REFERENCES
Ammendolia, C., Rampersaud, Y.R., Southerst, D., Ahmed, A., Schneider,
M., Hawker, G., … Côté, P. (2019). Effect of a
prototype lumbar spinal stenosis belt versus a lumbar support on walking
capacity in lumbar spinal stenosis: a randomized controlled trial. Spine
J, 19, 386-394.
Bariwal, J., Kumar, V., Dong, Y., & Mahato, R.I. (2019).
Design of Hedgehog pathway inhibitors for cancer treatment. Med Res
Rev, 39, 1137-1204.
Berman, D.M., Karhadkar, S.S., Hallahan, A.R., Pritchard, J.I.,
Eberhart, C.G., Watkins, D.N., ;;; Beachy, P.A. (2002).
Medulloblastoma growth inhibition by hedgehog pathway blockade. Science,
297, 1559-1561.
Berman, D.M., Karhadkar, S.S., Maitra, A., Montes De Oca, R.,
Gerstenblith, M.R., Briggs, K., … Beachy, P.A. (2003).
Widespread requirement for Hedgehog ligand stimulation in growth of
digestive tract tumours. Nature, 425, 846-851.
Chen, Y.Z., Sun, D.Q., Zheng, Y., Zheng, G.K., Chen, R.Q., Lin, M., …
Wu, B.Q. (2019). WISP1 silencing confers protection against
epithelial-mesenchymal transition of renal tubular epithelial cells in
rats via inactivation of the wnt/β-catenin signaling pathway in uremia.
J Cell Physiol, 234, 9673-9686.
Edeling, M., Ragi, G., Huang, S., Pavenstädt, H., & Susztak, K. (2016).
Developmental signalling pathways in renal fibrosis: the roles of Notch,
Wnt and Hedgehog. Nat Rev Nephrol, 12, 426-439.
Fukui, D., Kawakami, M., Yoshida, M., Nakao, S., Matsuoka, T., &
Yamada, H. (2015). Gait abnormality due to spinal instability after
lumbar facetectomy in the rat. Eur Spine J, 24, 2085-2094.
Hayashi, K., Suzuki, A., Abdullah Ahmadi, S., Terai, H., Yamada, K.,
Hoshino, M., … Nakamura, H. (2017).
Mechanical stress induces elastic fibre disruption and cartilage matrix
increase in ligamentum flavum. Sci Rep, 7, 13092.
Hegde, G.V., Munger, C.M., Emanuel, K., Joshi, A.D., Greiner, T.C.,
Weisenburger, D.D., … Joshi, S.S. (2008).
Targeting of sonic hedgehog-GLI signaling: a potential strategy to
improve therapy for mantle cell lymphoma. Mol Cancer Ther, 7,
1450-1460.
Horn, A., Palumbo, K., Cordazzo, C., Dees, C., Akhmetshina., A., Tomcik,
M., … Distler, J.H. (2012). Hedgehog
signaling controls fibroblast activation and tissue fibrosis in systemic
sclerosis. Arthritis Rheum, 64, 2724-2733.
Hur, J.W., Kim, B.J., Park, J.H., Kim, J.H, Park, Y.K., Kwon, T.H., &
Moon, H.J. (2015). The Mechanism of Ligamentum Flavum Hypertrophy:
Introducing Angiogenesis as a Critical Link That
Couples Mechanical Stress and Hypertrophy. Neurosurgery, 77, 274-281.
Königshoff, M., Kramer, M., Balsara, N., Wilhelm, J., Amarie, O.V.,
Jahn, A., … Eickelberg, O. (2009).
WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice
and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin
Invest, 119, 772-787.
Kumar, V., Mondal, G., Dutta, R., & Mahato, R.I. (2016).
Co-delivery of small molecule hedgehog inhibitor and miRNA for treating
liver fibrosis. Biomaterials, 76, 144-156.
Lafian AM, & Torralba KD. (2018). Lumbar Spinal Stenosis in Older
Adults. Rheum Dis Clin North Am, 44, 501-512.
Liang, R., Šumová, B., Cordazzo, C., Mallano, T., Zhang, Y., Wohlfahrt,
T., … Distler, J.H. (2017). The transcription factor GLI2 as
a downstream mediator of transforming growth factor-β-induced fibroblast
activation in SSc. Ann Rheum Dis, 76, 756-764.
