References

  1. Ainsworth EA. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology. 14:1642–1650. doi: 10.1111/j.1365-2486.2008.01594.x
  2. Ainsworth EA, Ort DR. 2010. How do we improve crop production in a warming world? Plant Physiol. 154(2):526-30. doi: 10.1104/pp.110.161349.
  3. Andrews M, Condron LM, Kemp PD, Topping JF, Lindsey K, Hodge S, Raven JA. 2019. Elevated CO2 effects on nitrogen assimilation and growth of C3 vascular plants are similar regardless of N-form assimilated. J Exp Bot. 70(2):683-690. doi: 10.1093/jxb/ery371.
  4. Bloom AJ. 2015. The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol. 25:10-6. doi: 10.1016/j.pbi.2015.03.002.
  5. Deng Q, Hui D, Luo YQ, Elser J, Wang YP, Loladze I, et al. 2015. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology. 96(12): 3354-3362. doi.org/10.1890/15-0217.1.
  6. Easterling, W, and Apps, M. 2005. Assessing the consequences of climate change for food and forest resources: A view from the IPCC. CLIMATIC CHANGE. 70(1-2): 165-189. DOI: 10.1007/s10584-005-5941-0.
  7. ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) Dr. Pieter Tans and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/)
  8. Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, et al. 2016. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA. 113(26):7118-23. doi: 10.1073/pnas.1525184113.
  9. Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, et al. 2011. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot. 62(7):2319-32. doi: 10.1093/jxb/erq403.
  10. Fletcher JC. 2018. The CLV-WUS Stem Cell Signaling Pathway: A roadmap to crop yield optimization. Plants (Basel). 7(4). pii: E87. doi: 10.3390/plants7040087.
  11. Hasegawa T, Li T, Yin X, Zhu Y, Boote K, Baker J. et al, 2017. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2Enrichment and growth chamber experiments. Sci Rep. 7(1):14858. doi: 10.1038/s41598-017-13582-y.
  12. Hasegawa T, Sakai H, Tokida T, Usui Y, Nakamura H, Wakatsuki H et al. 2019. A high-yielding rice cultivar ”Takanari” shows no N constraints on CO2 fertilization. Front Plant Sci.10:361. doi: 10.3389/fpls.2019.00361. eCollection 2019.
  13. Hu B, Wang W, Ou S, Tang J, Li H, Che R, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet. 47(7):834-8. doi: 10.1038/ng.3337.
  14. Huang J, Yang H, Yang L, Liu H, Dong G, Zhu J et al, 2004. Effects of free-air CO2 enrichment (FACE) on yield formation of rice (Oryza sativa L.) and its interaction with nitrogen. Scientia Agricultura Sinica. 37(12):1824-1830. (in Chinese with English abstract)
  15. Jiang P, Hong X, Feng L, Xu Z, Fang Z. 1997. The effect of nitrogen concentration on nitrogen absorption and tiller development in rice under water culture. Acta Agronomica Sinica. 23(2): 191-199.
  16. Jiang Q, Zhang J, Xu X, Liu G, Zhu J. 2020. Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (Oryza sativa L.). Ecol Process 9,35 . doi:10.1186/s13717-020-00238-5
  17. Jitla DS, Rogers GS, Seneweera SP, Basra AS, Oldfield RJ, Conroy JP. 1997. Accelerated early growth of rice at elevated CO2(Is it related to developmental changes in the shoot apex?). Plant Physiol. 115(1):15-22. doi: 10.1104/pp.115.1.15
  18. Kim HY, Lieffering M, Miura S, Kobayashi K, Okada M. 2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist 150: 223–229. doi.org/10.1046/j.1469-8137.2001.00111.x
  19. Kim HY, Lieffering M, Kobayashi K, Okada M, Miura S. 2003a. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2enrichment (FACE) experiment. Global Change Biology 9: 826–837. DOI: 10.1046/j.1365-2486.2003.00641.x
  20. Kim HY, Lieffering M, Kobayashi K, Okada M, Mitchell MW, Gumpertz M. 2003b. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crop Res. 83, 261–270. DOI: 10.1016/S0378-4290(03)00076-5
  21. Kimball BA. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol. 31:36-43. doi: 10.1016/j.pbi.2016.03.006.
  22. Lai, S, Zhou, S, Gu W, Zhuang S, Zhou J, Zhu J. Yang L, Wang Y. 2014. Effects of CO2 concentration, nitrogen supply and transplanting density on yield formation of hybrid rice Shanyou 63: a FACE study. J. Agro-Environ. Sci. 233(5):836-843.
  23. Li T, Hasegawa T, Yin X, Zhu Y, Boote K, Adam M, et al. 2015. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob Chang Biol. 21(3):1328-41. doi: 10.1111/gcb.12758.
  24. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, et al. 2003. Control of tillering in rice. Nature. 422(6932):618-21.
  25. Lieffering M, Kim HY, Kobayashi K, Okada M. 2004. The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crops Research. 88(2-3): 279-286. DOI: 10.1016/j.fcr.2004.01.004.
  26. Long S.P, Ainsworth E.A, Rogers A, Ort D.R. 2004. Rising atmospheric carbon dioxide: plants face the future. Annu. Rev. Plant Biol. 55:591–628. doi:10.1146/annurev.arplant.55.031903.141610.
  27. Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science. 312(5782):1918-21. doi: 10.1126/science.1114722
  28. Luo YQ, Hui DF, and Zhang DQ. 2006. Elevated carbon dioxide stimulates net accumulations of carbon and nitrogen in terrestrial ecosystems: A meta-analysis. Ecology 87: 53-63. doi: 10.1890/04-1724.
