References
- Ainsworth EA. 2008. Rice production in a changing climate: a
meta-analysis of responses to elevated carbon dioxide and elevated
ozone concentration. Global Change Biology. 14:1642–1650. doi:
10.1111/j.1365-2486.2008.01594.x
- Ainsworth EA, Ort DR. 2010. How do we improve crop production in a
warming world? Plant Physiol. 154(2):526-30. doi:
10.1104/pp.110.161349.
- Andrews M, Condron LM, Kemp PD, Topping JF, Lindsey K, Hodge S, Raven
JA. 2019. Elevated CO2 effects on nitrogen assimilation and growth of
C3 vascular plants are similar regardless of N-form assimilated. J Exp
Bot. 70(2):683-690. doi: 10.1093/jxb/ery371.
- Bloom AJ. 2015. The increasing importance of distinguishing among
plant nitrogen sources. Curr Opin Plant Biol. 25:10-6. doi:
10.1016/j.pbi.2015.03.002.
- Deng Q, Hui D, Luo YQ, Elser J, Wang YP, Loladze I, et al. 2015.
Down-regulation of tissue N:P ratios in terrestrial plants by elevated
CO2. Ecology. 96(12): 3354-3362.
doi.org/10.1890/15-0217.1.
- Easterling, W, and Apps, M. 2005. Assessing the consequences of
climate change for food and forest resources: A view from the IPCC.
CLIMATIC CHANGE. 70(1-2): 165-189. DOI: 10.1007/s10584-005-5941-0.
- ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) Dr. Pieter Tans and Dr.
Ralph Keeling, Scripps Institution of Oceanography
(scrippsco2.ucsd.edu/)
- Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, et al. 2016.
Overexpression of a pH-sensitive nitrate transporter in rice increases
crop yields. Proc Natl Acad Sci USA. 113(26):7118-23. doi:
10.1073/pnas.1525184113.
- Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, et al. 2011. Spatial
expression and regulation of rice high-affinity nitrate transporters
by nitrogen and carbon status. J Exp Bot. 62(7):2319-32. doi:
10.1093/jxb/erq403.
- Fletcher JC. 2018. The CLV-WUS Stem Cell Signaling Pathway: A roadmap
to crop yield optimization. Plants (Basel). 7(4). pii: E87. doi:
10.3390/plants7040087.
- Hasegawa T, Li T, Yin X, Zhu Y, Boote K, Baker J. et al, 2017. Causes
of variation among rice models in yield response to
CO2 examined with Free-Air CO2Enrichment and growth chamber experiments. Sci Rep. 7(1):14858. doi:
10.1038/s41598-017-13582-y.
- Hasegawa T, Sakai H, Tokida T, Usui Y, Nakamura H, Wakatsuki H et al.
2019. A high-yielding rice cultivar ”Takanari” shows no N constraints
on CO2 fertilization. Front Plant Sci.10:361. doi:
10.3389/fpls.2019.00361. eCollection 2019.
- Hu B, Wang W, Ou S, Tang J, Li H, Che R, et al. 2015. Variation in
NRT1.1B contributes to nitrate-use divergence between rice subspecies.
Nat Genet. 47(7):834-8. doi: 10.1038/ng.3337.
- Huang J, Yang H, Yang L, Liu H, Dong G, Zhu J et al, 2004. Effects of
free-air CO2 enrichment (FACE) on yield formation of
rice (Oryza sativa L.) and its interaction with nitrogen. Scientia
Agricultura Sinica. 37(12):1824-1830. (in Chinese with English
abstract)
- Jiang P, Hong X, Feng L, Xu Z, Fang Z. 1997. The effect of nitrogen
concentration on nitrogen absorption and tiller development in rice
under water culture. Acta Agronomica Sinica. 23(2): 191-199.
- Jiang Q, Zhang J, Xu X, Liu G, Zhu J. 2020. Effects of free-air CO2
enrichment (FACE) and nitrogen (N) supply on N uptake and utilization
of indica and japonica cultivars (Oryza sativa L.). Ecol Process 9,35
. doi:10.1186/s13717-020-00238-5
- Jitla DS, Rogers GS, Seneweera SP, Basra AS, Oldfield RJ, Conroy JP.
1997. Accelerated early growth of rice at elevated CO2(Is it related to developmental changes in the shoot apex?). Plant
Physiol. 115(1):15-22. doi: 10.1104/pp.115.1.15
- Kim HY, Lieffering M, Miura S, Kobayashi K, Okada M. 2001. Growth and
nitrogen uptake of CO2-enriched rice under field
conditions. New Phytologist 150: 223–229.
doi.org/10.1046/j.1469-8137.2001.00111.x
- Kim HY, Lieffering M, Kobayashi K, Okada M, Miura S. 2003a. Seasonal
changes in the effects of elevated CO2 on rice at
three levels of nitrogen supply: a free air CO2enrichment (FACE) experiment. Global Change Biology 9: 826–837. DOI:
10.1046/j.1365-2486.2003.00641.x
- Kim HY, Lieffering M, Kobayashi K, Okada M, Mitchell MW, Gumpertz M.
