detailed  multi-

objective analysis is conducted in DMP to obtain the pareto optimal GHGE, with which SMP

and SSMP are then transformed into a single objective problem. Furthermore, solutions of

design variables  d’ and binary variables  y’ in DMP are assigned to SMP and then SMP is

changed into SSMP, which is a semi-stochastic problem with fixed design variables  d’ and

binary variables y’ while only the operating variables xt
* need to be optimized.

SMP is a problem composed of massive variables and some non-linear expressions. To

solve  the  problem,  the  non-linearity  of  the  equipment’s  economic  model  is  reduced  by

quadratic  fitting  and  the  MINLP program is  firstly  solved  with  the  solver  DICOPT45 in

conjunction with the solvers CONOPT46 and CPLEX47 to get the initial guess. Finally, the

solver ANTIGONE48 is implemented for further solution.

5. Results and discussion

To  illustrate  the  proposed  stochastic  MINLP  model  for  optimal  retrofit  design  and

operation of the energy system under multiple uncertainty, a case study is presented. Figure1

depicts  the superstructure considered for the case study, which is based on a real retrofit

project in South China. The essential data is listed in Tables B1-B3 ((available in Appendix C

of the supplementary information)). In this sense, the solver ANTIGONE implemented in the

General Algebraic Modelling System (GAMS, version 24.4.6) was used. A computer with

Intel CoreTM i5-4210U CPU @ 1.70 GHz 2.40 GHz processer and 4 GB RAM running with

Windows 8 is used.
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5.1 Generated samples

As  stated  in  section  3.1,  uncertain  energy  demands  are  assumed  to  follow  normal

correlated  (demands  in  each  season)  and  uncorrelated  (demands  between  two  seasons)

distributions. The mean values and standard deviations for the eight uncertain parameters are

given in Table 1. Coupled with historical data of solar radiations49 and wind speeds50, the

reducing sampling technology SROM is used to generate 19 samples and their corresponding

probabilities, illustrated in Figure 3. The goal of sample generation is to identify the set of

samples  and  their  associated  probabilities  which  could  represent  the  uncertain  space

accurately. Therefore, it is necessary to consider whether the generated samples can satisfy

the above requirements. For this purpose, cumulative distribution functions (CDFs) of the

original normal distributions and the generated samples are compared. As illustrated in Figure

4, taking the uncertain energy demands in summer as example, the blue line and the black

ladder line are the CDFs of original Normal distributions and the samples, respectively. The

samples are all near the original CDF curve which indicates that the generated samples can

effectively reflect the characteristics of the original uncertain space.

5.2 Pareto-optimal designs and solution analysis (DMP)

DMP problem, considering the trade-off between two objectives of minimizing TAC and

GHGE, is firstly investigated. The Pareto curve for the two objectives is shown in Figure 5,

where the vertical co-ordinate is the TAC in 105$/year, and the horizontal co-ordinate is the

carbon  dioxide  emissions  GHGE in  104ton  CO2-eq/year.  This  curve  shows  the  trade-off

between  economic  performance  and  environmental  conservancy  for  DMP.  The  graph  is

divided into three parts, the infeasible region below the curve, sub-optimal region above the

curve and the Pareto-optimal points on the curve indicating that the TAC is minimized with

respect to the specified GHGE limit. Point A on the upper left corner has the maximum TAC
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and the minimum  GHGE while on the contrast point B has the maximum  GHGE and the

minimum TAC among all feasible solutions. Furthermore, note that from point A to point C,

TAC  is  significantly reduced, while there is  a smaller  decrease after the turning point  C.

According to this curve trend, point C is recognized as the Pareto trade-off solution. Table 2

presents the detailed calculated results for the solutions A, C and B. The high TAC of solution

A can be explained by the high electricity purchase cost and the high GHGE of the solution is

mainly caused by the high coal consumption.

