References
ArchMiller, A. A., Samuelson, L. J., & Li, Y. R. (2016). Spatial variability of soil respiration in a 64-year-old longleaf pine forest.Plant and Soil, 403 (1-2), 419-435. doi:10.1007/s11104-016-2817-1
Ball, B. C., McTaggart, I. P., & Watson, C. A. (2002). Influence of organic ley-arable management and afforestation in sandy loam to clay loam soils on fluxes of N2O and CH4 in Scotland. Agriculture Ecosystems & Environment, 90 (3), 305-317. doi:Pii S0167-8809(01)00207-9
Doi 10.1016/S0167-8809(01)00207-9
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560 (7716), 80-83. doi:10.1038/s41586-018-0358-x
Certini, G., Corti, G., Agnelli, A., & Sanesi, G. (2003). Carbon dioxide efflux and concentrations in two soils under temperate forests.Biology and Fertility of Soils, 37 (1), 39-46. doi:10.1007/s00374-002-0560-7
Chen, S. T., Huang, Y., Zou, J. W., Shen, Q. R., Hu, Z. H., Qin, Y. M., . . . Pan, G. X. (2010). Modeling interannual variability of global soil respiration from climate and soil properties. Agricultural and Forest Meteorology, 150 (4), 590-605. doi:10.1016/j.agrformet.2010.02.004
Davidson E A, S. K. E., Trumbore S E, Borken W. (2006). Vertical partitioning of CO2 production within a temperate forest soil. Global Change Biology, 12 (6), 944-956. doi:10.1111/j.1365-2486.2005.01142.x
Davidson, E. A., & Ackerman, I. L. (1993). Changes in Soil Carbon Inventories Following Cultivation of Previously Untilled Soils.Biogeochemistry, 20 (3), 161-193. doi:Doi 10.1007/Bf00000786
Davidson, E. A., Janssens, I. A., & Luo, Y. Q. (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q(10). Global Change Biology, 12 (2), 154-164. doi:10.1111/j.1365-2486.2005.01065.x
Davidson, E. A., Savage, K. E., Trumbore, S. E., & Borken, W. (2006). Vertical partitioning of CO2 production within a temperate forest soil.Global Change Biology, 12 (6), 944-956. doi:10.1111/j.1365-2486.2005.01142.x
Davidson, E. A., & Trumbore, S. E. (1995). Gas Diffusivity and Production of CO2 in Deep Soils of the Eastern Amazon.Tellus Series B-Chemical and Physical Meteorology, 47 (5), 550-565. doi:DOI 10.1034/j.1600-0889.47.issue5.3.x
Davidson, E. A., Trumbore, S. E., & Amundson, R. (2000). Biogeochemistry - Soil warming and organic carbon content. Nature, 408 (6814), 789-790. doi:Doi 10.1038/35048672
Fang C M, S. P., Moncrieff J B, Smith J U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433 (7021), 57-59. doi:10.1038/nature03138
Flechard, C. R., Ambus, P., Skiba, U., Rees, R. M., Hensen, A., van Amstel, A., . . . Grosz, B. (2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe.Agriculture Ecosystems & Environment, 121 (1-2), 135-152. doi:10.1016/j.agee.2006.12.024
Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450 (7167), 277-U210. doi:10.1038/nature06275
Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W., Arshad, M. A., Schomberg, H. H., & Hons, F. M. (2001). Climatic influences on active fractions of soil organic matter. Soil Biology & Biochemistry, 33 (7-8), 1103-1111. doi:Doi 10.1016/S0038-0717(01)00016-5
Friedlingstein, P., Dufresne, J. L., Cox, P. M., & Rayner, P. (2003). How positive is the feedback between climate change and the carbon cycle? Tellus Series B-Chemical and Physical Meteorology, 55 (2), 692-700. doi:DOI 10.1034/j.1600-0889.2003.01461.x
Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., & Zheng, S. H. (2000). Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry, 51 (1), 33-69. doi:Doi 10.1023/A:1006301010014
Graf, A., Weihermuller, L., Huisman, J. A., Herbst, M., Bauer, J., & Vereecken, H. (2008). Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies.Biogeosciences, 5 (4), 1175-1188. doi:DOI 10.5194/bg-5-1175-2008
Gulledge, J., & Schimel, J. P. (2000). Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest stands in interior Alaska. Ecosystems, 3 (3), 269-282. doi:DOI 10.1007/s100210000025
Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48 (1), 115-146. doi:Doi 10.1023/A:1006244819642
Hashimoto, S., Tanaka, N., Kume, T., Yoshifuji, N., Hotta, N., Tanaka, K., & Suzuki, M. (2007). Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest.Journal of Forest Research, 12 (3), 209-221. doi:10.1007/s10310-007-0009-9
Hirano, T., Kim, H., & Tanaka, Y. (2003). Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. Journal of Geophysical Research-Atmospheres, 108 (D20), 4631. doi:Artn 4631
10.1029/2003jd003766
Huang, S. D., Ye, G. F., Lin, J., Ruan, H. H., You, H. M., Xu, Z. Q., . . . Li, Q. X. (2018). The influence of drought on the soil CO2 flux at different depths in soil vertical profiles. Acta Ecologica Sinica, 38 (23), 8475-8488. doi:10.5846/stxb201711142028
Jassal R, B. A., Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D. (2005). Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 130 (3-4), 176-192. doi:10.1016/j.agrformet.2005.03.005
Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 10 (2), 423-436.
