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Abstract

In this paper, we introduce the definition of the generalized reduced biquaternions and
propose a real representation of a generalized reduced biquaternion matrix. By using the ma-
trix representation, we discuss the least-squares problems of the classic generalized reduced
biquaternion matrix equation AXC = B. The least-squares solution to the above matrix
equation is formulated by a least-squares real solution of its corresponding real matrix equa-
tion. Furthermore, two numerical examples are given to illustrate our results.
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1 Introduction

Let R be the real number field, and 0 6= u, v ∈ R. We define the generalized reduced biquaternion
algebra QGR as a commutative 4-dimensional Clifford algebra satisfying:

QGR = {q = q1 + q2i+ q3j + q4k : q1, q2, q3, q4 ∈ R}, (1)

where
i2 = u, j2 = v, k2 = ijk = uv,

ij = ji = k, jk = kj = vi, ki = ik = uj.

When u = −1, v = 1, QGR is the reduced biquaternion algebra QR, which was first intro-
duced by [18]. As a special case of generalized reduced biquaternions, the reduced biquaternions

∗This research is supported by Macao Science and Technology Development Fund (No. 185/2017/A3), the grants
from the National Natural Science Foundation of China (11571220), the National Natural Science Foundation for
the Youth of China (11701598) and the Natural Sciences and Engineering Research Council of Canada (NSERC)
(RGPIN 2020-06746).

†Corresponding author:

1



have been extensively studied and applied to many problems in various areas (see, for exam-
ple, [1, 2, 3, 4, 14, 15, 16, 17, 19]). In [2], they studied the functions of reduced biquaternion
variables and obtained the generalized Cauchy-Riemann conditions. [14] proposed a simplified
reduced biquaternion polar form which is successfully applied for processing color images. In [15],
they developed several algorithms for calculating the eigenvalues, eigenvectors and the singular
value decomposition of reduced biquaternion matrices. As applications, they applied the results
into the processing of color images in the digital media. Two types of multistate Hopfield neural
networks based on reduced biquaternions were investigated [4]. Moreover, [6, 7] discussed some
algebraic properties of reduced biquaternion matrices as well as the generalized Sylvester/Stein ma-
trix equation by means of real/complex representations. As efficient methods, the real/complex
representation methods have been widely used in the study of many kinds of quaternions. This
is one of standard and popular ways to investigate the fundamental properties of different kinds
of quaternions, like the Hamilton quaternions, split quaternions, biquaternions, the generalized
quaternions, and so on (see, for example, [5, 6, 7, 8, 9, 10, 11, 12, 13, 20]). Motivated by the above
works, we aim to deal with the following least-squares problem by the real representation method.

For q = q1 + q2i+ q3j+ q4k ∈ QGR, we define the conjugate of q as q = q1− q2i− q3j− q4k and
the norm of q as

||q|| =
√
|q2

1
− uq2

2
+ vq2

3
− uvq2

4
|.

In particular, if q ∈ QR, then the norm of q is given by

||q|| =
√

q2
1
+ q2

2
+ q2

3
+ q2

4
.

In this paper, we discuss the least-squares problem for matrix equation AXC = B over the
reduced biquaternions, that is, given A ∈ Qm×n

GR , B ∈ Q
m×q
GR , C ∈ Q

p×q
GR , find X ∈ Q

n×p
GR such that

||AXC − B||F = min
X0∈Q

n×p

GR

||AX0C − B||F ,

where the Frobenius norm || · ||F is defined in next section.

2 Main results

In this section, we first propose a new real representation of a generalized reduced biquaternion
matrix, and then we use this real representation to solve our least-squares problem.