Optimal configuration of solution A, B and C are illustrated in Figure C2, Figure C3 and

Figure  C4  respectively  (available  in  Appendix  C  of  the  supplementary  information).  In

solution C, a combination of fossil fuels and renewable energy is used to supply the required

energy to the refining process. Furthermore, the variety of equipment for energy exchange is

the most complex, including a 50000 m2 solar heat collector which collects 6.47 MW, 30

wind turbines producing 7.97 MW. In this GHGE limit, solution C shares the same loads of

renewable energy with solution A,  which are also the maximum capacities  of  renewable

energy  collectors.  An  electric  chiller  and  an  absorption  chiller  are  both  installed  in  this

solution, especially, the absorption chiller operates in Summer to produce cold water from

LLP steams and electric chiller operates during the whole year. 

5.3 Stochastic optimization results (SMP vs DMP)

The problem can be  changed into  a  single  objective  problem (min  TAC)  in  stochastic

optimization,  with an upper bound for the maximum of  GHGEsen obtained in solution C.

Different from the deterministic retrofit case, uncertain renewable energy loads and energy

demands (i.e. demands of MP, LP, LLP, CW) are considered in SMP. Figure 6 illustrates the

optimal configuration for the stochastic retrofit case under 19 scenarios. The configuration for

SMP is very similar to that of solution C in DMP. For further analysis, Figure 7 depicts the
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distribution of the  TAC and the operating expense distribution throughout the 19 scenarios

sampled. The result of the deterministic case (solution C) is listed on the right side of the

graph for comparison.

In Figure 7 the green blocks stand for the electricity purchasing cost where the blocks

below  the  zero  line  indicate  that  electricity  is  delivered  to  the  grid.  The  expected  TAC

obtained in  the  stochastic  program is  10.03% higher  than  the  deterministic  case,  among

which, the electricity selling income and fixed cost for the stochastic case contribute 79.43%

and 20.31% of this gap, respectively. As illustrated in Figure 8, a negative value means the

sales  of  electricity,  while  a  positive  value  represents  purchasing  electricity.  For  most

scenarios of SMP, electricity is purchased from the grid to satisfy the power demand. These

differences suggest that TAC of the new sustainable energy system may be underestimated by

the conventional deterministic method, which is mainly caused by the overestimation of the

amount of electricity generated.

The  financial  risk  associated  with  the  uncertain  search  space  is  assessed  through  the

cumulative probability curve, as displayed in Figure 9. To construct the probability curve, the

scenarios are sorted in ascending order of their economic performance values. The vertical

axis shows the probability of reaching an economic performance (TAC) lesser not greater than

a target limit indicated in the horizonal axis. Take the expected TAC of 906.63 105$ year-1 in

SMP program for example, Figure 9 indicates that in this uncertain space, the system has a

probability  of  about  38%  to  obtain  a  TAC exceeding  906.63  105$/year.  The  occurrence

probability of TAC exceeding the Pareto optimal point C is more than 90%, which indicates

that design under deterministic assumptions can lead to underestimation of  TAC. Similarly,

Figure 10 shows the environmental risk curve for the stochastic case and the vertical line

reveals that all the estimated scenarios share the same carbon dioxide emissions value, which

is also the upper bound for the maximum of GHGEsen in the model.
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To verify whether the configuration obtained by the DMP is applicable in the uncertain

environment  described by the  seven normal  distributions  of  uncertain  parameters,  design

variables  (capacities  of  equipment)  of  solution  C  is  delivered  to  SMP.  The  results  and

comparative analysis between SMP, DMP and SSMP are listed in Table 3. We can see that

design under the deterministic environment without considering the uncertainties can lead to

infeasible operation.

6. Conclusion

Stochastic  optimization-based  retrofit  of  traditional  energy  systems  under  multiple

uncertainties in renewable energy loads and energy demands is presented for petrochemical

complexes. To accurately describe the uncertain space, a reduced sampling technique SROM

which can obtain a limited number of scenarios and their associated probabilities is adopted.

With  this  sampling  technique,  the  stochastic  two-stage  problem  can  be  solved  within  a

reasonable computer time. For the sustainable retrofit of the existing petrochemical energy

system, a superstructure including renewable energy and thermal storage units is constructed.

