References
1. Hammerschmidt R., J P Métraux, Loon L C V.(2001). . Inducing Resistance: A Summary of Papers Presented at the First International Symposium on Induced Resistance to Plant Diseases, Corfu, May 2000[J]. European Journal of Plant Pathology, 107(1).
2. Buzayan J M., Gerlach W L , Bruening G. (1986). . Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA[J]. Nature, 323(6086):349-353.
3. Rani M., Sharma S, Chauhan R. (2017). Synthesis, Characterization and Antibacterial Evaluation of Some Azole Derivatives. Indian Journal of Pharmaceutical Education and Research 51: 650-655.
4. Yamakawa., H. (1998). Spermine Is a Salicylate-Independent Endogenous Inducer for Both Tobacco Acidic Pathogenesis-Related Proteins and Resistance against Tobacco Mosaic Virus Infection[J]. Plant Physiology. 118(4):1213-1222.
5. Xiang, Y., Wang, N. Song, J.( 2013). Micro-nanopores fabricated by high-energy electron beam irradiation: Suitable structure for controlling pesticide loss. J. Agric. Food Chem, 61 (22), 5215−5219.
6. Lin K I., Kao Y Y. Kuo H K, et al.(2006). Reishi Polysaccharides Induce Immunoglobulin Production through the TLR4/TLR2-mediated Induction of Transcription Factor Blimp-1[J]. Journal of Biological Chemistry, 281(34):24111-24123.
7. Tang R J., Liu H, Yang Y, et al. (2012). Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis[J]. Cell Research, 22(12):1650-1665.
8. Batisti O, Kudla J. (2012). Analysis of calcium signaling pathways in plants[J]. Biochimica Et Biophysica Acta General Subjects, 2012, 1820(8): 1283–1293.
9. DeFalco T A, Bender K W, Snedden W A. (2010). Breaking the code: Ca^ sensors in plant signaling[J]. biochemical journal, 425(1):27-40.
10. Braam J., Davis RW. (1990). Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell, 60 (3): 357–364.
11. Bongkoj., Boonburapong T, Buaboocha. (2007). Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. Bmc Plant Biology, 7: 4.
12. Bender K W., Snedden W A. (2013). Calmodulin-Related Proteins Step Out from the Shadow of Their Namesake[J]. Plant Physiology, 163(2):486-495.
13. Nakaham K SM., asuta C, Yamada S, et a1. (2012). Tobacco calmodulin like protein provides secondary defse by binding to and directing degradation of vims RNA silencing suppressors[J].Pmc Nad Acad Sci USA, 109: 10113—10118.
14. Roberts D M., Harmon A C. (1992). Calcium-Modulated Proteins: Targets of Intracellular Calcium Signals in Higher Plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1):375-414.
15. Mcainsh M R., Pittman J K. (2019). Shaping the calcium signature[J]. New Phytologist, 181(2):275-294.
16. Ma W., Smigel A, Tsai Y C, et a1. (2008). Innate immunity signaling:cytosolic Ca2+ elevation is 1inked to downstream nitric oxide generation through the action of calmodulin or a calmodulin—lik8 protein [J]. Plant Physiol, 148: 818—828.
17. Xu B., Cheval C, Laohavisit A, et al. (2017). A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. New Phytol, 215 (1): 77.
18. Leba L J, Cheval C, Inmaculada O M, et al. (2012). CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway[J]. The Plant Journal, 71(6):976-989.
19. Nakahara K S., Masuta C, Yamada S, et al. (2012). Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA, 109 (25): 10113–10118.
20. Zhang, Q Y., Liu, X J, Liu X, et al. (2017). Genome-Wide Identification, Characterization, and Expression Analysis of Calmodulin-Like Proteins (CMLs) in Apple[J]. Horticultural Plant Journal, 3( 6):219-231.
21. Asamura S., Mochizuki Y, Yamamoto M, et al. (2010). Bone Regeneration Using a Bone Morphogenetic Protein-2 Saturated Slow-Release Gelatin Hydrogel Sheet[J]. Annals of Plastic Surgery, 64(4):496-502.
22. Builders P F., Kunle O O, Okpaku L C, et al. (2008). Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 70(3):0-783.
23. Nokhodchi A., Tailor A. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices[J]. Farmaco, 2004, 59(12) :999-1004.
24. Mai B J., Jia M Q, Liu S P, et al. (2020). Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing, ACS Applied Materials & Interfaces, 10156-10169.
25. Xiang S Y., Lv X, He L H, et al. (2019). Dual-Action Pesticide Carrier That Continuously Induces Plant Resistance, Enhances Plant Anti-Tobacco Mosaic Virus Activity and Promotes Plant Growth. Journal of Agricultural and Food Chemistry. 67, 10000−10009.
