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Abstract: This paper is devoted to the following Kirchhoff type of problems:
(
a + b

∫
Ω

[|∇u|2 + V(x)u2] dx
)
[−∆u + V(x)u] = λuq + u2∗−1, u > 0 x ∈ Ω,

u = 0, x ∈ ∂Ω.

where Ω is a smooth bounded domian in RN , a > 0, b > 0 are real constants, λ ∈ R,N ≥

5, q ∈ [1, 2∗ − 1), 2∗ = 2N
N−2 . Under some suitable assumptions on V(x), we will prove the

multiplicity of solutions for the Kirchhoff-type equation by the variational method.
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1 Introduction and Main Results

Consider the following Kirchhoff type with Dirichlet boundary value problem:
(
a + b

∫
Ω

[|∇u|2 + V(x)u2] dx
)
[−∆u + V(x)u] = λuq + u2∗−1, u > 0 x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.1)

where Ω is a smooth bounded domian in RN , a > 0, b > 0 are real constants, λ ∈ R,N ≥ 5,

q ∈ [1, 2∗ − 1), 2∗ = 2N
N−2 .

It is a stationary problem of the Kirchhoff type wave equation:

utt −

(
a + b

∫
Ω

|∇u|2 dx
)
∆u = f (x, u). (1.2)

Kirchhoff [1] introduced the original form of (1.2) in 1883 to study the free vibration of the elastic

strings. In (1.2), u denotes the displacement, f (x, u) the external force, and b the initial tension
∗Corresponding author. E-mail address: lanyongyi@jmu.edu.cn (Y.-Y. Lan).
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while a is related to the intrinsic properties of the string, such as Young modulus. Moreover, after

the works [2] and [3], many mathematicians had been discussing the solvability and asymptotic

behavior of (1.2) for decades. There were also previous works on the nonlocal parabolic type

problem involving the Dirichlet energy in [4] and [5]. As is well-known, because of the lack of

the compactness of the associated Sobolev embedding, a typical difficulty occured in proving the

Palais-Smale (PS) condition. Applying the pioneering argument by Brezis-Nirenberg [6] with the

concentration compactness lemma by P.L Lions [7], the authors got existence result.

Recently, many researchers were interested in the existence of (1.1) with critical Sobolev ex-

ponent when V(x) = 0. For example, F.F and C.F [8] considered the existence of the Kirchhoff

type equation by the sequentially weakly lower semicontinuity and the Palais-Smale property of

the energy functional involving the critical Sobolev exponent. Xu et al.[9] established the existence

of the positive solutions set of a nonlocal problem of the Kirchhoff type by the local and global

bifurcation techniques, a priori bounds for elliptic equation, and the properties of the principal

eigenvalues in N ≤ 3. Jin et al.[10] studied sign-changing solutions for nonlinear elliptic problem

with Carrier type by using the fixed-point index method. Li et al.[11] studied ground-state solu-

tions to Kirchhoff-type transmission problems with critical perturbation. Unlike other studies on

elliptical equations with critical growth, a ground-state solution was obtained using a perturbation

method instead of verifying that the mountain pass level is lower than the critical energy, which

was used to verify the PS condition.

Moreover, many researchers had obtained existence of solutions with critical Sobolev expo-

nent when V(x) , 0 (see[12-18] and the references therein). Liu et al.[13] considered a Kirch-

hoff type equation involving two potential by the Nehari manifold for the following Kirchhoff

equation −
(
a + b

∫
RN |∇u|2 dx

)
∆u + V(x)u = K(x)u2∗−1. Lin et al.[14] studied existence and con-

centration of ground state solutions for the following singularly perturbed Kirchhoff-type problem

−

(
ε2a + εb

∫
RN |∇u|2 dx

)
∆u + V(x)u = f (x). In [15], the author had shown the effect of suitable

singular potential V(x) on the existence of multiple solutions of −∆u = λV(x)u + |u|2
∗−2u in bound-

ed main. In [17], the existence of (1.1) was obtained with the aid of the mountain pass theorem

when f (x, u) = uq and K(x) = 1. In [18], the author proved the existence of the multiple positive
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solutions.

More recently, more and more authors began to pay attention to the higher dimensional prob-

lem when V(x) , 0(See [19-23]). Sun et al.[24] studied a class of superlinear Kirchhoff type equa-

tions with steep potential well and established the existence of two positive solutions by proposing

new techniques and introducing new superlinear hypotheses on f . Li et al.[25] considered the ex-

istence and nonexistence of energy minimizer of the Kirchhoff-Schrödinger energy function in

dimension four. In [26], the authors studied the bounded state solution of Kirchhoff type equation

with critical exponent in dimension four, with the concentration compactness argument for PS se-

quence. However, as is suggested Remark 4.4 in [26], the critical problem in high dimension had

not been completely solved yet. As we known, if N ≥ 5, the critical exponent was strictly less than

four, which made the energy structure of the associated functional drastically different from the

original semilinear problem. Then we readily expected the multiplicity of solutions. But serious

difficulties occured in dealing with the PS sequence. First, the weak limit was not a solution of the

original problem in Kirchhoff type problem, thus we could not get a solution even if we proved

that it was nontrivial. Moreover, it was an essential fact on our problem that the limiting problem

lacked the uniqueness of the solutions. Furthermore, one of them might have a negative energy. In

addition, since the weak limit might also have the negative energy, it seemed too hard to control

the PS sequence by the usual energy argument. This implied that the typical proof was no longer

valid for our problem and we needed a new strategy. In [27], the author had obtained the existence

of multiplicity of positive solutions of the Kirchhoff type critical problem in high dimension.

