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1 | INTRODUCTION

In last few decades, fractional calculus has emerged as an active branch of both pure and applied mathematics. This branch deals
with the differential and integral operators of arbitrary real or complex order?3%, Fractional order derivatives being non-locally
distributed, well described the memory and hereditrary effects of complex processes and materials. In fractional calculus, study
of fractional evolution equations (FEE) is very significant?. These equations appeared in the models of arterial geometries,
viscoelastic behaviours, ferromagnetic materials, advection diffusion equations and many other phenomenas of physics and
engineering 8, Nowadays, researchers show their great interest in investigating several aspects of FEE such as an existence and
uniqueness results, stability results, approximate controllability and exact controllability '"*1213 The concept of controllability
of FEE has drawn a lot of attention of mathematicians and engineers since it plays an important role in control theory and
engineering. There are mainly three types of controllability of fractional dynamical systems: exact controllability, approximate
controllability, and null controllability%. For an appropriate choice of the admissible control inputs, exact controllability steers
the system to arbitrary final state; approximate controllability steers the system to the small neighbourhood of arbitrary final
state and null controllability steers the system to its state of origin. Many contributions have been made on the study of exact
and approximate controllability of fractional differential equations. We refer to readers>'1%14 and references there in. Wang et
al. etablished controllability results for a class of semilinear FEE with two classes of control sets in separable Banach space.
These results are derived with the help of theory of propagation family and measure of non-compactness.

The stability theory for FEE was first proposed by Ulam'® and then Hyers". After that it is popular as Ulam-Hyers stability.
Rassias?V generalized these results by using a dominant function to control the estimate instead of a positive constant, and this is
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usually called Hyers-Ulam-Rassias stability problem, or generalized Hyers-Ulam stability problem. In published works, there is
wide variety of articles focussing on Hyers-Ulam and generalized Hyers-Ulam stability of fractional differential equations?! 22,
In fractional calculus, though the literature on definitions of fractional derivatives and integrals is increasing, the most commonly
used derivatives are classical derivatives. The range of applicability of classical derivatives is limited due to their incapacities to
correctly address some unsolved issues in dynamics thermal media, in electromagnetic waves and in viscoelastic processes.
This motivates several researchers to propose new generalizations of existing derivatives. For instance, Almeida®* and Sousa et
al.%> proposed new generalizations of Caputo and Hilfer fractional derivatives w.r.t function y. These generalizations offer higher
accuracy of models for the suitable choice of function y. In recent works, Suechoei et al. 2% established the existence and stability
results for semilinear FEE with y-Caputo derivative. Borisut et al.2? discussed the existence and stability of wAARHilfer FEE
with non-local conditions. Motivated by these works, in this paper we aim to establish the controllabilty and stability results for
FEE involving generalized Hilfer fractional derivative. Consider the following {—Hilfer fractional evolution system in Banach

space £2.
DI Ea(t) = Aw(t) + E(P(t, () + E(Yu(), t€F =[0,al,

(1)
IS w(0) = Zwy, o) € D(E),

where DSf;C represents the {—Hilfer fractional derivative of order 0 < p < 1 and type 0 < o < 1. The state w(-) takes value
in Banach space £2 and control function u(-) is defined in U" = L*®({, U), the Banach space of admissible control functions.
Y : U — D(E) is bounded linear operator and ¥ : J X 2 — D(Z) C £ will be specified later. The pair of closed linear
operators (4, £) generates an exponentially bounded propagation family {7'(¢), t > 0} from D(E)to 2,4 : D(A) C 2 — Q
andEZ : D(E)C Q — Q. Iéi_” Y1=0)¢ s the ¢{—Riemann-Liouville fractional integral of order (1 — p)(1 — o). This article is
structured as:

In section 2, we mention some basic definitions and fundamental concepts of {—Hilfer fractional derivative. Here we also
construct the mild solutions for the system of Eqs.(I) using theory of propagation family. In next section, we derive the existence
and uniqueness results by choosing suitable control function first and hence discuss the controllabilty of system (I). In section
4, we establish stability results for the given system of equations. In section 5, we give an example to confirm the applicability
of obtained results.

2 | PRELIMINARIES

Consider C(g, £2) as the space of continuous functions from  to £2. C(J, ) is a complete normed linear space with norm
lloll = sup llo()]l -

tey

Definition 1. 28 Let ¢ € C'([a, b]) be an increasing function with ¢’(¢) # 0 for all ¢ € [a, b] and ¥ be an integrable function
defined on [a, b]. The {—Riemann-Liouville fractional integral operator of function ¥ of order p > 0 is given by:

1

IZE'P(t) = m

/(C(t) — ()P (9)ds.