  29. Makino A, Harada M, Sato T, Nakano H, Mae T. 1997. Growth and N allocation in rice plants under CO2 enrichment. Plant Physiol. 115(1):199-203. doi: 10.1104/pp.115.1.199
  30. Matsumoto T, Wu J, Itoh T, Numa H, Antonio B, & Sasaki T. 2016. The Nipponbare genome and the next-generation of rice genomics research in Japan. Rice (New York, N.Y.), 9(1), 33. doi:10.1186/s12284-016-0107-4
  31. Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. 2015. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol. 167(4):1321-31. doi: 10.1104/pp.15.00021.
  32. Mueller KE, Hobbie SE, Tilman D, Reich PB. 2013. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob Chang Biol. 19(4):1249-61. doi: 10.1111/gcb.12096.
  33. Nakano H, Yoshinaga S, Takai T, Arai-Sanoh Y, Kondo K, Yamamoto T, et al. 2017. Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions. Sci. Rep. 7:1827. doi.org/10.1038/s41598-017-01690-8.
  34. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci., USA 107: 19368-19373. doi.org/10.1073/pnas.1006463107.
  35. Reich, P. B., S. E. Hobbie, T. D. Lee, D. S. Ellsworth, J. B. West, D. Tilman, J. M. Knops, S. Naeem, and J. Trost. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440: 922-925. doi:10.1038/nature04486.
  36. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci U S A. 111(9):3268-73. doi: 10.1073/pnas.1222463110.
  37. Rubio-Asensio JS, Bloom AJ. 2017. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. J Exp Bot. 68(10):2611-2625. doi: 10.1093/jxb/erw465.
  38. Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Kimball BA, et al. 2013. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol 162:410-423. doi: 10.1104/pp.112.211938
  39. Schimel D. 2006. Climate change and crop yields: beyond Cassandra. Science. 312 (5782): 1889-1890. DOI: 10.1126/science.1129913
  40. Sasaki, T. 2005. The map-based sequence of the rice genome. Nature 436, 793–800. doi:10.1038/nature03895.
  41. STITT, M. KRAPP, A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment, 22: 583-621. doi:10.1046/j.1365-3040.1999.00386.x
  42. Trapnell C, Roberts A, Goff L, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols. 7(3): 562-578. doi: 10.1038/nprot.2012.016
  43. Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. 2016. Rice grain yield and quality responses to free-air CO2enrichment combined with soil and water warming. Glob Chang Biol. 22(3):1256-70. doi: 10.1111/gcb.13128.
  44. Wang B, Smith SM and Li J. 2018a. Genetic regulation of shoot architecture. Annu Rev Plant Biol. 69:437-468. doi: 10.1146/annurev-arplant-042817-040422.
  45. Wang J, Hasegawa T, Li L, Lam SK, Zhang X, Liu X, et al. 2019a. Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO2] and temperature of canopy air in a paddy from East China. New Phytol. 222(2):726-734. doi: 10.1111/nph.15661.
  46. Wang J, Liu X, Zhang X, Li L, Lam SK, Pan G. 2019b. Changes in plant C, N and P ratios under elevated [CO2] and canopy warming in a rice-winter wheat rotation system. Sci Rep. 9(1):5424. doi: 10.1038/s41598-019-41944-1.
  47. Wang L, Zhu J, Zeng Q, Xie Z, Liu G. 2010. Responses of nitrogen metabolism in rice plant to elevated atmospheric CO2: A research review. Soils. 42 (3): 344~351. doi:10.13758/j.cnki.tr.2010.03.021
  48. Wang P, Yamaji N, Inoue K, Mochida K, Ma JF. 2019c. Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes. New Phytol. doi: 10.1111/nph.16335.
  49. Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, et al. 2018b. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell. 30(3):638-651. doi: 10.1105/tpc.17.00809.
  50. Wang Y and Li J. 2011. Branching in rice. Curr Opin Plant Biol. 14(1):94-9. doi: 10.1016/j.pbi.2010.11.002.
  51. Xu X, Wu K, Xu R, Yu J, Wang J, Zhao Y, et al. 2019. Pyramiding of the dep1-1 and NAL1NJ6 alleles achieves sustainable improvements in nitrogen-use efficiency and grain yield in japonica rice breeding. J Genet Genomics. 46(6):325-328. doi: 10.1016/j.jgg.2019.02.009.
  52. Xuan W, Beeckman T, Xu G. 2017. Plant nitrogen nutrition: sensing and signaling. Curr Opin Plant Biol. 39:57-65. doi: 10.1016/j.pbi.2017.05.010.
  53. Yang L, Huang J, Yang H, Dong G, Liu H, Liu G, et al. 2007. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Res. 100: 189–199. doi: 10.1016/j.fcr.2006.07.003
  54. Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, et al. 2017. Rational design of high-yield and superior-quality rice. Nat Plants. 3:17031. doi: 10.1038/nplants.2017.31
  55. Zhang G, Sakai H, Tokida T, Usui Y, Zhu C, Nakamura H, et al. 2013. The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). J Exp Bot. 64(11): 3179–3188. doi:10.1093/jxb/ert154
  56. Zhang X, Zhou J, Huang N, Mo L, Lv M, Gao Y, et al. 2019. Transcriptomic and co-expression network profiling of shoot apical meristem reveal contrasting response to nitrogen rate between indica and iaponica rice subspecies. Int J Mol Sci. 20(23). pii: E5922. doi: 10.3390/ijms20235922.
  57. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y. et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA. 114(35):9326-9331. doi: 10.1073/pnas.1701762114.