Motivated by the ideas in [26]-[27], we proved the existence of two solutions for (1.1) by

adding the potential V(x). For a mountain pass type solution, we utilized the limit function of the

fibering maps of the concentrating PS sequence, basing on Nehari type sets. For global minimum

solution, we needed a suitable modification to a concentrating minimizing sequence.

Throughout this paper, we make the following assumption:

(V) V ∈ C(Ω,R), inf
x∈Ω

V(x) = V0 > 0.
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Namely, it is the completion of C∞0 (Ω) under the norm

‖u‖ =

( ∫
Ω

(|∇u|2 + V(x)u2) dx
) 1

2

.

Moreover, it is easy to check that ‖ · ‖ is equivalent to the usual Sobolev norm.

We look for the weak solutions of (1.1) which are the same as the critical points of the func-

tional I : H1
0(Ω)→ R defined by

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 −

λ

q + 1

∫
Ω

|u|q+1 dx −
1
2∗

∫
Ω

u2∗
+ dx.

I is of C1(Ω) and u, v ∈ H1
0(Ω) with derivatives given by

〈I′(u), v〉 = (a + b‖u‖2)
∫

Ω

[∇u · ∇v + V(x)uv] dx − λ
∫

Ω

uqv dx −
∫

Ω

u2∗−1v dx.

Theorem 1.1. Let (V) holds, then there exists a constant b0 > 0 such that (1.1) has a solution u

with I(u) > 0 for any b ∈ (0, b0), 0 < λ < aλ1 if q = 1, and λ > 0 if 1 < q < 2∗ − 1. where

λ1 := inf
0,u∈H1

0 (Ω)

∫
Ω

(|∇u|2+V(x)u2) dx∫
Ω

u2 dx
be the principal eigenvalue of −∆ + V on Ω.

Theorem 1.2.Assume (V) holds, then there exists b1 > 0 such that (1.1) admits a solution v with

I(v) < 0 for all b ∈ (0, b1] and λ > 0.

This paper is organized as follows. In Section 2, we put some preliminaries for our main

argument. In Section 3, we construct a PS sequence on a suitable one and give the proof of our

main theorems.

2 Preliminary lemmas

For each u ∈ H1
0(Ω), we define the fibering map:

fu(t) := I(tu) =
at2

2
‖u‖2 +

bt4

4
‖u‖4 −

λtq+1

q + 1

∫
Ω

uq+1
+ dx −

t2∗

2∗

∫
Ω

u2∗
+ dx.

Consider the Nehari manifold

N = {u ∈ H1
0(Ω)\{0} : 〈I′(u), u〉 = 0} = {u ∈ H1

0(Ω)\{0} : f ′u(1) = 0}.

Therefore, we can split the Nehari manifold N into two parts, that is,

N− =

{
u ∈ N :

d2

dt2 I(tu) |t=1< 0
}

= {u ∈ N : f ′′u (1) < 0},
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N0 =

{
u ∈ N :

d2

dt2 I(tu) |t=1= 0
}

= {u ∈ N : f ′′u (1) = 0}.

Lemma 2.1. Let 0 < λ < aλ1 if q = 1 and λ > 0 if 1 < q < 2∗ − 1, then for each u ∈ H1
0(Ω)\{0},

either one of the next (i)-(iii) holds.

(i) fu(t) has an critical point in (0,∞). Moreover, f ′u(t) > 0 in (0,∞).

(ii) fu(t) possesses a unique critical point in (0,∞) such that f ′u(t0) = f ′′u (t0) = 0 and f ′u(t) > 0 in

(0, t0) ∪ (t0,∞).

(iii) fu(t) admits two critical points 0 < t0 < t1 such that f ′u(t) > 0 in (0, t0) ∪ (t1,∞), f ′u(t) < 0 in

(t0, t1) and f ′′u (t0) < 0 < f ′′u (t1).

Proof. If u+ = 0, then fu(t) = at2
2 ‖u‖

2 + bt4
4 ‖u‖

4, which implies (i). On the contrary, we assume

u+ , 0. For q = 1, put H(t) = t2∗−2
∫

Ω
u2∗ dx− bt2‖u‖4 and consider the equation f ′u(t) = 0 for t > 0,

which is equivalent to

a‖u‖2 − λ
∫

Ω

u2
+ dx = H(t). (2.1)

Notice that the left hand side is strictly positive by λ < aλ1 and Poincare inequality. We can easily

compute that H′(t) = (2∗ − 2)t2∗−3
∫

Ω
u2∗ dx − 2bt‖u‖4. It is easy to verify that there exists a unique

constant t∗ > 0 such that H(t∗) = 0 and

H′(t)
{
> 0 for t ∈ (0, t∗),
< 0 for t ∈ (t∗,∞). (2.2)

and lim
t→+∞

H(t) = −∞, so t∗ attains the maximum of H on t > 0.