Definition 2. 28 Let n — 1 < p < nand { € C'([a,b]) be an increasing function with ¢’(¢) # O for all t € [a, b]. The
{—Riemann-Liouville fractional derivative of order p > 0 of an integrable function ¥ defined on [a, b] is given by:

DI () = < 0 %) L), = (o) + 1.
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Definition 3. Let 0 < p < 1 and ¢ € C!([a, b)) be such that ’(¢t) is increasing and ¢’(¢) # O for all ¢ € [a, b].The ¢ —Hilfer
fractional derivative of function ¥ € C'([a, b]) of order 0 < p < 1 and type 0 < ¢ < 1 is defined as:

D () = Iffl_p)g(ﬁ % ) 107090 4> a

It can also be expressed as

DLW = s / GORIOS <ﬁ%)1§1—ﬂ“-"“ W(s)ds, for v = p+0 — po.

Lemma 1. 22l ¥ € C"[a,b], n—1 <p<n, 0<o<landy = p+ 0 — po. Then

2L pioil _ 3 ‘ (C:(t)_é’(a))y_i 1 d " (1—0)(n—p)ig
175DP75p (1) = (1) ; o) \To s 14 ¥(a), VtE(ab]

In particular if 0 < p < 1, then
y—1
(C(t) - C(a)) I(l_y);g

I DP75 W () = () — :
a a l—‘(}/) a

¥(a), V t € (a,b].

Definition 4. 28 Let ¢ : [a, c0) — R be such that {(¢) is continuous and ¢’(¢) > 0 on [a, o). The generalized Laplace transform
of function ¥ : [a, c0) — R w.r.t function ¢ is defined as:

(s

L (P10} (s) = / e COEDw () (1)d e, Vs.

a
Definition 5. 28 Let ¥ and @ be two piecewise continuous functions of exponential order defined on interval [a, t]. The

generalized convolution of functions ¥ and @ is defined as:

t

(P, @) (1) = /Y’(T)¢<C_'(C(t)+C(a) - C(T)))C’(T)dr.
Definition 6. “? Let 2 be complete normed linear space and G be a bounded subset of £. Kuratowskii measure of

non-compactness is amap 7 : G — [0, oo) defined as:
n(G) = inf {e >0:GC ugG;, diam(gj) <e j=1,2,- ,n} where, diam(gj) = sup {|x -yl :ix,y€ gj}.

Lemma 2. “U For bounded subsets G and # of Banach space £2, the measure of non-compactness # has following properties :

1. n(G) = 0iff G is compact, G denotes the convex hull of G.

2. n(g) =n(G).

3. n(G U ) = max {n(G).n(s0) }.

4. n(G) <nH)if G C H.

5. (G + #H) < n(G) +n(5H).

Lemma 3. “!Let 9 be a bounded subset of Banach space £2. Then there exists a countable set 9, C D such that (D) < 2n(D,).

Lemma 4. “US21f g ¢ C(G, 2) is bounded and equicontinuous then 7(G(¢)) is continuous on J and

L n(G(¥)) = max {n(G(n} .

2. n</t63 g(t)dt> < fegn(G)de.
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Lemma 5. B3If Q = {qn} C C(5, 2) is bounded and countable then 7(Q(¢t)) is Lebesgue integrable on  and

n</Q(t)dt> SZ/U(Q(t))dt.

tES teES

Lemma 6. * If ¢ c C(S, £2) is bounded and equicontinuous then closure of the convex hull of G is also bounded and
equicontinuous.

Definition 7. “* Let 2 be a Banach space and # be the measure of non-compactness defined in £. A continuous mapping
T : 2 — Qis called condensing mapping if for any bounded set ¢ C 2, T(C) is bounded and #(7T(C)) < n(C), n(C) > 0.

Lemma 7. ** Let  be the measure of non-compactness defined on Banach space £2 and ¢ be a nonempty bounded, closed and
convex subset of 2. If T : ¢ — (is a condensing mapping then 7 has atleast one fixed point in C.

Definition 8. 32!'Z Consider the following Cauchy problem:
(Ea)(t))’ = 4w(t), t € F,
Ew(0) = Ew,, o, € D(E).

An exponentially bounded propagation family generated by pair (4, E), is the strongly continuous and exponentially bounded
operator family {7'(t) : ¢t > 0} of D(E) to Banach space (2 satisfying

(V-2 'Ew = / e *T(Hwdt, for A > 0and w € D(E).
0

2.1 | Representation of mild solutions using theory of propagation family

By Lemma 2.1. the equivalent integral form of Eq.(T)) is as follows:

_ 1
o) =S o+ / (€~ CEP™ A () (s
2
r( ) / €)= &) {2 (s,0(5)) + EYu(s)} ¢ (s)ds.
Applying generalized Laplace transform on both sides of Eq.(2)), we have
(o—-1)
o(4) T + EP A + EYu(d) , where
(ME—2)  (ME-2) (WE-2)
(1) = / e OOy ()dt, P(A) = / e OO (¢ (1)) (D)d t,u(2) = / e HEO=L Oy (1) (1)d t.
0 0 0

We have

(s

s _ ‘EX
/ e T(s)xds = —(/IPE —a
0
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Using this expression in Eq.(3), we have

o o o

w(4) =A7C"D / e T(s)wyds + / e TP (N)ds + / e Yu(Ads.

