REFERENCES
Adams, R. A. and Hayes, M. A. (2008) ‘Water availability and successful
lactation by bats as related to climate change in arid regions of
western North America’, Journal of Animal Ecology , 77(6), pp.
1115–1121. doi: 10.1111/j.1365-2656.2008.01447.x.
Araújo, M. B. and Guisan, A. (2006) ‘Five (or so) challenges for species
distribution modelling’, Journal of Biogeography , 33(10), pp.
1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x.
Baldwin, R. A. (2009) ‘Use of maximum entropy modeling in wildlife
research’, Entropy , 11(4), pp. 854–866. doi: 10.3390/e11040854.
Banks-Leite, C. et al. (2014) ‘Assessing the utility of
statistical adjustments for imperfect detection in tropical conservation
science’, Journal of Applied Ecology , pp. 849–859. doi:
10.1111/1365-2664.12272.
Barry, S. and Elith, J. (2006) ‘Error and uncertainty in habitat
models’, Journal of Applied Ecology , 43(3), pp. 413–423. doi:
10.1111/j.1365-2664.2006.01136.x.
Barve, N. et al. (2011) ‘The crucial role of the accessible area
in ecological niche modeling and species distribution modeling’,Ecological Modelling , 222(11), pp. 1810–1819. doi:
10.1016/j.ecolmodel.2011.02.011.
Bausch, D. G. and Schwarz, L. (2014) ‘Outbreak of Ebola Virus Disease in
Guinea: Where Ecology Meets Economy’, PLoS Neglected Tropical
Diseases , 8(7), p. e3056. doi: 10.1371/journal.pntd.0003056.
Beaumont, L. J., Hughes, L. and Pitman, A. J. (2008) ‘Why is the choice
of future climate scenarios for species distribution modelling
important?’, Ecology Letters , 11(11), pp. 1135–1146. doi:
10.1111/j.1461-0248.2008.01231.x.
Benedict, M. Q. et al. (2007) ‘Spread of The Tiger: Global Risk
of Invasion by The Mosquito Aedes albopictus’, Vector-Borne and
Zoonotic Diseases , 7(1), pp. 76–85. doi: 10.1089/vbz.2006.0562.
Boyce, M. S. et al. (2002) ‘Evaluating resource selection
functions’, Ecological Modelling , 157(2–3), pp. 281–300. doi:
10.1016/S0304-3800(02)00200-4.
Bradie, J. and Leung, B. (2017) ‘A quantitative synthesis of the
importance of variables used in MaxEnt species distribution models’,Journal of Biogeography , 44(6), pp. 1344–1361. doi:
10.1111/jbi.12894.
Busby, J. W. et al. (2012) ‘Locating Climate Insecurity: Where
Are the Most Vulnerable Places in Africa?’, in Scheffran, J. et al.
(eds) Climate Change, Human Security and Violent Conflict:
Challenges for Societal Stability . Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 463–511. doi: 10.1007/978-3-642-28626-1_23.
Chaves, J. et al. (2008) ‘Land management impacts on runoff
sources in small Amazon watersheds’, Hydrological Processes ,
22(12), pp. 1766–1775. doi: 10.1002/hyp.6803.
Chen, G. et al. (2013) ‘Imperfect detection is the rule rather
than the exception in plant distribution studies’, Journal of
Ecology , 101(1), pp. 183–191. doi: 10.1111/1365-2745.12021.
Chew, R. M. and White, H. E. (1960) ‘Evaporative water losses of the
pallid bat’, Journal of Mammalogy , 41(4), pp. 452–458. doi:
10.2307/1377532.
Cruz-Cárdenas, G. et al. (2014) ‘Potential species distribution
modeling and the use of principal component analysis as predictor
variables.’, Revista Mexicana de Biodiversidad , 85(1), pp.
189–199. doi: 10.7550/rmb.36723.
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000) ‘Emerging
infectious diseases of wildlife - Threats to biodiversity and human
health’, Science , 287(5452), pp. 443–449. doi:
10.1126/science.287.5452.443.
Dicko, A. H. et al. (2014) ‘Using species distribution models to
optimize vector control in the framework of the tsetse eradication
campaign in Senegal’, Proceedings of the National Academy of
Sciences of the United States of America , 111(28), pp. 10149–10154.
doi: 10.1073/pnas.1407773111.