Joos, O., Hagedorn, F., Heim, A., Gilgen, A. K., Schmidt, M. W. I., Siegwolf, R. T. W., & Buchmann, N. (2010). Summer drought reduces total and litter-derived soil CO2 effluxes in temperate grassland - clues from a C-13 litter addition experiment. Biogeosciences, 7 (3), 1031-1041. doi:DOI 10.5194/bg-7-1031-2010
Kuzyakov, Y. (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38 (3), 425-448. doi:10.1016/j.soilbio.2005.08.020
Lewicki, J. L., Evans, W. C., Hilley, G. E., Sorey, M. L., Rogie, J. D., & Brantley, S. L. (2003). Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California. Journal of Geophysical Research-Solid Earth, 108 (B4), 2187. doi:Artn 2187
10.1029/2002jb002141
Liang N S, I. G., Fujinuma Y. (2003). A multichannel automated chamber system for continuous measurement of forest soil CO2efflux. Tree Physiology, 23 (12), 825-832. doi:DOI 10.1093/treephys/23.12.825
Lou, Y. S., Li, Z. P., & Zhang, T. L. (2003). Carbon dioxide flux in a subtropical agricultural soil of China. Water Air and Soil Pollution, 149 (1-4), 281-293. doi:Doi 10.1023/A:1025727504841
Luo, Y. Q., Wan, S. Q., Hui, D. F., & Wallace, L. L. (2001). Acclimatization of soil respiration to warming in a tall grass prairie.Nature, 413 (6856), 622-625. doi:Doi 10.1038/35098065
Mande, H. K., Abdullah, A. M., Aris, A. Z., & Ainuddin, A. N. (2015). Factors responsible for spatial and temporal variation of soil CO2 efflux in a 50 year recovering tropical forest, Peninsular Malaysia. Environmental Earth Sciences, 73 (9), 5559-5569. doi:10.1007/s12665-014-3810-8
Min, K., Berhe, A. A., Khoi, C. M., Asperen, H. V., & Six, J. (2020). Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers. Biogeochemistry, a/n , a/n.
Moorhead, D. L., & Weintraub, M. N. (2018). The evolution and application of the reverse Michaelis-Menten equation. Soil Biology & Biochemistry, 125 , 261-262. doi:10.1016/j.soilbio.2018.07.021
Pang, X. Y., Bao, W. K., Zhu, B., & Cheng, W. X. (2013). Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation. Agricultural and Forest Meteorology, 171 , 57-64. doi:10.1016/j.agrformet.2012.12.001
Parsons, A. N., Barrett, J. E., Wall, D. H., & Virginia, R. A. (2004). Soil carbon dioxide flux in Antarctic dry valley ecosystems.Ecosystems, 7 (3), 286-295. doi:10.1007/s10021-003-0132-1
Pingintha, N., Leclerc, M. Y., Beasley, J. P., Zhang, G. S., & Senthong, C. (2010). Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient.Tellus Series B-Chemical and Physical Meteorology, 62 (1), 47-58. doi:10.1111/j.1600-0889.2009.00445.x
Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6 (3), 317-327. doi:DOI 10.1046/j.1365-2486.2000.00308.x
Pries, C. E. H., Castanha, C., Porras, R. C., & Torn, M. S. (2017). The whole-soil carbon flux in response to warming. Science, 355 (6332), 1420-1422. doi:10.1126/science.aal1319
Pumpanen, J., Ilvesniemi, H., & Hari, P. (2003). A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Science Society of America Journal, 67 (2), 402-413.
Pumpanen, J., Ilvesniemi, H., Kulmala, L., Siivola, E., Laakso, H., Kolari, P., . . . Hari, P. (2008). Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Science Society of America Journal, 72 (5), 1187-1196. doi:10.2136/sssaj2007.0199
Richter, D. D., & Mobley, M. L. (2009). Monitoring Earth’s Critical Zone. Science, 326 (5956), 1067-1068.