2003b. Effects of free-air CO2 enrichment and nitrogen
supply on the yield of temperate paddy rice crops. Field Crop Res. 83,
261–270. DOI: 10.1016/S0378-4290(03)00076-5
- Kimball BA. 2016. Crop responses to elevated CO2 and
interactions with H2O, N, and temperature. Curr Opin
Plant Biol. 31:36-43. doi: 10.1016/j.pbi.2016.03.006.
- Lai, S, Zhou, S, Gu W, Zhuang S, Zhou J, Zhu J. Yang L, Wang Y. 2014.
Effects of CO2 concentration, nitrogen supply and
transplanting density on yield formation of hybrid rice Shanyou 63: a
FACE study. J. Agro-Environ. Sci. 233(5):836-843.
- Li T, Hasegawa T, Yin X, Zhu Y, Boote K, Adam M, et al. 2015.
Uncertainties in predicting rice yield by current crop models under a
wide range of climatic conditions. Glob Chang Biol. 21(3):1328-41.
doi: 10.1111/gcb.12758.
- Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, et al. 2003. Control of
tillering in rice. Nature. 422(6932):618-21.
- Lieffering M, Kim HY, Kobayashi K, Okada M. 2004. The impact of
elevated CO2 on the elemental concentrations of
field-grown rice grains. Field Crops Research. 88(2-3): 279-286. DOI:
10.1016/j.fcr.2004.01.004.
- Long S.P, Ainsworth E.A, Rogers A, Ort D.R. 2004. Rising atmospheric
carbon dioxide: plants face the future. Annu. Rev. Plant Biol.
55:591–628. doi:10.1146/annurev.arplant.55.031903.141610.
- Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR. 2006. Food for
thought: lower-than-expected crop yield stimulation with rising
CO2 concentrations. Science. 312(5782):1918-21. doi:
10.1126/science.1114722
- Luo YQ, Hui DF, and Zhang DQ. 2006. Elevated carbon dioxide stimulates
net accumulations of carbon and nitrogen in terrestrial ecosystems: A
meta-analysis. Ecology 87: 53-63. doi: 10.1890/04-1724.
- Makino A, Harada M, Sato T, Nakano H, Mae T. 1997. Growth and N
allocation in rice plants under CO2 enrichment. Plant
Physiol. 115(1):199-203. doi: 10.1104/pp.115.1.199
- Matsumoto T, Wu J, Itoh T, Numa H, Antonio B, & Sasaki T. 2016. The
Nipponbare genome and the next-generation of rice genomics research in
Japan. Rice (New York, N.Y.), 9(1), 33. doi:10.1186/s12284-016-0107-4
- Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. 2015.
CO2-responsive CONSTANS, CONSTANS-like, and time of
chlorophyll a/b binding protein Expression1 protein is a positive
regulator of starch synthesis in vegetative organs of rice. Plant
Physiol. 167(4):1321-31. doi: 10.1104/pp.15.00021.
- Mueller KE, Hobbie SE, Tilman D, Reich PB. 2013. Effects of plant
diversity, N fertilization, and elevated carbon dioxide on grassland
soil N cycling in a long-term experiment. Glob Chang Biol.
19(4):1249-61. doi: 10.1111/gcb.12096.
- Nakano H, Yoshinaga S, Takai T, Arai-Sanoh Y, Kondo K, Yamamoto T, et
al. 2017. Quantitative trait loci for large sink capacity enhance rice
grain yield under free-air CO2 enrichment conditions.
Sci. Rep. 7:1827. doi.org/10.1038/s41598-017-01690-8.
- Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010.
CO2 enhancement of forest productivity constrained by
limited nitrogen availability. Proc. Natl. Acad. Sci., USA 107:
19368-19373. doi.org/10.1073/pnas.1006463107.
- Reich, P. B., S. E. Hobbie, T. D. Lee, D. S. Ellsworth, J. B. West, D.
Tilman, J. M. Knops, S. Naeem, and J. Trost. 2006. Nitrogen limitation
constrains sustainability of ecosystem response to
CO2. Nature 440: 922-925. doi:10.1038/nature04486.
- Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et
al. 2014. Assessing agricultural risks of climate change in the 21st
century in a global gridded crop model intercomparison. Proc Natl Acad
Sci U S A. 111(9):3268-73. doi: 10.1073/pnas.1222463110.
- Rubio-Asensio JS, Bloom AJ. 2017. Inorganic nitrogen form: a major
player in wheat and Arabidopsis responses to elevated CO2. J Exp Bot.
68(10):2611-2625. doi: 10.1093/jxb/erw465.
- Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Kimball BA,
et al. 2013. Global warming can negate the expected
CO2 stimulation in photosynthesis and productivity for
soybean grown in the Midwestern United States. Plant Physiol
162:410-423. doi: 10.1104/pp.112.211938
- Schimel D. 2006. Climate change and crop yields: beyond Cassandra.
Science. 312 (5782): 1889-1890. DOI: 10.1126/science.1129913
- Sasaki, T. 2005. The map-based sequence of the rice genome. Nature
436, 793–800. doi:10.1038/nature03895.
- STITT, M. KRAPP, A. 1999. The interaction between elevated carbon
dioxide and nitrogen nutrition: the physiological and molecular
background. Plant, Cell & Environment, 22: 583-621.
doi:10.1046/j.1365-3040.1999.00386.x
- Trapnell C, Roberts A, Goff L, et al. 2012. Differential gene and
transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks. Nature Protocols. 7(3): 562-578. doi:
10.1038/nprot.2012.016
- Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. 2016.
Rice grain yield and quality responses to free-air CO2enrichment combined with soil and water warming. Glob Chang Biol.
22(3):1256-70. doi: 10.1111/gcb.13128.
- Wang B, Smith SM and Li J. 2018a. Genetic regulation of shoot
architecture. Annu Rev Plant Biol. 69:437-468. doi:
10.1146/annurev-arplant-042817-040422.
- Wang J, Hasegawa T, Li L, Lam SK, Zhang X, Liu X, et al. 2019a.
Changes in grain protein and amino acids composition of wheat and rice
under short-term increased [CO2] and temperature
of canopy air in a paddy from East China. New Phytol. 222(2):726-734.
doi: 10.1111/nph.15661.
- Wang J, Liu X, Zhang X, Li L, Lam SK, Pan G. 2019b. Changes in plant
C, N and P ratios under elevated [CO2] and canopy
warming in a rice-winter wheat rotation system. Sci Rep. 9(1):5424.
doi: 10.1038/s41598-019-41944-1.
- Wang L, Zhu J, Zeng Q, Xie Z, Liu G. 2010. Responses of nitrogen
metabolism in rice plant to elevated atmospheric CO2:
A research review. Soils. 42 (3): 344~351.
doi:10.13758/j.cnki.tr.2010.03.021
- Wang P, Yamaji N, Inoue K, Mochida K, Ma JF. 2019c. Plastic transport
systems of rice for mineral elements in response to diverse soil
environmental changes. New Phytol. doi: 10.1111/nph.16335.
- Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, et al. 2018b. Expression of
the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and
early maturation in rice. Plant Cell. 30(3):638-651. doi:
10.1105/tpc.17.00809.
- Wang Y and Li J. 2011. Branching in rice. Curr Opin Plant Biol.
14(1):94-9. doi: 10.1016/j.pbi.2010.11.002.
- Xu X, Wu K, Xu R, Yu J, Wang J, Zhao Y, et al. 2019. Pyramiding of the
dep1-1 and NAL1NJ6 alleles achieves sustainable
improvements in nitrogen-use efficiency and grain yield in japonica
rice breeding. J Genet Genomics. 46(6):325-328. doi:
10.1016/j.jgg.2019.02.009.
- Xuan W, Beeckman T, Xu G. 2017. Plant nitrogen nutrition: sensing and
signaling. Curr Opin Plant Biol. 39:57-65. doi:
10.1016/j.pbi.2017.05.010.
- Yang L, Huang J, Yang H, Dong G, Liu H, Liu G, et al. 2007. Seasonal
changes in the effects of free-air CO2 enrichment
(FACE) on nitrogen (N) uptake and utilization of rice at three levels
of N fertilization. Field Crops Res. 100: 189–199. doi:
10.1016/j.fcr.2006.07.003
- Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, et al. 2017. Rational
design of high-yield and superior-quality rice. Nat Plants. 3:17031.
doi: 10.1038/nplants.2017.31
- Zhang G, Sakai H, Tokida T, Usui Y, Zhu C, Nakamura H, et al. 2013.
The effects of free-air CO2 enrichment (FACE) on
carbon and nitrogen accumulation in grains of rice (Oryza
sativa L.). J Exp Bot. 64(11): 3179–3188. doi:10.1093/jxb/ert154
- Zhang X, Zhou J, Huang N, Mo L, Lv M, Gao Y, et al. 2019.
Transcriptomic and co-expression network profiling of shoot apical
meristem reveal contrasting response to nitrogen rate between indica
and iaponica rice subspecies. Int J Mol Sci. 20(23). pii: E5922. doi:
10.3390/ijms20235922.
- Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y. et al. 2017.
Temperature increase reduces global yields of major crops in four
independent estimates. Proc. Natl. Acad. Sci. USA. 114(35):9326-9331.
doi: 10.1073/pnas.1701762114.