(i) If a‖u‖2 − λ
∫

Ω
u2

+ dx > H(t∗), which is equivalent to H(t) > H(t∗), there exists no solution of

(2.1).

(ii) Assume a‖u‖2 − λ
∫

Ω
u2

+ dx = H(t∗), then taking t0 = t∗, noting (2.2) and the fact H(t) <

a‖u‖2 − λ
∫

Ω
u2

+ dx, for all t ∈ (0, t∗) ∪ (t∗,∞).

(iii) Suppose a‖u‖2 − λ
∫

Ω
u2

+ dx < H(t∗), which is equivalent to H(t) < H(t∗). Then there exist

just two solutions t0 < t∗ < t1 of (2.1). Since H(t) < a‖u‖2 − λ
∫

Ω
u2

+ dx for t ∈ (0, t0) ∪ (t1,∞),

H(t) > a‖u‖2 − λ
∫

Ω
u2

+ dx for t ∈ (t0, t1), and H′(t1) < 0 < H′(t0) by (2.2). This concludes the
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case q = 1.

For 1 < q < 2∗ − 1, define the function H̃(t) = λtq
∫

Ω
uq+1

+ dx + t2∗−1
∫

Ω
u2∗ dx − bt2‖u‖4 and

consider the equation f ′u(t) = 0 for t > 0, which is equivalent to

a‖u‖2 = H̃(t) (2.3)

We can easily compute that H̃′(t) = λqtq−1
∫

Ω
uq+1

+ dx + (2∗ − 1)t2∗−2
∫

Ω
u2∗ dx − 2bt‖u‖4. Since

q − 1 < 2∗ − 2 < 2, we can verify that there exists a unique constant t∗1 > 0 such that H̃(t∗1) = 0 and

H̃′(t)
{
> 0 for t ∈ (0, t∗1),
< 0 for t ∈ (t∗1,∞). (2.4)

and lim
t→+∞

H̃(t) = −∞, so t∗ attains the maximum of H̃ on t > 0.

(i) If a‖u‖2 > H̃(t∗1), which is equivalent to H̃(t) > H̃(t∗1), there exists no solution of (2.3).

(ii) Assume a‖u‖2 = H̃(t∗1), then taking t0 = t∗1, noting (2.4) and the fact H(t) < a‖u‖2, for all

t ∈ (0, t∗1) ∪ (t∗1,∞).

(iii) Suppose a‖u‖2 < H̃(t∗1),which is equivalent to H̃(t) < H̃(t∗1). Then there exist just two solutions

t0 < t∗1 < t1 of (2.3). Since H̃(t) < a‖u‖2 for t ∈ (0, t0)∪ (t1,∞), H̃(t) > a‖u‖2 for t ∈ (t0, t1), and

H̃′(t1) < 0 < H̃′(t0) by (2.4). �

Proposition 2.2.([26],Theorem 4.1). Let {un}n∈N ⊂ H1
0(Ω) be a bounded PS sequence for I, that is,

I(un) ≤ c, I′(un) → 0 in H−1(Ω) and ‖un‖H1
0 (Ω) is bounded. Then {un}n∈N has a subsequence which

converges strongly in H1
0(Ω), or otherwise, there exist a nonnegative function u0 ∈ H1

0(Ω) which is

a weak limit of {un}n∈N, a number k ∈ N and further, for every i ∈ {1, 2, · · · , k}, a sequence of radii

{Ri
n}n∈N ⊂ (0,∞), points {xi

n}n∈N ⊂ Ω and a nonnegative function vi ∈ D1,2(RN) which is solutions

of the “limiting problem”, satisfying the following

−

{
a + b

(
‖u0‖

2
H1

0 (Ω) +

k∑
j=1

‖v j‖
2
D1,2(RN )

)}
4u0 = λuq

0 + u2∗−1
0 in Ω, (2.5)

−

{
a + b

(
‖u0‖

2
H1

0 (Ω) +

k∑
j=1

‖v j‖
2
D1,2(RN )

)}
4vi = v2∗−1

i in RN , (2.6)
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such that up to subsequences, Ri
ndist(xi

n, ∂Ω)→ ∞ as n→ ∞,∥∥∥∥∥∥un − u0 −

k∑
i=1

(Ri
n)

N−2
2 vi(Ri

n(· − xi
n))

∥∥∥∥∥∥
D1,2(RN )

= o(1),

‖un‖
2
H1

0 (Ω) = ‖u0‖
2
H1

0 (Ω) +

k∑
i=1

‖vi‖
2
D1,2(RN ) + o(1),

and

I(un) = Ĩ(u0) +

k∑
i=1

Ĩ∞(vi) + o(1),

where o(1)→ 0 as n→ ∞ and we define

Ĩ(u0) :=
a
2
‖u0‖

2
H1

0 (Ω) +
b
4

(
‖u0‖

2
H1

0 (Ω) +

k∑
j=1

‖v j‖
2
D1,2(RN )

)
‖u0‖

2
H1

0 (Ω)

−
λ

q + 1

∫
Ω

uq+1
0 dx −

1
2∗

∫
Ω

u2∗
0 dx,

Ĩ∞(vi) :=
a
2
‖vi‖

2
D1,2(RN ) +

b
4

(
‖u0‖

2
H1

0 (Ω) +

k∑
j=1

‖v j‖
2
D1,2(RN )

)
‖vi‖

2
D1,2(RN ) −

1
2∗

∫
RN

v2∗
i dx.