0 0 0

w(A) =47 / pt’ e M T (1M wyd t + / pt’ e T (PP (N)d t + / pt? e T ()Y u(A)d t.
0 0 0

Consider the following probability density function

- r 1
9,0) = 1 Z(—l)k_lb?_”&_l% sin(kzp), 0 € (0, ), whose integration is given by
T !
k=1

[e]

/ e 9 ,(0)d0 = e, p€(0,1).
0

o) =1+ 1, + L.
I, =A7=D / pt" e T (M) wyd t.
0
Taking ¢ = £(t) — £(0).

I, = / PE(E) = L0 e OO (L (1) = £(O) ) (0

0
=D / / p(E(8) = £(0))~" e HCO=ED8 9 (T (5 (£) — $(0)))¢ (Dwydbd t.
0 0

(5

— £(0))?
Yl e—A(C(t)—c(O))( / p 19p(9)T<(é’(t)o# ) %dﬁ)(é‘(t} — 20wy (t)d e
0

[e)

e‘W”‘“‘”)( / PO (T ((&(t) — c<0>>f'9)de><c<t> — £(0)" ¢’ (1)dt,

0

— /117(6—1)

S S —

-1
7 . Here ¢ ,(O)represents the Wright function satisfying / 05¢p(9)d6’ =
0

1- I'(l+59)

I + pd)’

where ¢,(0) = _71 19/,(9'71)9‘

I, =D / eTHEOEOP (£(1) = £(0))(E(5) - CO) (D, for
0

P,(¢(0) =) = /p9¢p(6’)T((C(t) —£(0)Y0)do.

0

[c)

— jpo=D) / e—ﬂ(C(t)—§(0))(é'(t) _ g(o))ﬂ—lpp(é’(t) - C(O))C/(t)a)od t.

0

() = £
['(p(1 - 0))

= I, =L l ] L[ = £OY P, () = ¢O) |,

“

&)

6
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In the following

o

I, = / pt? LG T (PP (N)d ¢,

Il
0\8

/ PE() = L))~ e KO g BT ((£(6) = £L(0)) e OO (5, 0(5)) ¢ ()¢ (1)ds d .
0

Il
o\ g
O\ P

/p(C(t) — £(0) e WO 9 O)YT ((£(2) = $(0))") e *COCOW (5, 0(5)) ¢ ()5 (£)dO ds dt.
0

0 0 1
=/ / / p(C(t) — C(O))p e MW=t 19/)(9)T( 0 ;ﬂC(O))p )e_’l(c(s)‘ao))?’(& ())& ()¢ ()d6 ds dt.
0 0 0

P

=///p(§(t) (0)),,_ e~ D+ (=2¢60) g (9)T<(C(t)9ﬂ)g/(s’w(s))g'(s)é”(t)dg ds dt.
0 0 0

rrr (C(t)—C(O))" U () = L)Y
= / / / pt D TS i@ ) '9p(9)T< - )
0

t

0
‘I’(C_l (E@ = ¢ +¢0),x(E (@ =L + C(O)))>C'(S)C'(t)d0 dr dt.

T

0 B o~ B oy
/ /p(@(t) LOY™ ieercon QP(H)T<<C(t) apa )))

0\8

0
*P(@ "E@ =) +¢0),x(¢7(¢@) - (e + c<0)))>é’<s>c’<t>d9 dtdr.

80\8

&M@ / / 99@5,,(6’)({(1)—C(S))”'IT((C(T)—C(S))"G)‘P(s,w(S))C’(S)dWS] ¢'(0dr.
-0 0

= [ e A=) /(C(T) — L&Y TIP, (@) = L) ¥ (s, w(S))C'(S)dS] {'(ydr.
-0

e~ AE@-EO) / KP(C(T)—C(s))?’(s,a)(s))éj'(s)ds] ¢'(ydr, K, (1) =¢"""P (1)

-0

S O —

= 12=L¢l/u< S(t) = £(5))¥ (s, a)(s))C’(s)ds]. (7)
0

In the similar way, we get
t

= I=L, l / K, (¢ - C(s))Yu(s)Zj/(s)ds]. (8)

0
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Using (6], (7) and () in (5), we have

(1) = £(0)y )
I'(p(1 - 0))

@(4) =L, l ] L[ = EOYP, () - ¢0) |,

)

t

+L, [/ K, (¢() = £(5)) {¥ (5, 0(5)) + Yu(s)} g/(s)ds].