For a given generalized reduced biquaternion matrix A = A1 +A2i+A3j +A4k, A1, . . . , A4 ∈
R

m×n, we define the real representation AR of A as

AR =




A1 uA2 vA3 uvA4

A2 A1 vA4 vA3

A3 uA4 A1 uA2

A4 A3 A2 A1


 . (2)

The above real representation has the following properties:
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Proposition 2.1 Let A,B ∈ Qm×n
GR , C ∈ Q

n×p
GR , k ∈ R. Then

(A+B)R = AR +BR, (AC)R = ARCR, (kB)R = kBR, (3)

Rm
−1ARRn = AR, Qm

−1ARQn = AR, Sm
−1ARSn = AR, (4)

where

Rn =




0 uIn 0 0
In 0 0 0
0 0 0 uIn
0 0 In 0


 , Qn =




0 0 vIn 0
0 0 0 vIn
In 0 0 0
0 In 0 0


 , Sn =




0 0 0 uvIn
0 0 vIn 0
0 uIn 0 0
In 0 0 0


 ,

In is the identity matrix of order n, and 0’s stand for zero matrices with appropriate sizes. In
particular, when u = −1, v = 1,

AR =




A1 −A2 A3 −A4

A2 A1 A4 A3

A3 −A4 A1 −A2

A4 A3 A2 A1


 . (5)

is the real representation of the reduced biquaternion matrix A. Now using this real representation,
we can define the Frobenius norm of the generalized reduced biquaternion matrix A as

||A||F ≡
1

2
||AR||F . (6)

To solve the mentioned least-squares problem, we need the following useful result.

Lemma 2.2 Let A ∈ Qm×n
GR , B ∈ Q

m×q
GR , C ∈ Q

p×q
GR . Then

min
X0∈Q

n×p
GR

||AX0C −B||F =
1

2
min

Y0∈R
4n×4p

||ARY0C
R − BR||F .

Proof. Assume that X, Y are the least-squares solutions to the generalized reduced biquaternion
matrix equations

AXC = B (7)

and
ARY CR = BR, (8)

separately, i.e.,
||AXC − B||F = min

X0∈Q
n×p

GR

||AX0C − B||F .

||ARY CR − BR||F = min
Y0∈R

4n×4p
||ARY0C

R − BR||F .

It follows from (3) and (6) that

min
X0∈Q

n×p

GR

||AX0C − B||F =
1

2
min

X0∈Q
n×p

GR

||ARX0
RCR − BR||F ≥

1

2
min

Y0∈R
4n×4p

||ARY0C
R − BR||F . (9)

Conversely, for Y , by (4), we have
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||ARY CR − BR||F = ||(Rm
−1ARRn)Y (Rp

−1CRRq)− (Rm
−1BRRq)||F ,

||ARY CR − BR||F = ||(Qm
−1ARQn)Y (Qp

−1CRQq)− (Qm
−1BRQq)||F ,

||ARY CR − BR||F = ||(Sm
−1ARSn)Y (Sp

−1CRSq)− (Sm
−1BRSq)||F .

Simplifying the right hand-sides of the above three equations gives

||ARY CR −BR||F = ||AR(RnY Rp
−1)CR − BR||F ,

||ARY CR −BR||F = ||AR(QnY Qp
−1)CR − BR||F ,

||ARY CR − BR||F = ||AR(SnY Sp
−1)CR −BR||F .

Now we construct a new matrix as

Y =
1

4
(Y +RnY Rp

−1 +QnY Qp
−1 + SnY Sp

−1). (10)

Then

||ARY CR −BR||F ≤ ||ARYCR −BR||F

≤
1

4
(||ARY CR −BR||F + ||AR(RnY Rp

−1)CR −BR||F

+ ||AR(QnY Qp
−1)CR −BR||F + ||AR(SnY Sp

−1)CR − BR||F )

= ||ARY CR − BR||F ,

which implies

||ARY CR −BR||F = ||ARYCR − BR||F = min
Y0∈R

4n×4p
||ARY0C

R − BR||F . (11)

That is, Y is also a least-squares solution to (8).
Next we prove there exists X such that XR = Y . Assume that

