Parsed Citations
Abdul-Awal S.M., Hotta C.T., Davey M.P., Dodd A.N., Smith A.G., Webb A.A.R. (2016) NO-mediated [Ca2+]cyt increases depend on ADP-ribosyl cyclase activity in Arabidopsis. Plant Physiology 171: 623–631
Adams-Phillips L, Wan J, Tan X, Dunning F.M., Meyers B.C., Michelmore R.W., Bent A.F. (2008) Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four differentArabidopsis -Pseudomonas R-avr interactions. Molecular Plant-Microbe Interactions 21: 646-657
Adams-Phillips L, Briggs A.G., Bent A.F. (2010) Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress. Plant Physiology 152: 267-280
Ashburner M, Ball C.A., Blake J.A., Botstein D, Butler H, Cherry J.M., Davis A.P., Dolinski K, Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel‐Tarver L, Kasarskis A, Lewis S, Matese J.C., Richardson J.E., Ringwald M, Rubin G.M., Sherlock G. (2000) Gene Ontology: tool for the unification of biology. Nature Genetics 25: 1546-1718.
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt F.W., Schibler U. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328
Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger M.O., Schibler U. (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142: 943-953
Ausin I, Alonso-Blanco C, Jarillo J.A., Ruiz-Garcia L, & Martinez-Zapater J.M. (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics 36: 162-166
Bond D.M., Dennis E.S., Pogson B.J., & Finnegan E.J. (2009) Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response. Molecular Plant 2: 724-737
Bravo‐Sagua R, Parra V, López‐Crisosto C, Díaz P, Quest A.F.G., & Lavandero S. (2017). Calcium Transport and Signaling in Mitochondria. In Comprehensive Physiology, R. Terjung (Ed.). doi:10.1002/cphy.c160013
Carlson, M. (2020a). GO.db: A set of annotation maps describing the entire Gene Ontology. R package version 3.11.4.
Carlson, M. (2020b). org.At.tair.db: Genome wide annotation for Arabidopsis. R package version 3.11.4.
Chang H.C., & Guarente L. (2013). SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153: 1448-1460
Chen Y.M., Shall S., & Ofarrell M. (1994). Poly(ADP-ribose) polymerase in plant nuclei. European Journal of Biochemistry 224: 135-142
Das D.K., Mukherjee S, & Ray D. (2010). Resveratrol and red wine, healthy heart and longevity. Heart Failure Reviews 15: 467-477
De Block M, Verduyn C, De Brouwer D, & Cornelissen M. (2005). Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant Journal 41: 95-106
Dodd A.N., Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd J.M., Millar A.J., & Webb A.A.R. (2005). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630-633
Dodd A.N., Gardner M.J., Hotta C.T., Hubbard K.E., Dalchau N, Love J, Assie J.M., Robertson F.C., Jakobsen M.K., Goncalves J, Sanders D, & Webb A.A.R. (2007). The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318, 1789-1792.
Falcon S, & Gentleman R. (2007). Using GOstats to test gene lists for GO term association. Bioinformatics 23:257-8, 2007.
Farinas B, & Mas P. (2011). Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant Journal 66: 318-329
Feng B, Liu C, de Oliveira M.V.V., Intorne A.C., Li B, Babilonia K, Filho G, Shan L & Ping He. (2015). Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses. PLoS Genet 11(1): e1004936. doi:10.1371
Graf A, Schlereth A, Stitt M, & Smith A.M. (2010). Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences of the United States of America 107: 9458-9463
Gutierez R.A., Stokes T.L., Thum K, Xu X, Obertello M, Katari M.S., Tanurdzic M, Dean A, Nero D.C., McClung C.R., & Coruzzi G.M. (2008). Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proceedings of the National Academy of Sciences of the United States of America 105: 4939-4944
Hardcastle T.J., & Kelly K. (2010). baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422
He Y.H., Michaels S.D., & Amasino R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302: 1751-1754
Hearn T.J., Abdul-Awal S.M., Stanton C.R., Moeller R.M., Marti C.M.C., Haydon, M.J., Theodoulou, F.L., Hannah, M.A. & Webb A.A.R. (2018). BIG regulates dynamic adjustment of circadian period in Arabidopsis thaliana. Plant Physiology 178, 358-371.
Heller B, Wang Z.Q., Wagner E.F., Radons J, Burkle A, Fehsel K, Burkart V, & Kolb H (1995). Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric-oxide toxicity in islet cells. Journal of Biological Chemistry 270: 11176-11180
Hunt L, Lerner F, & Ziegler M. (2004). NAD - new roles in signalling and gene regulation in plants. New Phytologist 163: 31-44
Imai S, Armstrong C.M., Kaeberlein M, & Guarente L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795-800
Jaspers P, Overmyer K, Wrzaczek M, Vainonen J.P., Blomster T, Salojarvi J, Reddy RA, & Kangasjarvi J. (2010). The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics 11
Kim H.J., Hyun Y, Park J.Y., Park M.J., Park M.K., Kim M.D., Lee M.H., Moon J, Lee I, & Kim J. (2004). A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genetics 36: 167-171
Kerwin R.E., Jimenez-Gomez J.M., Fulop D, Harmer S.L., Maloof J.N., & Kliebenstein D.J. (2011). Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 23: 471-485
Krishnakumar R, & Kraus W.L. (2010). The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Molecular Cell 39: 8-24
Kumar V, & Takahashi J.S. (2010). PARP around the clock. Cell 142: 841-843
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, & Auwerx J. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell 127: 1109-1122
Lai A.G., Doherty C.J., Mueller-Roeber B, Kay S.A., Schippers J.H.M., & Dijkwel P.P. (2012). CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proceedings of the National Academy of Sciences of the United States of America 109: 17129-17134
Landry J, Sutton A, Tafrov S.T., Heller R.C., Stebbins J, Pillus L, & Sternglanz R. (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America 97: 5807-5811
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357 – 359.