26. Gao C., Liu M, Chen J, et al. (2009). Preparation and controlled degradation of oxidized sodium alginate hydrogel[J]. Polymer Degradation and Stability, 94(9):1405-1410.
27. Lin Y H., Sonaje K, Lin K, et al. (2008). Multi-ion-crosslinked nanoparticles with pH responsive characteristics for oral delivery of protein drugs. J. Controlled Release 132, 141−149.
28. Korsmeyer R W., Gurny R, Doelker E, et al. (1983). Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15 (1), 25−35.
29. Ma L S., Djavaheri M, Wang HY, et al., (2018). Leptosphaeria maculans effector protein AvrLm1 modulates plant immunity by enhancing MA P kinase 9 phosphorylation. iScience, 3:177–191
30. Peng H R, Pu Y D, Yang X, et al. (2019). Overexpression of a pathogenesis-related gene NbHIN1 confers resistance to Tobacco Mosaic Virus in Nicotiana benthamiana by potentially activating the jasmonic acid signaling pathway. Plant Science, 283 : 147-156.
31. Reth S., Reichstein M, Falge E. (2005). The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-A modified model. Plant Soil, 268 (1), 21−33.
32. Xiang Y, Zhang G C, Liu B, et al. (2018). Fabrication a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustainable Chem. Eng. 6 (1), 1192−1201.
33. Kwang‐Moon Cho, Nguyen H T K , Kim S Y , et al. (2016). CML10, a variant of calmodulin, modulates ascorbic acid synthesis[J]. New Phytologist, 209: 664–678.
34. Tian W J, Zhuang T Y, Cheng S L, et al. (2005). The acute toxicity of pyragne, an insecticide for control of Solenopsis invicta, to sword fish (Xiphophorus helleri). Entomol. Knowl. 42 (6), 650−653.
35. Ryu S M, Lee H M, Song E G, et al. (2017). Antiviral Activities of Trichothecenes Isolated from Trichoderma albolutescens against Pepper Mottle Virus[J]. Journal of Agricultural & Food Chemistry, 65(21):4273-4279.
36. Zhao, X., She, X. Du, Y. et al, (2007). Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. Pestic.Biochem. Physiol. 87 (1), 78−84.
37. Yin, H., Zhao, X. Du, Y. (2010). Oligochitosan: A plant diseases vaccine-A review. Carbohydr. Polym. 82 (1), 1−8.
38. Orzali L , Forni C , Riccioni L. (2010). An overview of the plant response to pathogen attack: chitosan as a general elicitor of induced resistance in plants[J]. Minerva Biotecnologica, 22(1/2):55-56.
39. Benhamou N., Georges T. (1992). Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici[J]. Physiological & Molecular Plant Pathology, 41(1):33-52.
40. Chowdhury S R., Choudhuri M A. (1967). Effects of calcium ions on responses of two jute species under water-deficit stress[J]. Physiologia Plantarum, 1986, 68(1):86-92.
41. Jones R G W., Lunt O R. (1998). The function of calcium in plants[J]. 33(4):407-426.
42. Xu H. (1998). Role of Calcium in Signal Transduction during the Hypersensitive Response Caused by Basidiospore-Derived Infection of the Cowpea Rust Fungus[J]. The plant cell online, 10(4):585-598.
43. Munir S., Liu H, Xing Y, et al. (2016). Overexpression of calmodulinlike (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Science Report, 6: 31772.
44. Wu XM., Qiao Z, Liu HP, et al. (2017). CML20, an Arabidop-sis calmodulin-like protein, negatively regulates guard cell ABA signaling and drought stress tolerance. Front Plant Science, 8: 824.
45. Min C K, Chuang W S, Yun D J, et al. (2009). Calcium and Calmodulin-Mediated Regulation of Gene Expression in Plants[J]. Molecular Plant, 2: 13-21.
46. Zhu X Y, Robe E, Lucile J, et al. (2017). CML8, an Arabidopsis Calmodulin-Like Protein, Plays a Role in Pseudomonas syringae Plant Immunity[J]. Plant & Cell Physiology, 58(2): 307–319.
47. Xiaoyang Z , Robe Eugénie, Lucile J , et al. (2016). CML8, an Arabidopsis calmodulin-like protein plays a role in Pseudomonas syringae plant immunity[J]. Plant and Cell Physiology, (2):2.
48. Louis-Jérme L, Cécilia C, Inmaculada O M, et al. (2012). CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway.[J]. Plant Journal, 71(6):976-989.
49. Magnan F , Ranty B , Charpenteau M , et al. (2008). Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. The Plant Journal, 56(4):575-589.