Y =




Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44


 ∈ R

4n×4p, Zst ∈ R
n×p, s, t = 1, 2, 3, 4.

and then replace it in (15), which produces another representation for Y :

Y =




Ẑ1 uẐ2 vẐ3 uvẐ4

Ẑ2 Ẑ1 vẐ4 vẐ3

Ẑ3 uẐ4 Ẑ1 uẐ2

Ẑ4 Ẑ3 Ẑ2 Ẑ1


 ,

with

Ẑ1 = 1

4
(Z11 + Z22 + Z33 + Z44), Ẑ2 = 1

4
( 1
u
Z12 + Z21 +

1

u
Z34 + Z43),

Ẑ3 = 1

4
( 1
v
Z13 +

1

v
Z24 + Z31 + Z42), Ẑ4 = 1

4
( 1

uv
Z14 +

1

v
Z23 +

1

u
Z32 + Z41).
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Now, we construct a generalized reduced biquaternion matrix X by Y :

X = Ẑ1 + Ẑ2i+ Ẑ3j + Ẑ4k =
1

4

[
In Ini Inj Ink

]
Y




Ip
1

u
Ipi

1

v
Ipj

1

uv
Ipk



.

Clearly XR = Y . Hence, by (11),

1

2
min

Y0∈R
4n×4p

||ARY0C
R −BR||F = 1

2
||ARYCR − BR||F = 1

2
||ARXRCR − BR||F

= ||AXC −B||F

≥ min
X0∈Q

n×p

GR

||AX0C − B||F .

(12)

Combing (9) and (12), we have

1

2
min

Y0∈R
4n×4p

||ARY0C
R −BR||F = min

X0∈Q
n×p

GR

||AX0C − B||F .

�

Next we solve the least-squares problem by using real representation method.

Theorem 2.3 Let A ∈ Qm×n
GR , B ∈ Q

m×q
GR , C ∈ Q

p×q
GR .

(a) If X ∈ Q
n×p
GR is a least-squares solution to the matrix equation (7), then Y = XR is a

least-squares solution to the matrix equation (8).

(b) If Y ∈ R
4n×4p is a least-squares solution to the matrix equation (8), then

X =
1

16

[
In Ini Inj Ink

]
(Y +QnY Q−1

p +RnY R−1

p + SnY S−1

p )




Ip
1

u
Ipi

1

v
Ipj

1

uv
Ipk


 (13)

is a least-squares solution to the matrix equation (7).

Proof. Assume that X is a least-squares solution to (7), i.e.,

||AXC − B||F = min
X0∈Q

n×p
GR

||AX0C − B||F .

It follows from (3) and Lemma 2.2 that

||ARXRCR − BR||F = 2||AXC − B||F = 2 min
X0∈Q

n×p
GR

||AX0C − B||F = min
Y0∈R

4n×4p
||ARY0C

R −BR||F .

Thus, Y = XR is a least-squares solution to (8), i.e., (a) follows.
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Suppose Y is a solution to (8). Then ||ARY CR −BR||F = min
Y0∈R

4n×4p
||ARY0C

R −BR||F . Similar

to the proof of Lemma 2.2, we can prove

||ARY CR −BR||F = ||AR(QnY Q−1

p )CR − BR||F ,

||ARY CR − BR||F = ||AR(RnY R−1

p )CR −BR||F , (14)

||ARY CR − BR||F = ||AR(SnY S−1

p )CR −BR||F .

Thus, it is easy to verify that QnY Q−1

p , RnY R−1

p , and SnY S−1

p are also solutions to (8). If we set

Y =
1

4
(Y +QnY Q−1

p +RnY R−1

p + SnY S−1

p ). (15)

Then we have

||ARY CR −BR||F ≤ ||ARYCR − BR||F

≤ 1

4
(||ARY CR −BR||F + ||AR(QnY Q−1

p )CR − BR||F

+||AR(RnY R−1

p )CR − BR||F + ||AR(SnY S−1

p )CR − BR||F )

= ||ARY CR − BR||F .