Here, let us recall the well-known facts on the Talenti function in [28]. For any ε > 0, define

Ũε(x) :=
ε

N−2
2(

ε2 + |x|2
) N−2

2

for x ∈ RN .

and put S is the usual Sobolev constant defined by

S = inf
U∈D1,2(RN )\{0}

∫
RN |∇U |2 dx

(
∫
RN |U |2

∗ dx)2/2∗
= inf

U∈D1,2(RN )\{0}

‖U‖21,2
‖U‖22∗

,

then we have ‖Ũε‖
2
1,2 = S ‖Ũε‖

2
2∗ .

Furthermore, put

Uε(x) := (N(N − 2))
N−2

4 Ũε(x),

then Uε(x) is a solution of the semilinear critical problem:{
−∆U = U2∗−1,U > 0 in RN ,
U ∈ D1,2(RN). (2.7)
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Now, as in [6], we define the Talenti function scaled and cut off approprately. Assume 0 ∈ Ω

and ξ is a smooth cut off function compactly supported in Ω such that 0 ≤ ξ ≤ 1 and ξ = 1 on

some neighborhood of 0. Define

ũε(x) := Ũε(x)ξ(x) ∈ H1
0(Ω),

Then we put vε := ũε/‖ũε‖2∗ and estimate
∫

Ω
|∇vε|2 dx = S + O(εN−2),∫

Ω
v2∗
ε dx = 1,∫

Ω
vq+1
ε dx = αεβ + O(εN−2).

(2.8)

where α > 0 and 0 < β = β(q,N) ≤ 2.

Next, we concern with the “limiting problem” for our case,
(
a + b

∫
RN [|∇θ|2 + V(x)θ2] dx

)
[−∆θ + V(x)θ] = θ2∗−1, θ > 0 in RN ,

θ ∈ D1,2(RN).
(2.9)

and we have the associated functional,

I∞(θ) =
a
2
‖θ‖21,2 +

b
4
‖θ‖41,2 −

1
2∗

∫
RN
|θ|2

∗

dx(θ ∈ D1,2(RN)).

Consider the function on t > 0,

g(t) = I∞(tUε) =
a
2

S N/2t2 +
b
4

S Nt4 −
S N/2

2∗
t2∗ .

We note the equation for t > 0,

a + bS N/2t2 − t2∗−2 = 0, (2.10)

which is equivalent to g′(t) = 0. If a = 1 and b = 0, t = 1 are the unique critical point of g on

t > 0, g(1) = I∞(Uε) = S N/2/N. Define b2 := inf{b > 0 | there exists no solution of (2.8) }. If

b > 0 is large, (2.8) does not have any solution because of 2∗ < 4. So we consider b ∈ (0, b2).

Lemma 2.3. The following assertions are true.

(i) For all b ∈ (0, b2), g(t) has just two critical points for t > 0, say 0 < τ−b < τ+
b , satisfying

g′′(τ−b ) < 0 < g′′(τ+
b ).
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(ii) There exists a value b1 ∈ (0, b2), which depends only on N, such that g(τ+
b ) ≤ 0 for any

b ∈ (0, b1].

Proof. (i) Noting the definition of b2 > 0, the proof of (i) is similar to the proof of Lemma 2.1(iii).

(ii) If b ∈ (0, b2) is small enough and 2∗ < 4, then there exists a τ+
b such that g(τ+

b ) ≤ 0. By (i), we

know that g(τ+
b ) is minimum value. So τ+

b attains the nonpositive minimum value of g on t > 0. �

Lemma 2.4. Assume b ∈ (0, b2), 1 ≤ q < 2∗ − 1, λ > 0 and define fε(t) := I(tvε) for t > 0. then the

following assertions are true.

(i) we have constants 0 < t−b,ε < t+
b,ε such that f ′ε(t±b ) = 0 and f ′′ε (t−b,ε) < 0 < f ′′ε (t+

b,ε) for small ε > 0.

(ii) If we take ε > 0 smaller if necessary, we get I(t−b vε) < g(τ−b ) and I(t+
b vε) < g(τ+

b ) .

Proof. (i) The first part is proved by Lemma 2.3.

(ii) Noting Lemma 2.3 and (2.8), we have a constant ε0 > 0 such that for all ε ∈ (0, ε0) and

b ∈ (0, b2), there exist just two solutions 0 < t−b,ε < t+
b,ε of f ′ε(t) = 0 such that

a‖vε‖2 + b(t±b,εn
)2‖vε‖4 − λ(t±b,εn

)q−1
∫

Ω

vq+1
ε dx − (t±b,εn

)2∗−2 = 0, (2.11)

and

f ′′ε (t−b,ε) < 0 < f ′′ε (t+
b,ε). (2.12)

First, we prove that for any sequence {εn}n∈N with εn → 0 as n → ∞, t±b,εn
is bounded. By

contradiction, there exists a sequence {εn}n∈N with εn → 0 as n→ ∞ such that t±b,εn
→ ∞ as n→ ∞.