0

Taking inverse generalized Laplace transform on both sides, we have

t t

o(t) =17 4K (D, + / K, (£(6) = $(9))¥ (s, 0(5))¢ (s)ds + / K, (£(6) = £(9))Yu(s)¢'(s)ds,

0 0
t t

o(t) =S, (t)w, + / K,,(C(t) —£(5))¥ (s, 0(5))¢ (s)ds + / K,,(C(t)—C(S))YM(S)C'(S)ds,
0 0
S,4(8) = I""K (1), K (1) = 7P (1), P,(t) = / PO, (O)T (1°6)d0.

0
Lemma 8. ' Suppose that the exponentially bounded propagation family {7(¢), t > 0} generated by pair (4, ) is norm con-

tinuous and uniformly bounded. Then the following properties hold:
@ 1T < M, for some I > 0.

. oY) 3 (o] gjt
) 2,0 = | 5™ 008, @)T(70)d0|| < o [, 00, (0)d0 = o

= ”[F"p(t)a)H < % loll, Yo € Q.

0
I'(p)

(iii) ”Kp(t)cu” - “t”_l[pp(t)a)” < loll, Yo € Q.

(iv) ”Spyg(t)a)” - )’1551“’)‘¢n<.p(t)w’| < M ||wl|, for some Mg > 0.
(V) {S,4(t), t >0} and {K,(¢), ¢ > 0} are norm continuous families in sense of uniform topology.

Definition 9. For each u € U and w, € D(E), w € C(, £2) is called mild solutions of Eq. if it satisfies

t t

w(t) =S, ,(Hwy + / K, (5(8) = £())¥ (5. 00(5)) ¢ (s)d s + / K, (£(6) = £())Yu(){ (s)ds, t € F. (10)

0 0

3 | CONTROLLABILITY RESULTS

Here we investigate controllability of the system of Eqgs.(T).

Definition 3.1'7 The system of Eqs. is controllable on interval § = [0, a] if for (0) € D(E) and w, € D(E) there exists a
control function u € U” such that the mild solution w(¢) of system (1)) satisfies w(a) = @, .

For obtaining proposed results, let us introduce the following hypothesis:

C,) Foreachw € 2,¥Y(-,w) : § — D(E) C Q is strongly measurable and for each ¢ € {§, the function ¥(t,-) : 2 — D(E)
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is continuous.

C,) For any k > 0, there exists a measurable function A, such that

sup [P (t, )|l < h () with |||, =sup{h(t)} < oo and

llwll<k teg

teF

Sup/(C(t) — L&Y ()¢ (9)ds < Ni(o),
0

N, (t)
for some measurable function N, such that klim sup w = L for some L > 0.
—00

C;) There exists a constant K* > 0 such that for any bounded set D C 2 and ¢t € J,
n(¥(t,D)) < K*n(D).

C,) Y : U — D(E) is a bounded linear operator. Define an invertible linear operator 4 : U — £2 as:

a

Au = / K, (¢(a) = §(9))Yu(s)¢' (s)ds, Ais well defined as
0
7 m Y — ()"
Aul| = / K, (2(a) - £(5))Yu(s)t'(s)ds|| < 22 ”(f:gg SO e
0

For an arbitrary function w(-), let us define the control function as follows:

u(t) = A7 lwl =S, (D, — / K, (¢(a) — §())¥ (s, w(s))é"(s)ds] . (11)
0
MN,(a)
A_l M _k . 12
”u(t)“ < ” ” [||01|| + S “a)O” + F(p) ] ( )
Define an operator @ : C(JF, 2) — C(J, 2) as follows:
Ow(t) =S, ,(H)wy + / K, (£(6) = £(9)¥ (5, 0(5)) ¢ (s)d s + / K,(£() = () Yu(s)S (s)ds, t € . (13)

0 0

Now we show that operator @ : C(J, 2) — C(g, £2) has a unique fixed point w.r.t control function u(¢) defined in (TT).

3.1 | Existence and Uniqueness of Mild Solutions

Theorem 1. The systems of Egs. (1) has at least one mild solution if hypothesis (C; — C,) and following conditions hold true

mr [ WY@ -0y |4 ]
1+ <L

(o) | (1 + p) |
MK @ - [, MIVIE@-cora]] 1
I'd+p) i I'd+p) ] 4’
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Proof. For any k > 0, let us define B, = {v € C(J,£2) : ||o(¢)|| < k}. B, is bounded closed and convex subset of C({¥, 2).

We divide the proof into following steps:

Step 1: To show that @ : B, — B,. Let us assume that for each k > 0 there exists @ € B, such that ||Ow(¢t)|| > k.