Liu XY, Wei W, Zhu W.J., Su L.F., Xiong Z.Y., Zhou M, Zheng Y, & Zhou D.X. (2017). Histone deacetylase AtSRT1 links metabolic flux and stress response in Arabidopsis..Molecular Plant 10 (12): 1510
Lu Y, Gehan J.P., & Sharkey T.D. (2005). Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiology 138: 2280-2291
Martí Ruiz M.C., Hubbard K.E., Gardner M.J., Aubry S, Hotta C.T., Mohd-Noh, NI, Lan H, Robertson F.C., Hearn T.J., Jung H.J., Tsai Y-C, Dodd A.N., Hannah M, Carré IA, Braam J, & Webb A.A.R. (2018). Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock. Nature Plants 4, 690-698
Malapeira J, Crhak Khaitova L, & Mas P. (2012). Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences of the United States of America 109: 21540-21545
Mombaerts, L., Carignano, A., Robertson F.C., Hearn, T.J., Junyang, J., Hayden D., Rutterford, Z., Hotta, C.T., Hubbard, K.E., Yuan Y., Hannah M.A., Goncalves, J. & Webb A.A.R. (2019). Differentially Expressed Systems (DES) identifies Dynamical Differential Expression (DyDE) Reveals the Period Control Mechanisms of the Arabidopsis Circadian Oscillator. PLOS Comput Biol 15: e1006674
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente L.P., & Sassone-Corsi P. (2008). The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340
Nakahata Y, Sahar S, Astarita G, Kaluzova M, & Sassone-Corsi P. (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654-657
Oike H, & Kobori M. (2008). Resveratrol regulates circadian clock genes in Rat-1 fibroblast cells. Bioscience Biotechnology and Biochemistry 72: 3038-3040
Ossowski S, Schwab R, & Weigel D. (2008). Gene silencing in plants using artificial microRNAs and other small RNAs. Plant Journal. 53: 674−690.
Panda S, Poirier G.G., & Kay S.A. (2002). tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the Arabidopsis circadian oscillator. Developmental Cell 3: 51-61
Perales M, & Mas P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19: 2111-2123
Perraud A.L., Takanishi C.L., Shen B, Kang S, Smith M.K., Schmitz C, Knowles H.M., Ferraris D, Li W.X., Zhang J, Stoddard B.L., & Scharenberg A.M. (2005). Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. Journal of Biological Chemistry 280: 6138-6148
Pifferi F, Dal-Pan A, Menaker M, & Aujard F. (2011). Resveratrol dietary supplementation shortens the free-running circadian period and decreases body temperature in a prosimian primate. Journal of Biological Rhythms 26: 271-275
Roberts A, & Pachter L. (2013). Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10: 71–73
Rissel D, Heym P.P., Thor K, Brandt W, Wessjohann L.A., & Peiter E. (2017). No silver bullet - canonical poly(ADP-ribose) polymerases (PARPs) are no universal factors of abiotic and biotic stress resistance of Arabidopsis thaliana. Frontiers in Plant Science 8:59
Schreiber V, Dantzer F, Ame J.C., & de Murcia G. (2006). Poly(ADP-ribose): novel functions for an old molecule. Nature Reviews Molecular Cell Biology 7: 517-528
Shen, L, (2020). GeneOverlap: Test and visualize gene overlaps. R package version 1.24.0. http://shenlab-sinai.github.io/shenlab-sinai/
Smith J.S., Brachmann C.B., Celic I, Kenna M.A., Muhammad S, Starai V.J., Avalos J.L., Escalante-Semerena J.C., Grubmeyer C, Wolberger C, & Boeke J.D. (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proceedings of the National Academy of Sciences of the United States of America 97: 6658-6663
Song H.R., & Noh Y.S. (2012). Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci. Molecules and Cells 34: 279-287
Vanderauwera S, De Block M, van de Steene N, de Cottet B.V., Metzlaff M, & Van Breusegem F. (2007). Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proceedings of the National Academy of Sciences of the United States of America 104: 15150-15155
Wang C, Gao F, Wu J, Dai J, Wei C, & Li Y. (2010). Arabidopsis Putative Deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant and Cell Physiology 51: 1291-1299
Wang L, Kim J, & Somers D.E. (2013). Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proceedings of the National Academy of Sciences of the United States of America 110: 761-766.
Webb A.A.R., Seki M, Satake A. & Caldana C. (2019). Continuous dynamic adjustment of the plant circadian oscillator. Invited Perspective for Nature Communications 10, 550.
Xiao J, Zhang H, Xing L, Xu S, Liu H, Chong K, & Xu Y. (2013). Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. Journal of Plant Physiology 170: 444-451
Zhang F, Wang L, Ko E.E., Shao K, & Qiao H. (2018). Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. The Plant Cell 30: 153–166
Zhang N, Meng Y, Li X, Zhou Y, Ma L, Fu L, Schwarzlander L, Liu H, & Xiong Y. (2019). Metabolite-mediated TOR signaling regulates the circadian clock in Arabidopsis. Proceedings of the National Academy of Sciences, 201913095. https://doi.org/10.1073/pnas.1913095116