From (2.8) and (2.11), we have a(S +O(εN−2
n ))+b(t±b,εn

)2(S 2 +O(εN−2
n ))−λ(t±b,εn

)q−1(αεβn +O(εN−2
n ))−

(t±b,εn
)2∗−2 = 0. Then aS +bS 2(t±b,εn

)2−(t±b,εn
)2∗−2 = 0,which implies that aS

(t±b,εn
)2 +bS 2 =

(t±b,εn
)2∗−2

(t±b,εn
)2 . Since

2∗ < 4, we have the contradiction as n → ∞. Therefore we may assume that there exist constants

t±b > 0 such that t±b,εn
→ t±b as n→ ∞.

By (2.8), (2.11), (2.12) and Lemma 2.3 (i), we conclude that 0 < t−b < t+
b are the solutions to

aS + bS 2t2 − t2∗−2 = 0(t > 0). (2.13)
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Here notice that

t±b = τ±b S (N−2)/4, (2.14)

with τ±b > 0 in Lemma 2.3. Put

δ±n , t±b,εn
− t±b , (2.15)

then δ±n → 0 as n→ ∞. Now, using (2.8) and (2.13)-(2.15), we estimate,

I(t±b,εn
vεn) = g(τ±b ) − λCεβn + o(δ±n ) + o(εβn)

for some constant C > 0, where g is defined as in Lemma 2.3.

Next, we prove δ±n = O(εβn). In order to prove I(t±b,εn
vεn) < g(τ±b ), we need to prove −λCεβn +

o(δ±n ) + o(εβn) < 0, which implies that we need to prove δ±n = O(εβn). By (2.8), (2.11), (2.13) and

(2.15), we have

0 = a‖vεn‖
2 + b(t±b,εn

)2‖vεn‖
4 − λ(t±b,εn

)q−1
∫

Ω

vq+1
εn

dx − (t±b,εn
)2∗−2

= −λC′εβn + C±b δ
±
n + o(δ±n ) + o(εβn),

(2.16)

where C′ > 0 is some constant and C±b = 2bS 2t±b − (2∗ − 2)(t±b )2∗−3. By (2.14) and Lemma 2.3 (i),

we have g′′(t−b ) = C−b < 0 < C+
b = g′′(t+

b ). By (2.16), we have

0 = −λC′ + C±b
δ±n

ε
β
n

+
o(δ±n )

ε
β
n

+
o(εβn)

ε
β
n

= −λC′ + C±b
δ±n

ε
β
n

+
o(εβn)
δ±n

δ±n

ε
β
n

= −λC′ +
[
C±b +

o(εβn)
δ±n

]δ±n
ε
β
n

Since C′ and C±b are constants, we have δ±n

ε
β
n
→ λC′

C±b
, 0 as n→ ∞. By the definition of infinitesimal

of the same order, we have I(t±b vε) < g(τ±b ). �

3 Proof of Theorem 1.1 and 1.2

To construct a PS sequence, we define σ = σ(b, λ) by

σ := inf
{

lim inf
n→∞

I(un) : {un}n∈N ∈ M

}
,
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M :=
{
{un}n∈N ∈ N : lim

n→∞
f ′′un

(1) = 0
}
.

Put

c− = c−(b, λ) := inf
u∈N−

I(u), c0 = c0(b, λ) := inf
u∈N0

I(u).

Here we define σ = ∞ if M = ∅ and c0 = ∞ if N = ∅. Then σ ≤ c0. With the assumptions in

Lemma 2.1, standard arguments show that

inf
u∈N
‖u‖ > 0 (3.1)

and c−, c0 > 0 (as long as each restriction is nonempty). Furthermore, it is obvious from Lemma

2.4 that N− , ∅ for all b ∈ (0, b2) and all λ ∈ (0, aλ1) if q = 1 and all λ > 0 if q ∈ (1, 3).

Lemma 3.1. Suppose 1 < q < 2∗ − 1, then

σ ≥
a2(q − 1)2

4(q + 1)(3 − q)b
.

Proof. By the definition of σ, take {un}n∈N ∈ M and put cn = f ′′un
(1), then we have

cn = f ′′un
(1) − q f ′un

(1) = −a(q − 1)‖un‖
2 + (3 − q)b‖un‖

4 − (2∗ − q − 1)
∫

Ω

(un)2∗
+ dx, (3.2)

and

I(un) = I(un) −
1

q + 1
f ′un

(1)

=
a(q − 1)
2(q + 1)

‖un‖
2 −

(3 − q)b
4(q + 1)

‖un‖
4 +

2∗ − q − 1
2∗(q + 1)

∫
Ω

(un)2∗
+ dx.

Dividing (3.2) by 2∗(q + 1), we get

I(un) =

(
1
2
−

1
2∗

)
a(q − 1)

q + 1
‖un‖

2 +

(
1
2∗
−

1
4

)
(3 − q)b

q + 1
‖un‖

4 −
cn

2∗(q + 1)
. (3.3)

On the other hand, it follows from (3.2) that

−a(q − 1)‖un‖
2 + (3 − q)b‖un‖

4 = (2∗ − q − 1)
∫

Ω

(un)2∗
+ dx + cn ≥ cn.