Fort € §J.
M

0w (t)|| <Ms ||wp]| + T(p)

(s)ds+

% 0/ () = LY | (s.00)|

< M ||| + % 0/ () = LY () (s)ds

WYY, N, 0] Ny
o |4 ”l||“’1||+-/”sllwoll+ o) ] 0/ () - LY ()ds
i o )
< tl o] + DO ool A A7 IV €@ = £OP

T(p) (1 + p)

Nl R4 Y ¢@ - ey DN [JA IV E@ - §0
(1 +p) LT+ p) '

As ||Ow(t)|| > k.

M ||y | N l|@o|| s | A~ | 1Y Nl (ECa) = £(0)) N [l || (|4~ 1Y 1l (¢ (a) = £(0))

k kI'(1 + p) k(1 + p)

. MN, (1) - M| A 11l (¢ (@) = £(0)) ol
KT(p) I(1 + p) '

Taking lim on both sides, we have

k— o0

MN, (1) l M4 1Yl ¢a) - q(ow’]
m————- |1+ > 1.
k—e KL (p) T+ p)

=

A 0~ _1 _
ML, . M| A~ 1Y 1 (€@ = £0))y .1,
I'(p) (1 +p)

which is a contradiction to given assumption. Therefore our suppoistion is wrong. This proves © : B, — B,.

Step 2: To prove that © : B, — B, is continuous.

Let {a)n} C B, with w, — w € By as n — 0. By assumption (C; — C,).

Fort e J,
¥ (t,w,(t)) — ¥(t,w(t)) as n— oo and

|# (£.0,0) =¥ (o) < 20, ¥neN.

/(C(t) =Y )N E'(s) ds.
0

(14)
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We have

0w, (t) — Ow(t)|| < K, (£(6) = £()) {¥ (5. 0,(5)) =¥ (s.0(s)) } £ (5)ds

o — .

K,(¢(@ = ¢(@) {¥ (7, 0,(7)) — (T,C()(T))}C’(T)di‘] ¢'(s)ds

+ /K () = C(s) BA l
0

o —.

Fﬁ / €O = @Y™ |# (s.0,(9)) = ¥ (s.005))
0

0 At 1vl e :
— o [ Cw=tr| [ €@- @ ¥ (o) - ¥ (row) ¢'(s) ds.
0 0
By dominated convergence theorem and continuity of function ¥(¢, .),
|6w,(t) — Ow(t)|| = 0as n — .
This proves the continuity of operator O.
Step 3: To prove O : B, — B, is equicontinuous operator.
For0<y{ <t,<a,
|00(t) — O] < [S,0(8) = Syt o
+ / {K,(¢(6) = ¢()) = K, (E(5) = £(9) } (s, 0(5)) ¢ (s)d s
f
+ / IK,(£(8) = $(9))¥ (5, 0(9)) ¢ (5)ds
(15)
+ / {I,(8(1) = £(9) = K, (£(t) = £(9)) } Yu()( (s)d s
0
t
+ / K, (¢(8) = &(9))Yu(s)¢' (s)dss
By the norm continuity of {S po(l) 1t 2 0} in uniform operator topology
I = ||§M(5) - Sw(tl)” —0as t — b, (16)

L=

/ {K,(¢(1) = ¢(9) =K, (£(4) = £()) } P (5, 0(5)) ¢ (5)d s
0

B
< / (i, (£ = £9)) = K, () = £9) } | e ()
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Since {K o0t > 0} is continuous in uniform operator topology.

= I,—0as t; — t. an

Similarly I, — O as ¢, — ¢,. (18)

H

/ (6(t) = £())P (5. 0(5)) ' (9)ds|| < M|l

=T +p)

< / (€)= )" )| ¢/ ()ds < (€ —20)).

Clearly I; — Oas ¢ — t,. (19)

H

/ (¢() =€) Yu(s)¢' (s)ds

< / () =€) IV I €61

fm||4 i
<P ot ol + 225 (-
Clearly Is — Oas f — t,. (20)

Using (16]-{20) in (I5). We have

|Ow(t) — Ow(t)|| = O0as t, — .

This proves the equicontinuity of operator 6.

Step 4: Let D = Co(O(B,)), where Co denotes the closure of convex hull. By Lemma 2.6. Co(©@(B,)) C B, is bounded
and equicontinuous. We show that ©® : D — D is a condensing mapping. For D = Co(@(Bk)), there exists a countable set
Dy = {w,} . C D suchthat n(O(D)) < 2n(O(D)).

t

n|S,s(Hwy + / K, (¢(0) = £(5)) {Y’(s,a)n(s))+Yu(s)}é:'(5)ds].