Risk, D., Kellman, L., & Beltrami, H. (2002). Soil CO2 production and surface flux at four climate observatories in eastern Canada.Global Biogeochemical Cycles, 16 (4), 1122-1134. doi:Artn 1122
10.1029/2001gb001831
Risk, D., Kellman, L., & Beltrami, H. (2008). A new method for in situ soil gas diffusivity measurement and applications in the monitoring of subsurface CO(2) production. Journal of Geophysical Research-Biogeosciences, 113 (G2), G02018. doi:Artn G02018
10.1029/2007jg000445
Ryan, M. G., & Law, B. E. (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73 (1), 3-27. doi:10.1007/s10533-004-5167-7
Schwendenmann, L., Veldkamp, E., Brenes, T., O’Brien, J. J., & Mackensen, J. (2003). Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry, 64 (1), 111-128. doi:Doi 10.1023/A:1024941614919
Shahzad, T., Anwar, F., Hussain, S., Mahmood, F., Arif, M. S., Sahar, A., . . . Rashid, M. I. (2019). Carbon dynamics in surface and deep soil in response to increasing litter addition rates in an agro-ecosystem.Geoderma, 333 , 1-9. doi:10.1016/j.geoderma.2018.07.018
Shahzad, T., Rashid, M. I., Maire, V., Barot, S., Perveen, N., Alvarez, G., . . . Fontaine, S. (2018). Root penetration in deep soil layers stimulates mineralization of millennia-old organic carbon. Soil Biology & Biochemistry, 124 , 150-160. doi:10.1016/j.soilbio.2018.06.010
Springer, U., & Klee, J. (2010). Prüfung der Leistungsfhigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsure sowie Vorschlag einer neuen Schnellmethode.Journal of Plant Nutrition Soil Science, 64 (1), 1-26.
Subke, J. A., Reichstein, M., & Tenhunen, J. D. (2003). Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology & Biochemistry, 35 (11), 1467-1483. doi:10.1016/S0038-0717(03)00241-4
Takahashi, A., Hiyama, T., Takahashi, H. A., & Fukushima, Y. (2004). Analytical estimation of the vertical distribution of CO2 production within soil: application to a Japanese temperate forest. Agricultural and Forest Meteorology, 126 (3-4), 223-235. doi:10.1016/j.agrformet.2004.06.009
Tomotsune, M., Yoshitake, S., Iimura, Y., Kida, M., Fujitake, N., Koizumi, H., & Ohtsuka, T. (2018). Effects of soil temperature and tidal condition on variation in carbon dioxide flux from soil sediment in a subtropical mangrove forest. Journal of Tropical Ecology, 34 , 268-275. doi:10.1017/S026646741800024x
Wang, C., Huang, Q., Yang, Z., Huang, R., & Chen, G. (2011). Analysis of vertical profiles of soil CO_2 efflux in Chinese fir plantation.Acta Ecologica Sinica, 31 (19), 5711-5719. doi:10.1007/s11676-011-0141-4
Wang, J., Liu, Q. Q., Chen, R. R., Liu, W. Z., & Sainju, U. M. (2015). Soil carbon dioxide emissions in response to precipitation frequency in the Loess Plateau, China. Applied Soil Ecology, 96 , 288-295. doi:10.1016/j.apsoil.2015.08.026
Wang, X., Fu, S., Li, J., Zou, X., Zhang, W., Xia, H., . . . Zhou, L. J. F. (2019). Forest Soil Profile Inversion and Mixing Change the Vertical Stratification of Soil CO2 Concentration without Altering Soil Surface CO2 Flux. 10 (2), 192-203.
Wang, X., Liu, L. L., Piao, S. L., Janssens, I. A., Tang, J. W., Liu, W. X., . . . Xu, S. (2014). Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.Global Change Biology, 20 (10), 3229-3237.
Wang, Y. F., Fu, B. J., Lu, Y. H., Song, C. J., & Luan, Y. (2010). Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quaternary Research, 73 (1), 70-76. doi:10.1016/j.yqres.2008.11.006
Wiaux F, V. M., Van Oost K. (2015). Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope. Biogeosciences, 12 (15), 4637-4649. doi:10.5194/bg-12-4637-2015
Willcock, S., Phillips, O. L., Platts, P. J., Swetnam, R. D., Balmford, A., Burgess, N. D., . . . Lewis, S. L. (2016). Land cover change and carbon emissions over 100 years in an African biodiversity hotspot.Glob Chang Biol, 22 (8), 2787-2800. doi:10.1111/gcb.13218
Woodwell, G. M., Whittaker, R. H., Reiners, W. A., Likens, G. E., Delwiche, C. C., & Botkin, D. B. (1978). The biota and the world carbon budget. Science, 199 (4325), 141-146. doi:10.1126/science.199.4325.141
Zabowski, D., Whitney, N., Gurung, J., & Hatten, J. (2011). Total Soil Carbon in the Coarse Fraction and at Depth. Forest Science, 57 (1), 11-18.
Zhang, Y. Y., Hu, X. Y., Zou, J., Zhang, D., Chen, W., Liu, Y., . . . Wang, X. Q. (2018). Response of surface albedo and soil carbon dioxide fluxes to biochar amendment in farmland. Journal of Soils and Sediments, 18 (4), 1590-1601. doi:10.1007/s11368-017-1889-8