Two seasons in conjunction with a typical day divided into day and night in each season are

considered  as  four  periods.  The  operation  strategies  in  each  period  are  optimized

simultaneously  with  the  optimal  configuration.  Based  on  the  stochastic  program,  a

deterministic  program with  mean  values  as  input  for  10  uncertain  parameters  and semi-

stochastic program with fixed design variables obtained in the deterministic program are also

formulated for comparison.

The framework is implemented to a retrofit case. Results show that combining renewable

energy with natural gas as the energy source leads to the minimum GHGE while wide use of

coal  brings  profit  to  the  system but  also  has  the  worst  effect  on  the  environment.  The

comparison results between SMP, DMP and SSMP problems reveal that ignoring the long-
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term uncertainty can result in nearly 10% underestimation of TAC in this case. However, even

though the SROM sampling technique is introduced to reduce the number of scenarios and

then reduce the computer load, the calculation time of SMP takes still more than 400 times

longer  than DMP. A new efficient  method is  expected to balance the computer  time and

accuracy of the optimization results.
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Nomenclature

Sets and indices

CB set of coal-fired boilers indexed by cb 

GB set of gas-fired boilers indexed by gb 

ST set of steam turbines indexed by st 

BT set of back-pressure steam turbines indexed by bt 

GT set of back-pressure steam turbines indexed by gt 

W set of wind turbines indexed by nw 

P set of seasons (summer and winter) indexed by p 

H set of day and night indexed by h 

SN scenarios of uncertain parameters indexed by sen 

S five stages of steams: HP, MP, LP, LLP and CW 

I energy technologies indexed by i

Deterministic parameters
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Hlcv lower calorific value [GJ/Mmol]

ηACm compressor isentropic efficiency

rACm pressure ratio of compressor

γa specific heat capacity ratio

Vc cut-in wind speed [m/s]

ηCC efficiency of combustion chamber

A surface area of the solar heat collector [m2]

Fr heat removal factor

r fuel to air ratio

COP energy conversion coefficient

Deth molar enthalpy value [GJ/Mmol]

ief optical efficiency

Vf cut-out wind speed [m/s]

Cp specific heat capacity [GJ/Mmol/K]

ΔH enthalpy change [GJ/Mmol]

φ  ratio of boiler blowdown

DH hours in day or night [12 hours]

DP days in each season [182 days]

Uncertain parameters

radp,h,sen solar radiation [W/m2]

Vp,h,sen wind speed [m/s]

Dmds,p demand of steam s in period p [GJ/h]

First stage variables
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Zst,s 1 if the virtual steam turbine st of steam s exits

Zbt 1 if the back-pressure steam turbine exits

Zgt 1 if the gas turbine exits

Znw 1 if the wind turbine nw exits

mWi the maximum capacity of equipment i

Second stage variables

Qcb,p,h,sen heat released by CFB boiler cb [GJ/h]

Fhps
cb,p,h,sen steam generated by the boiler cb [Mmol/h]

mccb,p,h,sen mass flowrate of coal [t/h]

Wst,p,h,sen power produced by st [MW]

tinp,h,sen 1 if store thermal into the tank

toutp,h,sen 1 if release thermal out of the tank

Wmx
p,h,sen power generated by a wind turbine [MW]

Fsw
p,h,sen molar flowrate of steam generated by the SHC [Mmol/h]

Fvs,p,h,sen molar flowrate of steam s to the valve [Mmol/h]

Superscript

wv water vaporizing in boiler

wt boiler water

wp water preheating in boiler

bd blowdown of boiler

sk flue gas from boiler

wl wall loss of boiler

oh steam overheating in boiler
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hpss saturated high-pressure steam

hpso overheated high-pressure steam

tk/k thermal storage tank

GB gas boiler

ST steam turbine

CFB coal-fired boiler

BST back pressure turbine

CC combustion chamber

WT wind turbine

SHC solar heat collector

EC electric chiller

HRSG heat recovery steam generator

AC absorption chiller

ACm air compressor

GT gas turbine
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