0

n(0(Dy)(1))

- t

<n / K, (¢(8) = £(s)) (sv(s, w,(s)) + Y4~ (a)l -S,,(Hwy — / K, (¢(a) — ¢(0) ¥ (x, wn(r))g’(r)dr»g’(s)ds] )
0

-0

MY |4
L(p)

[ 1
(t)—C(S) n(¥(s,w,(5))) + ”/ (¢@—-¢(x ) (Y’(T,wn(f)))é’(f)dfl ¢'(s)ds.

t

n a
M4~

) [ 1
Sl%?j}) J (é’(t) - é’(s))p—l _K*n(a)n(s)) + %) ” b/ (C(a) _ C(T))p_lK*n(a)n(f))C’(T)dT] £(s)ds.
2MK* MY N |47 (¢(a) - ()" ,
*Ta+p ll + ROEY) (2@ ~ ¢©) n(Dy).

MK | MY |47 (¢@ - ¢)”
I+ p) '+ p)

] (¢(@ = ¢) n(D).
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Asn(0(D)) < 2n(6(Dy)).

A « W -1 _ P
_amge [ RV 4] (@ - €0)

= n(6(D» a) — £(0))"n(D).
n(e(D)) T+ T+ ) (¢(a) =) "n(D)
<1.y(D).
This proves that @ is a condensing mapping.
By Lemma 2.8. © has at least one fixed point which is a mild solution of the system of Eqgs.(I)). Hence the result. O

Theorem 2. If hypothesis (C; — C,) hold and there exists constant Ly, > 0 such that H?’(t,wl(t)) - ‘P(t, a)z(t))” <
Ly ||w, = w;||, Yo,, @, € B,. Then system of Egs.(I) has unique mild solution if following condition is satisfied:
MLy (@~ LO)" [ . Ma YN (@ - £O)"]
I'(l+p) I'(l+p)

Proof Let @, and @, be the two solutions of Eq.{T) in B,. Bach e, i € {1,2} satisfies:
00,(1) =S, , (N, + / K, () — £ (5, 0(5)) ()5 + / K, (£ - £0) YU ()ds, t €. @1)
For any ¢t € , 0 0
| = @] =[|@w, (1) = Oar (0|
< / K, (£(6) =€) {¥ (5,0,(5)) = ¥ (5, 05(5)) } ' (5)ds

0

t a

+ / K,(¢(6) = ¢(s)) BA™ [ / K, (¢(@ = ¢@) {¥ (7. 0,(7)) =¥ (7, 0,(2)) } C’(f)df] ' (s)ds

0 0

< 1 O/ (£ =€) | (s.019) =¥ (s.0209) || €' (s

W4~ 1] [ N _ ,
%0 (et - )’ lm / (c@ ~ @) | (e.n@) =¥ (. 00) | df]é“ (s

m

A L t B
(p;"/(C(t)—C(s))" l||col—coz|| &'(s)ds
0

<
r

MLy (£(@) = £(0) o) — o]
T(1+p)

a1y [
—To / (C(t) = ¢(s)

]C'(s)ds.

<932Lw(c<a>—c<0>)" 1+2>52||A-1|| 1Yl (¢(a) - ¢(0))" _
= T+ p) T(l+p) o = -]l

<1 ||@; — | (By stated condition).

= ||o; —a,|| =0,V t € J. Therefore @, = w,. Hence the result.
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3.2 | Controllability

Theorem 3. The system of Eqs.(T) is controllable if it posesses unique mild solution and hypothesis (C; — C,) hold true.

Proof. Here we all need to show that is w.r.t control function u(t) defined in , mild solution w(¢) of (1) satisfies w(a) = w,.
w(a) =0 (w(a))
=S,,(Hwy + / K, (¢(a) = $(9))¥ (s, (5)) ¢ (s)d s

0
a

+ / K, (£(@) = £(9)) Yuls)S' (s)ds.

0
a

=S, (o, + / K, (@) = £(5)¥ (5. ()¢ (5)ds + Au(t). By (H4)

0

a

=S, ,(Hwy + / K, (¢(a) = §(9)¥ (s, 0(5)) ¢ (5)ds + w,

0
a

=S, (Do, — / K, (¢(@) = £(5))¥ (5. ()¢ (5)ds.
0
=w1 .
This proves that control function u(t) defined in steers the fractional system (1) from w(0) to w, in finite time a. Hence the
result. -

4 | ULAM-HYERS AND ULAM-HYERS-RASSIAS STABILITY

Fore > 0,¥ : X2 — D(E) C 2,¢( € C(J,RY), u € C(§, £2) and non-decreasing function v(¢t) € C(F, R") consider
equation
DT Ea(t) = Aw(t) + EP (1, (1) + EYu(t), ¢ € F =[0,al,