Therefore, ||ARY CR − BR||F = ||ARYCR − BR||F , that is, Y is also a solution to (8).
Let

Y =




Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44


 ∈ R

4n×4p, Zst ∈ R
n×p, s, t = 1, 2, 3, 4, (16)

and submit it in (15), we obtain

Y =




Ẑ1 uẐ2 vẐ3 uvẐ4

Ẑ2 Ẑ1 vẐ4 vẐ3

Ẑ3 uẐ4 Ẑ1 uẐ2

Ẑ4 Ẑ3 Ẑ2 Ẑ1


 ,

with

Ẑ1 = 1

4
(Z11 + Z22 + Z33 + Z44), Ẑ2 = 1

4
( 1
u
Z12 + Z21 +

1

u
Z34 + Z43),

Ẑ3 = 1

4
( 1
v
Z13 +

1

v
Z24 + Z31 + Z42), Ẑ4 = 1

4
( 1

uv
Z14 +

1

v
Z23 +

1

u
Z32 + Z41).

Now, we construct a generalized reduced biquaternion matrix X by Y as follows:

X = Ẑ1 + Ẑ2i+ Ẑ3j + Ẑ4k =
1

4

[
In Ini Inj Ink

]
Y




Ip
1

u
Ipi

1

v
Ipj

1

uv
Ipk



. (17)
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Clearly, XR = Y . This means that XR = Y is a solution to (8), i.e.,

||ARXRCR − BR||F = min
Y0∈R

4n×4p
||ARY0C

R −BR||F . (18)

It follows from Lemma 2.2 and (18) that

||AXC − B||F =
1

2
||ARXRCR −BR||F = min

X0∈Q
n×p

GR

||AX0C − B||F .

Hence X given by (17) is a solution to (7). �

In the special case: u = −1 and v = 1, by Theorem 2.3, we have the following corollary for the
least-squares solutions to the matrix equation (7) over the reduced biquaternions.

Corollary 2.4 Let A ∈ Qm×n
R , B ∈ Q

m×q
R , C ∈ Q

p×q
R . Then

(a) If X ∈ Q
n×p
R is a least-squares solution to the reduced biquaternion matrix equation

AXC = B, (19)

then Y = XR ∈ R
4n×4p is a least-squares solution to the real matrix equation

ARY CR = BR. (20)

(b) If Y ∈ R
4n×4p is a least-squares solution to the real matrix equation (20), then

X =
1

16

[
In Ini Inj Ink

]
(Y +QnY Q−1

p +RnY R−1

p + SnY S−1

p )




Ip
−Ipi

Ipj

−Ipk




is a least-squares solution to the reduced biquaternion matrix equation (19), where

Rt =




0 −It 0 0
It 0 0 0
0 0 0 −It
0 0 It 0


 , Qt =




0 0 It 0
0 0 0 It
It 0 0 0
0 It 0 0


 , St =




0 0 0 −It
0 0 It 0
0 −It 0 0
It 0 0 0


 , t = n, p.

Example 2.5 Given the generalized biquaternion matrices

A =

[
i 1 + j

−1 + j −k

]
, B =

[
−2 + 4i+ 3k
2− 2i+ j − 2k

]
.

Find the least-squares solution of the generalized biquaternion matrix equation

AX = B (21)
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with u = 1, v = 1.

By Theorem 2.3, we consider the real matrix equation ARY = BR with

AR =




0 1 1 0 0 1 0 0
−1 0 0 0 1 0 0 −1
1 0 0 1 0 0 0 1
0 0 −1 0 0 −1 1 0
0 1 0 0 0 1 1 0
1 0 0 −1 −1 0 0 0
0 0 0 1 1 0 0 1
0 −1 1 0 0 0 −1 0




, BR =




−2 4 0 3
2 −2 1 −2
4 −2 3 0
−2 2 −2 1
0 3 −2 4
1 −2 2 −2
3 0 4 −2
−2 1 −2 2




.