This suggests

‖un‖
2 ≥

a(q − 1)
(3 − q)b

+
cn

(3 − q)b‖un‖
2 .

11



Applying this inequality to (3.1), (3.3) and taking n→ ∞, we conclude

lim inf
n→∞

I(un) ≥
a2(q − 1)2

4(q + 1)(3 − q)b
.

Since {un}n∈N ∈ M is arbitrary, we finish the proof. �

Proposition 3.2. Let 1 < q < 2∗ − 1, there exists a constant b3 ∈ (0, b2] depending only on N and

q such that

c− <
a2(q − 1)2

4(q + 1)(3 − q)b
≤ σ

holds for any b ∈ (0, b3) and λ > 0.

Proof. First we clearly see that g(τ−b ) is nondecreasing with respect to b ∈ (0, b2). Furthermore,

there is a constant b3 ∈ (0, b2] such that

g(τ−b3
) ≤

a2(q − 1)2

4(q + 1)(3 − q)b3
,

then using Lemma 2.4 and Lemma 3.1, for all b ∈ (0, b3) and λ > 0, we have

c− < g(τ−b ) ≤ g(τ−b3
) ≤

a2(q − 1)2

4(q + 1)(3 − q)b3
<

a2(q − 1)2

4(q + 1)(3 − q)b
≤ σ. �

Lemma 3.3. Let q = 1 and 0 ≤ λ ≤ aλ1, then there exist constants C(N) > 0 depending on N and

C(N,Ω) > 0 depending on N,Ω such that

σ ≥ min
{

C(N)b−1,C(N,Ω)b−2∗/(4−2∗)
}
.

Proof. Similarly to the proof of Lemma 3.1, we take {un}n∈N ∈ M and put cn = f ′′un
(1), then

cn = f ′′un
(1) − f ′un

(1) = 2b‖un‖
4 − (2∗ − 2)

∫
Ω

(un)2∗
+ dx, (3.4)

and

I(un) = I(un) −
1
2

f ′un
(1) =

4 − 2∗

4 · 2∗
b‖un‖

4. (3.5)

Here we divide the proof into two cases:

Case1: λ

∫
Ω

(un)2
+ dx ≤

a
2
‖un‖

2, Case2: λ

∫
Ω

(un)2
+ dx ≥

a
2
‖un‖

2.

12



Case 1. Using f ′un
(1) = 0 and (3.4), we obtain

a
2
‖un‖

2 ≤ a‖un‖
2 − λ

∫
Ω

(un)2
+ dx =

∫
Ω

(un)2∗
+ dx − b‖un‖

4 =
4 − 2∗

4 · 2∗
b‖un‖

4 −
cn

2∗ − 2
.

It follows that

‖un‖
2 ≥

(2∗ − 2)a
2(4 − 2∗)b

+
cn

(4 − 2∗)b‖un‖
2 .

Therefore, applying this inequality to (3.5), we have

I(un) ≥
4 − 2∗

4 · 2∗
b
(

(2∗ − 2)a
2(4 − 2∗)b

+
cn

(4 − 2∗)b‖un‖
2

)2

.

Case 2. Noting λ ≤ aλ1, the Holder inequality and (3.4), we estimate

a
2
‖un‖

2 ≤ λ

∫
Ω

(un)2
+ dx ≤ aλ1

( ∫
Ω

dx
)1−2/2∗( ∫

Ω

(un)2∗
+ dx

)2/2∗

= aλ1|Ω|
1−2/2∗

(
2b‖un‖

4

2∗ − 2
−

cn

2∗ − 2

)2/2∗

= aλ1|Ω|
1−2/2∗

(
2

2∗ − 2
−

cn

(2∗ − 2)b‖un‖
4

)2/2∗

b2/2∗‖un‖
8/2∗ .

Thus we observe

a
2
‖un‖

4 ≥

(
2aλ1|Ω|

1−2/2∗
(

2
2∗ − 2

−
cn

(2∗ − 2)b‖un‖
4

)2/2∗

b2/2∗
)−2·2∗/(4−2∗)

.

Then (3.5) with this estimate suggest

I(un) ≥
4 − 2∗

4 · 2∗
b
(
2aλ1|Ω|

1−2/2∗
(

2
2∗ − 2

−
cn

(2∗ − 2)b‖un‖
4

)2/2∗

b2/2∗
)−2·2∗/(4−2∗)

.

Combining Case1, Case2, the definition of {un}n∈N ∈ M and (3.1), it follows that

lim inf
n→∞

I(un) ≥ min
{

(2∗ − 2)a2

16 · 2∗(4 − 2∗)b
,

4 − 2∗

4 · 2∗

(
(2∗ − 2)2/2∗

2aλ1|Ω|1−2/2∗22/2∗

)2·2∗/(4−2∗)

b−2∗/(4−2∗)
}
,

where C(N) =
(2∗−2)a2

16·2∗(4−2∗) ,C(N,Ω) = 4−2∗
4·2∗

(
(2∗−2)2/2∗

2aλ1 |Ω|1−2/2∗22/2∗

)2·2∗/(4−2∗)

. �

Proposition 3.4. In the case q = 1, there exist a value b4 ∈ (0, b2] depending on N,Ω, C(N) > 0

depending on N and C(N,Ω) > 0 depending on N,Ω such that

c− < min
{

C(N)b−1,C(N,Ω)b−2∗/(4−2∗)
}
≤ σ

13



is ture for all b ∈ (0, b4) and λ ∈ (0, aλ1).