(22)
215,77 w(0) = 1.7 u(0) = Ewy, @y € D(E),
Definition 4.1. The system of Eqgs.(I)) is Ulam-Hyers stable if there exists real number § > 0 such that for every ¢ > 0 and
u € CI(G, Q) satisfying
’Dgf;cfﬂ(t) — Au(t) — E¥(t, u(t)) — EYu(t)| <e, (23)
there exists a unique solution w(t) of Eq.(22)) with
lo(t) — u(t)| < Pe, t € .
Definition 4.2.7 The system of Eqs. is Ulam-Hyers-Rassias stable w.r.t function v if there exists real number f, > 0 such
that for every € > 0 and u € C!(, Q) satisfying
DITEEN(e) — Apu(t) — (¢, u(1) — EYu(t)| < ev(t), ¢ € . (24)
there exists a unique solution w(t) of Eq.(22) with

lo(t) — z(¢)| < Bev(t), t € F.
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Remark 4.1. A function z € C!(, Q) satisfies inequality iff there exists a function Q,(¢) € C'(§, ) such that following
holds:

1. |10,(1)] <efort e .

2. DITEEu() = Au(e) + EP (e, u(t)) + EYu(r) + Qy(1), t € F =1[0,a].
Remark 4.2. A function z € C!(, Q) satisfies inequality iff there exists a function Q,(¢) € C'(§, ) such that following
holds:

1. |0,(1)] <ev(t)fort e .

2. DITEEU(E) = Au(t) + EP (4, u(0)) + EYu(t) + Qy(1), t € F =1[0,al.

Theorem 4. Assume that hypothesis (C; — C,) hold and ¥ (¢, a(t)) is Lipchitz continuous function with Lipschitz constant
Ly . Then system of Eqs.(T)) is Ulam-Hyers stable provided that

ML —£(0))” m a1y —2(0))”
o v (¢(@) = ¢(0)) lH A= 1Y 1l (¢(a) = &( ))]<1

r(+p (1 +p)

Proof. Let u € C'($, ©2) be the solution of inequality (23). Then y(¢) satisfies.
u(t) =S, (Haw, + / K, ($(8) = £()) {¥ (5. () + Yu(s)} ¢ (s5)ds + / K, ($(8) = £()) 0, () (s)ds, t €.
Let w € C(F. 2) be the ur?ique mild solution of Cauchy problem (22). w(t) is coleﬁned as
o(t) =S, ,(Dwy + / K, (¢(8) = ()P (s, 0(5)) ¢ ()ds + / K, (¢(8) = £(9)) Yu(s)Z (s)ds.

0 0
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Fort € J.

l(t) — u(e)| S/ K, (£(6) = C)) | 1 (5, @(s)) =¥ (5, ()¢ () s + / KK, ($(8) = ()1 101(9)I¢" (s)ds
0 0

+/WKA«&—&@MY%*l/\KAam—C@»HT@¢mn)—TﬁJwﬂﬂauwrc%nw.
0 0

Me (¢(a) - £(0)”
'+ p)

DLy (E@ - ¢)" [ R[4 IV (€@ - €)'
= '+ p) I'(1+p)
Me(¢(a) - ¢(0))”
r'a+p

]Iw(t)—u(t)l +

=L|u(t) —w(t)| +

Me (¢(a) - ¢(0))"
(1 +p)
Me(S(a)—¢(0)"  Me(¢(a) - ¢(0))”
w(t)] < <
I'a+p-2L) I'(1+p)
M (¢(a) - £0)”
rd+p

= (1-L)|u(t) - ()] <

= [u(t) -

= |u(t) — w(t)| < Pe, for f =
(25)

Theorem 5. The system of Egs.(I) is Ulam-Hyers-Rassias stable if hypothesis (C; — C,) hold, £ < 1 and continuous non-
decreasing function v(¢) satisfies

t

/ O C(s))"_lv(s)C’(s)ds < &, v(t), fork, > 0.
0
Proof. Let u € C'(F, €2) be the solution of inequality (24). Then yu(¢) satisfies.
u(t) =S, (Hawy + / K, (£() = &) {¥ (5, () + Yu(s)} {'(s)ds + / KK, (§(6) = £()) Q(9)¢" (s)ds, t € F.
Let us denote by @ € C(S(,)Q) the unique mild solution of Cauchy problem . w(t) is defined as
w(t) =S, (o, + / K, (£(8) = £(9)¥ (s, 0(s)) ¢ (s)d s + / K, (£(6) = £(9))Yu(s)¢' (s)ds, t € F. (26)

0 0
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Fort € J,

l(t) — u(e)| S/ K, (£(6) = C))| 1 (5, @(s)) =¥ (5, ()¢ () s + / KK, ($(8) = ()1 102(9)IE" (s)ds
0 0

+ / K, (¢(6) = ¢(9))| YA~ l / IK, (@) — @)1 f (. 0(2) = (7, u(0))| ' (2)dT | £ (s)ds.
0 0

Me x,v(1)(¢(a) - £(0))”