Li, C., & Kuemmerle, J.F. (2014).
Mechanisms that mediate the development of fibrosis in patients with
Crohn’s disease. Inflamm Bowel Dis, 20, 1250-1258.
Lim, C.H., Sun, Q., Ratti, K., Lee, S.H., Zheng, Y., Takeo, M., … Ito,
M. (2018). Hedgehog stimulates hair follicle neogenesis by creating
inductive dermis during murine skin wound healing. Nat Commun, 9, 4903.
Mack, M., & Yanagita, M. (2015). Origin of myofibroblasts and cellular
events triggering fibrosis. Kidney Int, 87, 297-307.
Morales, M.G., Cabello-Verrugio, C., Santander, C., Cabrera, D.,
Goldschmeding, R., & Brandan, E. (2011). CTGF/CCN-2 over-expression can
directly induce features of skeletal muscle dystrophy. J Pathol, 225,
490-501.
Murphy-Ullrich, J.E., & Sage, E.H. (2014).
Revisiting the matricellular concept. Matrix Biol, 37, 1-14.
Omenetti, A., Bass, L.M., Anders, R.A., Clemente, M.G., Francis, H.,
Guy, C.D., … Whitington, P.F. (2011).
Hedgehog activity, epithelial-mesenchymal transitions,
and biliary dysmorphogenesis in biliary atresia. Hepatology, 53,
1246-1258.
Ono, M., Masaki, A., Maeda, A., Kilts, T.M., Hara, E.S., Komori, T., …
Young, M.F. (2018). CCN4/WISP1 controls cutaneous wound healing by
modulating proliferation, migration and ECM expression in dermal
fibroblasts via α5β1 and TNFα. Matrix Biol, 68-69, 533-546.
Perbal, B. (2019). CCN proteins are part of a multilayer complex system:
a working model. J Cell Commun Signal, 13, 437-439.
Pinchuk, I.V., Mifflin, R.C., Saada, J.I, & Powell DW. (2010).
Intestinal Mesenchymal Cells. Curr Gastroenterol Rep, 12, 310-318.
Pratap, A., Panakanti, R., Yang, N., Lakshmi, R., Modanlou, K.A., Eason,
J.D., & Mahato, R.I. (20110). Cyclopamine attenuates acute warm
ischemia reperfusion injury in cholestatic rat liver: hope for marginal
livers. Mol Pharm, 8, 958-968.
Rockey, D.C., Bell, P.D., & Hill, J.A. (2015).
Fibrosis–a common pathway to organ injury
and failure. N Engl J Med, 372, 1138-1149.
Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac
remodeling. Cardiovasc Res, 63, 423-432
Sakai, Y., Ito, S., Hida, T., Ito, K., Harada, A., & Watanabe, K.
(2017). Clinical outcome of lumbar spinal stenosis based on new
classification according to hypertrophied ligamentum flavum. J Orthop
Sci, 22, 27-33.
Sairyo, K., Biyani, A., Goel, V.K., Leaman, D.W., Booth R, Jr., Thomas,
J., … Mohan, S.E. (2007). Lumbar ligamentum flavum hypertrophy is due
to accumulation of inflammation-related scar tissue. Spine (Phila Pa
1976), 32, E340-347.
Schizas, C., Theumann, N., Burn, A., Tansey, R., Wardlaw, D., Smith,
F.W., & Kulik, G. (2010). Qualitative grading of severity
of lumbar spinal stenosis based on the morphology of the dural sac on
magnetic resonance images. Spine (Phila Pa 1976), 35, 1919-1924.
Schroeder, G.D., Kurd, M.F., & Vaccaro, A.R. (2016). Lumbar Spinal
Stenosis: How Is It Classified? J Am Acad Orthop Surg, 24, 843-852.
Scotton, C.J., Krupiczojc, M.A., Königshoff, M., Mercer, P.F., Lee,
Y.C., Kaminski, N., … Chambers, R.C. (2009).
Increased local expression of coagulation factor X contributes to the
fibrotic response in human and murine lung injury. J Clin Invest, 119,
2550-2563.
Sharma, S., Tantisira, K., Carey, V., Murphy, A.J., Lasky-Su, J.,
Celedón, J.C., … Weiss, S.T. (2010). A role for Wnt signaling genes in
the pathogenesis of impaired lung function in asthma. Am J Respir Crit
Care Med, 181, 328-336.