Proof. Using Lemma 3.3, we give the proof similarly to that of Proposition 3.2. �

As we known, by Proposition 3.2 and 3.4, we construct the PS sequences in N− at the level

c−. Next, using the above proposition , we prove the proof of our main from two parts. First, we

consider the critical point with positive energy in N−. Second, we deal with the critical point with

negative energy. Recall the constants b1, b2 > 0, τ±b > 0 and the function g in Lemma 2.3.

Proof of Theorem 1.1. Let b3, b4 ∈ (0, b2] be constants determined in Proposition 3.2 and 3.4

respectively. Define b0 := b3 if q > 1 and b0 := b4 if q = 1. Then the proof lies in two steps.

First step. We need to construct a bounded PS sequence {un}n∈N ∈ N
− at the level c−, that is,

I(un) = c− + o(1), I′(un) = o(1) in H−1(Ω) as n→ ∞, and {un}n∈N is bounded in H1
0(Ω).

As f ′u(1) = 0 for all u ∈ N , the Sobolev embedding implies

a‖u‖2 + b‖u‖4 = λ

∫
Ω

uq+1
+ dx +

∫
Ω

u2∗
+ dx ≤ C(λ‖u‖q+1 + ‖u‖2

∗

),

for some constant C > 0 which does not depend on u. Since 2 < q + 1 < 2∗ < 4, we conclude the

boundedness of N−.

Now let us construct the desired PS sequence for I. As 2∗ < 4, I is coercive, that is, I(un) →

∞ as n → ∞. In particular, it is bounded from below on N− ∪ N0. Therefore, by the Ekeland

variational principle, we have a sequence {un}n∈N ∈ N
− ∪ N0 such that

I(un) ≤ inf
u∈N−∪N0

I(u) +
1
n

and I(ω) ≥ I(un) −
1
n
‖un − ω‖(ω ∈ N− ∪ N0). (3.6)

Proposition 3.2 and 3.4 suggest that inf
u∈N−∪N0

I(u) = c− and {un}n∈N ∈ N
− for large n. Since the

boundedness of N−, we have {un}n∈N is bounded. Next, we claim ‖I′(un)‖H−1(Ω) = o(1) as n → ∞.

Noting the upper bounds for c− in the propositions, the rest of the proof is done similarly to the

argument in [29]. This shows the existence of the desired PS sequence.

Second step. We need to prove that there exists a critical point u ∈ N− of I with I(u) = c−, which

implies that we need to show the strong convergence of {un}n∈N.
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By Lemma 2.4, we have c− ∈ (0, g(τ−b )). Now, we suppose that {un}n∈N does not contain any

subsequence which strongly converges in H1
0(Ω) on the contrary. We consider the limit function of

the fibering maps,

lim
n→∞

fun(t) = lim
n→∞

I(tun) = φ(t) + ψ(t).

Then from Proposition 2.2, we have

un = u0 +

k∑
j=1

v j + o(1) in D1,2(RN),

φ(t) :=
a‖u0‖

2

2
t2 +

bA‖u0‖
2

4
t4 −

λ
∫

Ω
uq+1

0 dx

q + 1
tq+1 −

∫
Ω

u2∗
0 dx

2∗
t2∗ ,

ψ(t) :=
k∑

i=1

(a‖vi‖
2
1,2

2
t2 +

bA‖vi‖
2
1,2

4
t4 −

∫
RN v2∗

i dx

2∗
t2∗

)
,

where A := lim
n→∞
‖un‖

2. Similarly we get lim
n→∞

f ′un
(t) = φ′(t) + ψ′(t) and lim

n→∞
f ′′un

(t) = φ′′(t) + ψ′′(t).

Since un ∈ N
− which is equivalent to f ′′un

(1) < 0 and f ′un
(1) = 0, we have f ′un

(t) > 0 for all t ∈ (0, 1)

by Lemma 2.1(iii). Thus lim
n→∞

f ′un
(t) = φ′(t)+ψ′(t) ≥ 0 for all t ∈ (0, 1), which means that φ(t)+ψ(t)

is nondecreasing for all t ∈ (0, 1).

Equation (2.5) and (2.6) show that φ′(1) = ψ′(1) = 0. Furthermore, as un ∈ N
−, f ′′un

(1) < 0,

which implies φ′′(1) + ψ′′(1) ≤ 0. On the other hand, we calculate

φ′′(1) = B‖u0‖
2 + (2∗ − q − 1)λ

∫
Ω

uq+1
0 dx,

and

ψ′′(1) =

k∑
i=1

(B‖vi‖
2
1,2),

where B := (2 − 2∗)a + (4 − 2∗)bA. If B ≥ 0, we obtain

φ′′(1) + ψ′′(1) = BA + (2∗ − q − 1)λ
∫

Ω

uq+1
0 dx > 0,

which is a contradiction. Therefore, B < 0. This implies ψ′′(1) < 0. Then, by Lemma 2.1, we

conclude that ψ(t) is increasing on (0, 1). In particular, ψ(t) > 0 for all t ∈ (0, 1].