ML —c) [ defa iy ~t0)’
By (60~ 0) l” 4~ i (¢ - & >>]|a,(t)_,4<t>|+

'+ p) '+ p) '+ p)
—tloto) - ol + 2L —CO)
He T +p)
Mex,v(1) (¢ (@) - ¢0))"
= (1-L) o) —u(t)] < T+ )
Mer,v(1)(£(@) - ¢0)"  Mex,v(1)(¢(a) - ¢(0))
= |o(t) — u(t)| < o)1 -0) < T+ ) ,L<1
o oty | <Bevtr, for g, = LD =EO)
0] u <p,ev(t), for g, = T+ ) .
27
O
5 | EXAMPLE
Take 2 = U = L?[0, ]. Consider the following partial differential equation:
(1 ’w(t,y) w(t,y) 12 [cosw(t,y) 9% [cosw(t,y)
5’7’¢ - = - -5\
D <a)(t, ¥) 2y > 2y + 20 ; 972 ; + Yu(e),
yel[0,x], t€[0,1]=J.
“Lyq=t 2
12,77 <w(o, AL “(;(y(l 2 )) — ). 0<y<m @8
w(t,0) = w(t,7) =0,
where
1 1 11
p—g, 6—7, 9—p+5-p0’—£, C(f)—\/;
2 2
Define 4 : D(2) C 2 — Q by 4w = w and £ : D(E) C 2 — Qby Ew = <a)— ?)—?),Where
y y
2
D) = D(E) = {wER: o, do are absolutely continuous , 3—(; € 2,w(0) = w(x) =0 p . It follows from reference?,

y
that pair (4, E) generates a propagation family {7°(¢), t > 0} which is norm continuous and uniformly bounded. It follows
from"® that 4 and £ can be written as

[s5)
Aw = —Z qz <w,w,>, w€ D(a),
q=1

(s3]
o = 2(1 +¢) < o, w, > w,, ® € D(E), where
q=1
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w,(y) = \/z sin gy, n € N is the orthonormal set of eigen functions of 4. For any w € D(E), A > 0, we obtain
/4

¢S] 2

1+ ¢ © 7
AE-D'Ew=) ——  <w,0,>0 /e e ‘*qzdt <w,0,> w0,
;x(1+q2)+q2 ! ;O

Therefore {T(¢), t > 0} generated by —4E~! can be written as
T(tH)w = Z/ ”4 <w,0,>w, with ||T(®)| £ 1.

This implies
HP (t)” HK (t)” < —) and “SM(I)” <1

DefineY : U — D(E)asY = bl for b > 0.

Au(t, y) = / K, (£(1) = £9) Yu(s, ()¢ (s)ds.

1
b
l4ull < L / £ = ¢(s) 5||u||¢'<s>dszr”z”,
5 0

F()
A7 1 Q — U with ||Al||<—

¥ (tw(t,y) = zti) lcos (a)(tt’y)ﬂ.

v(t y) _
||ZL|:IS)1¢ |’W(t’ olt.y) ” =20 H =20 = ).
It is easy to see that ¥ is caratheodary function and
1
||¥’(t, W) — ‘F(t,wz)“ < o ||a)l - U2|| .
= ¥ is Lipschitz continuous function with Ly = 21—0
t
r_k
/(C(t) —¢(9)” () (s)ds < 7 (C(l) —L(0)F < 7 = Nu(®.
0
L= gim VO _ 1
k—o0 k 4

With all the parameters discussed above, it is easy to check that conditions stated in Theorem 3.1., Theorem 3.2., Theorem 4.1.
and Theorem 4.2. hold true as

A A _ p -1
mleuYn(aa) £ ||4 ||]< Lo _ L (108008 <1,

T'(p) 1+ p) - 2F(§) T 2x4.590843
ML - ? 0 |4~ - ?
v (C(a) = £(0)) 1+9)?||A 1Yl (¢(a) = ¢(0)) < 1 1 —0.05444 < 1.
'+ p) '+ p) 201“(2) 20 % 0.9181687

WL |, MIYIC@ -y |[a] 1 1 ~
) ll T+ p) = ar(h) T 2x 4590843 0108908 < 1.
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MLy (¢@—-cO)" [ MY (E@-¢0)") 1 _ 1
I'a+py I'd+p) 2014 T 20%0.9181687
5
This proves that system (28)) is controllable and stable on § = [0, 1].

=0.05444 < 1.

CONCLUSION

The main aim of this paper is to study the controllability results for FEE with generalized Hilfer fractional derivatives. To the
best of our knowledge, existence results for different forms of these equations have obtained commonly however controllability
and stability results have discussed rarely. These results are obtained with the help of theory of propagation family and measure
of non-compactness. In our future work, we aim to work on the applications of obtained results in modeling theory.
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