Since rank (AR) = rank (AR, BR) = 8, the real matrix equation

ARY = BR

has a unique least-squares solution

Y =




7 −6 6 −4
0 0 4 −3
−6 7 −4 6
0 0 −3 4
6 −4 7 −6
4 −3 0 0
−4 6 −6 7
−3 4 0 0




.

By direct computation, we obtain

X =
1

16

[
I2 I2i I2j I2k

]
(Y +Q2Y Q−1

2
+R2Y R−1

2
+ S2Y S−1

2
)




I2
I2i

I2j

I2k




=
[
7− 6i+ 6j − 4k 4j − 3k

]T

is the least-squares solution to the generalized reduced biquaternion matrix equation AX = B.

Example 2.6 Find the least-squares solution of the reduced biquaternion matrix equation (21)
with u = −1, v = 1.

By Corollary 2.4, we consider the corresponding real matrix equation

ARY = BR, (22)
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with

AR =




0 1 −1 0 0 1 0 0
−1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 1
0 0 −1 0 0 −1 1 0
0 1 0 0 0 1 −1 0
1 0 0 1 −1 0 0 0
0 0 0 1 1 0 0 1
0 −1 1 0 0 0 −1 0




, BR =




−2 −4 0 −3
2 2 1 2
4 −2 3 0
−2 2 −2 1
0 −3 −2 −4
1 2 2 2
3 0 4 −2
−2 1 −2 2




.

Since rank (AR) = rank (AR, BR) = 8, the matrix equation (22) has a unique solution

Y =




1 −6 0 −4
4 0 0 −3
6 1 4 0
0 4 3 0
0 −4 1 −6
0 −3 4 0
4 0 6 1
3 0 0 4




.

By direct computation, we have that

X =
1

16

[
I2 I2i I2j I2k

]
(Y +Q2Y Q−1

2
+R2Y R−1

2
+ S2Y S−1

2
)




I2
−I2i

I2j

−I2k




=
[
1 + 6i+ 4k 4 + 3k

]T

is the least-squares solution to the reduced biquaternion matrix equation AX = B.
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[13] K. E. Özen and M. Tosun, p-trigonometric approach to elliptic biquaternions, Advances in
Applied Clifford Algebras 28 (3) (2018), 1-16.

[14] S. C. Pei, J. H. Chang and J. J. Ding, Commutative reduced biquaternions and their fourier
transform for signal and image processing applications, IEEE Transactions on Signal Process-
ing. 52 (2004), 2012-2031.

[15] S. C. Pei, J. H. Chang, J. J. Ding and M. Y. Chen, Eigenvalues and singular value decompo-
sitions of reduced biquaternion matrices, IEEE Trans. Circ. Syst. 55 (2008), 2673-2685.

[16] D. A. Pinotsis, Segre Quaternions, Spectral Analysis and a Four-Dimensional Laplace Equa-
tion, in Progress in Analysis and its Applications, M. Ruzhansky and J. Wirth, eds., World
Scientific, Singapore, 2010, pp. 240.

[17] H. D. Schtte, J. Wenzel, Hypercomplex numbers in digital signal processing, Proc IEEE Int
Symp Circuits Syst. 2 (1990), 1557-1560.

[18] C. Segre, The real representations of complex elements and extension to bicomplex systems,
Math. Ann. 40 (1892), 413-467.

[19] S. F. Yuan, Y. Tian and M. Z. Li, On Hermitian solutions of the reduced biquaternion matrix
equation (AXB,CXD) = (E,G), Linear and Multilinear Algebra 1 (2018), 1-19.

[20] C. E. Yu, X. Liu and Y. Zhang, The generalized quaternion matrix equation AXB+CX∗D =
E, Mathematical Methods in the Applied Sciences, 43 (15) (2020), 8506-8517.

10


	Introduction
	Main results