Lastly, as 0 < ‖u0‖
2 < A, we have

f ′u0
(1) = a‖u0‖

2 + b‖u0‖
4 − λ

∫
Ω

uq+1
0 dx −

∫
Ω

u2∗
0 dx < φ′(1) = 0.
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Then fu0(t) has the unique local maximum t0 ∈ (0, 1) and t0u0 ∈ N
− by Lemma 2.1 (ii). As a

consequence, we show

I(t0u0) = fu0(t0) < φ(t0) < φ(t0) + ψ(t0) ≤ φ(1) + ψ(1) = c−.

This contradicts the definition of c−. So there exists u ∈ N− such that un → u with I(u) = c−. �

Proof of Theorem 1.2. First, we observe that for any b ∈ (0, b2), c := inf
u∈H1

0 (Ω)
I(u) < g(τ+

b ) by

Lemma 2.4. Take b1 ∈ (0, b2) from Lemma 2.3 (ii) so that g(τ+
b ) ≤ 0 for all b ∈ (0, b1]. Next, we

need to prove that if c < 0, then there exists a critical point v with I(v) = c. Actually, since 2∗ < 4,

I is coercive. Thus c > −∞. For any minimizing sequence {vn}n∈N at the level c, there exists a PS

sequence {un}n∈N of I at the same level such that un = vn + o(1) in H1
0(Ω) by the Ekeland variational

principle. Obviously, {un}n∈N is bounded in H1
0(Ω) from the coerciveness of I. Then our aim is to

show the strong convergence of {un}n∈N. On the contrary, we suppose that {un}n∈N does not contain

any subsequence which strongly converges in H1
0(Ω). Define ũn := un − u0 ∈ H1

0(Ω). Then we have

lim
n→∞
‖ũn‖

2 =
∑k

i=1 ‖vi‖
2 > 0 by Proposition 2.2. Take a constant e > 0 so that ‖u0‖

2−e lim
n→∞
‖ũn‖

2 = 0.

Let s ∈ R be a parameter satisfying s ∈ (−1, 1/e). We put

wn,s := (1 + s)1/2u0 + (1 − es)1/2ũn ∈ H1
0(Ω).

Then, for s ∈ (−1, 1/e), we have

lim
n→∞
‖wn,s‖

2 = ‖(1 + s)1/2u0‖
2 + lim

n→∞
‖(1 − es)1/2ũn‖

2

= (1 + s)‖u0‖
2 + (1 − es) lim

n→∞
‖ũn‖

2

= ‖u0‖
2 + lim

n→∞
‖ũn‖

2 + s(‖u0‖
2 − e lim

n→∞
‖ũn‖

2)

= lim
n→∞
‖un‖

2 + s(‖u0‖
2 − e lim

n→∞
‖ũn‖

2) = A,

where A = lim
n→∞
‖un‖

2 as before. Now we consider

h(s) := lim
n→∞

I(wn,s).

Note that h(0) = lim
n→∞

I(u) = c. In addition, by Proposition 2.2 and the Vitali convergence theorem,
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we have

h(s) =
a‖u0‖

2

2
(1 + s) +

bA‖u0‖
2

4
(1 + s) −

λ
∫

Ω
uq+1

0 dx

q + 1
(1 + s)(q+1)/2 −

∫
Ω

u2∗
0 dx

2∗
(1 + s)2∗/2

+

k∑
i=1

(a‖vi‖
2
1,2

2
(1 − es) +

bA‖vi‖
2
1,2

4
(1 − es) −

∫
RN v2∗

i dx

2∗
(1 − es)2∗/2

)
.

Direct calculations imply

h′(0) =
a‖u0‖

2

2
+

bA‖u0‖
2

4
−
λ
∫

Ω
uq+1

0 dx

q + 1
−

∫
Ω

u2∗
0 dx

2∗

− e
k∑

i=1

(a‖vi‖
2
1,2

2
+

bA‖vi‖
2
1,2

4
−

∫
RN v2∗

i dx

2∗

)
,

and

h′′(0) = −
λ(q − 1)

∫
Ω

uq+1
0 dx

4
−

(2∗ − 2)
∫

Ω
u2∗

0 dx

2∗
− e2

k∑
i=1

(2∗ − 2)
∫
RN v2∗

i dx

4
,

which implies h′′(0) < 0. Moreover, from (2.5) and (2.6), we get

h′(0) =
a‖u0‖

2

2
+

bA‖u0‖
2

4
−

(a + bA)‖u0‖
2

2
− e

k∑
i=1

(a‖vi‖
2
1,2

2
+

bA‖vi‖
2
1,2

4
(a + bA)‖vi‖

2

2

)

= −
bA‖u0‖

2

4
− e

k∑
i=1

(
−

bA‖vi‖
2
1,2

4

)
=
−bA

4

(
‖u0‖

2 − e
k∑

i=1

‖vi‖
2
1,2

)
= 0.

Consequently, we see

h(0) = c, h′(0) = 0, h′′(0) < 0.

Thus, for sufficiently small s0 > 0, we have h(s0) < h(0) = c. Therefore, for s = s0, it follows that

I(wn,s0) < c.

If n is sufficiently large, then this contradicts the definition of c. We finish the proof. �
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