Shu, D.Y., & Lovicu, F.J. (2017). Myofibroblast transdifferentiation:
The dark force in ocular wound healing and fibrosis. Prog Retin Eye
Res, 60, 44-65.
Sun, C., Guan, G.P., Liu, X.F., & Zhang, H.L. (2017). Increased
expression of WISP-1 contributes to fibrosis in the hypertrophied lumber
ligamentum flavum. Int J Clin Exp Pathol, 10, 1356-1363.
Sun, C., Tian, J., Liu, X., & Guan, G.. (2017). MiR-21 promotes
fibrosis and hypertrophy of ligamentum flavum in lumbar spinal canal
stenosis by activating IL-6 expression. Biochem Biophys Res Commun, 490,
1106-1111.
Sun, C., Wang, Z., Tian J.W., & Wang, Y.H. (2018). Leptin-induced
inflammation by activating IL-6 expression contributes to the fibrosis
and hypertrophy of ligamentum flavum in lumbar spinal canal stenosis.
Biosci Rep, 38, BSR20171214.
Sun, C., Zhang, H., Wang, X., & Liu, X. (2020).
Ligamentum flavum fibrosis and hypertrophy: Molecular pathways, cellular
mechanisms, and future directions. FASEB J, 2020. doi:
10.1096/fj.202000635R. Online ahead of print.
Wu, H., Yu, Y., Huang, H., Hu, Y., Fu, S., Wang, Z., … Tang, N.
(2020). Progressive Pulmonary Fibrosis Is Caused by
Elevated Mechanical Tension on Alveolar Stem Cells. Cell, 180,
107-121.e17.
Yanagisawa, A., Ueda, M., Sueyoshi, T., Okada, T., Fujimoto, T., Ogi,
Y., … Mizuta, H. (2015). Amyloid deposits derived from transthyretin
in the ligamentum flavum as related to lumbar spinal canal stenosis. Mod
Pathol, 28, 201-207.
Yan, B., Huang, M., Zeng, C., Yao, N., Zhang, J., Yan, B., … Wang, L.
(2018). Locally Produced IGF-1 Promotes Hypertrophy of
the Ligamentum Flavum via the mTORC1 Signaling Pathway. Cell Physiol
Biochem, 48, 293-303.
Yang, X., Wang, H., Tu, Y., Li, Y., Zou, Y., Li, G., … Zhong, X.
(2020). WNT1-inducible signaling protein-1 mediates TGF-β1-induced
renal fibrosis in tubular epithelial cells and unilateral ureteral
obstruction mouse models via autophagy. J Cell Physiol, 235, 2009-2022.
Yang, Y., Zhang, L., Dong, J., Chen, Z., Xie, P., Chen, R., … Liu, B.
(2017). Intraoperative Myelography in Transpsoas
Lateral Lumbar Interbody Fusion for Degenerative Lumbar
Spinal Stenosis: A Preliminary Prospective Study. Biomed Res Int, 2017,
3742182.
Yoshiiwa, T., Miyazaki, M., Kawano, M., Ikeda, S., & Tsumura, H.
(2016). Analysis of the Relationship between Hypertrophy of
the Ligamentum Flavumand Lumbar Segmental Motion with Aging Process.
Asian Spine J, 10, 528-535.
Yuan, J., Liu, H., Gao, W., Zhang, L., Ye, Y., Yuan, L., … Zou, Y.
(2018). MicroRNA-378 suppresses myocardial fibrosis through a paracrine
mechanism at the early stage of cardiac hypertrophy
following mechanical stress. Theranostics, 8, 2565-2582.
Zerr, P., Palumbo-Zerr, K., Distler, A., Tomcik, M., Vollath, S., Munoz,
L.E., … Distler, J.H. (2012). Inhibition of Hedgehog signaling for the
treatment of murine sclerodermatous chronic graft-versus-host disease.
Blood, 120, 2909-2917.
Zhao, X., Sun, J., Chen, Y., Su, W., Shan, H., Li, Y., … Liang, H.
(2018). lncRNA PFAR Promotes Lung Fibroblast Activation and Fibrosis by
Targeting miR-138 to Regulate the YAP1-Twist Axis. Mol Ther, 26,
2206-2217.