Dindé, A. O. et al. (2017) ‘Response to the Ebola-related
bushmeat consumption ban in rural Côte d’Ivoire’, Agriculture and
Food Security , 6(28), pp. 1–9. doi: 10.1186/s40066-017-0105-9.
Dorazio, R. M. (2012) ‘Predicting the Geographic Distribution of a
Species from Presence-Only Data Subject to Detection Errors’,Biometrics , 68(4), pp. 1303–1312. doi:
10.1111/j.1541-0420.2012.01779.x.
Dormann, C. F. (2007) ‘Effects of incorporating spatial autocorrelation
into the analysis of species distribution data’, Global Ecology
and Biogeography , 16(2), pp. 129–138. doi:
10.1111/j.1466-8238.2006.00279.x.
Elith, J. et al. (2006) ‘Novel methods improve prediction of
species’ distributions from occurrence data’, Ecography , 29(2),
pp. 129–151. doi: 10.1111/j.2006.0906-7590.04596.x.
Elith, J. et al. (2011) ‘A statistical explanation of MaxEnt for
ecologists’, Diversity and Distributions , 17(1), pp. 43–57. doi:
10.1111/j.1472-4642.2010.00725.x.
Elith, J., Burgman, M. A. and Regan, H. M. (2002) ‘Mapping epistemic
uncertainties and vague concepts in predictions of species
distribution’, Ecological Modelling , 157(2–3), pp. 313–329.
doi: 10.1016/S0304-3800(02)00202-8.
Elith, J., Kearney, M. and Phillips, S. (2010) ‘The art of modelling
range-shifting species’, Methods in Ecology and Evolution , 1(4),
pp. 330–342. doi: 10.1111/j.2041-210X.2010.00036.x.
Elith, J. and Leathwick, J. R. (2009) ‘Species Distribution Models:
Ecological Explanation and Prediction Across Space and Time’,Annual Review of Ecology, Evolution, and Systematics , 40(1), pp.
677–697. doi: 10.1146/annurev.ecolsys.110308.120159.
Fandohan, B. et al. (2013) ‘Impact des changements climatiques
sur la répartition géographique des aires favorables à la culture et à
la conservation des fruitiers sous-utilisés: Cas du tamarinier au
Bénin’, Biotechnology, Agronomy and Society and Environment ,
17(3), pp. 450–462. doi: 10.1179/146531207225022302.
Feldmann, H. and Geisbert, T. W. (2011) ‘Ebola haemorrhagic fever’,The Lancet , 377(9768), pp. 849–862. doi:
10.1016/S0140-6736(10)60667-8.
Fick, S. E. and Hijmans, R. J. (2017) ‘WorldClim 2: new 1km spatial
resolution climate surfaces for global land areas’, International
Journal of Climatology , 37(12), pp. 4302–4315.
Fiorillo, G., Bocchini, P. and Buceta, J. (2018) ‘A Predictive Spatial
Distribution Framework for Filovirus-Infected Bats’, Scientific
Reports , 8(1), pp. 1–13. doi: 10.1038/s41598-018-26074-4.
Franklin, J. et al. (2009) ‘Effect of species rarity on the
accuracy of species distribution models for reptiles and amphibians in
southern California’, Diversity and Distributions , 15(1), pp.
167–177. doi: 10.1111/j.1472-4642.2008.00536.x.
Groseth, A., Feldmann, H. and Strong, J. E. (2007) ‘The ecology of Ebola
virus’, Trends in Microbiology , 15(9), pp. 408–416. doi:
10.1016/j.tim.2007.08.001.
Gu, W. and Swihart, R. K. (2004) ‘Absent or undetected? Effects of
non-detection of species occurrence on wildlife-habitat models’,Biological Conservation , 116(2), pp. 195–203. doi:
10.1016/S0006-3207(03)00190-3.
Guélat, J. and Kéry, M. (2018) ‘Effects of spatial autocorrelation and
imperfect detection on species distribution models’, Methods in
Ecology and Evolution , 9(6), pp. 1614–1625. doi:
10.1111/2041-210X.12983.
Guillera-Arroita, G. (2017) ‘Modelling of species distributions, range
dynamics and communities under imperfect detection: advances, challenges
and opportunities’, Ecography , 40(2), pp. 281–295. doi:
10.1111/ecog.02445.
Guisan, A. and Thuiller, W. (2005) ‘Predicting species distribution:
Offering more than simple habitat models’, Ecology Letters , 8(9),
pp. 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x.
Hayman, D. T. S. et al. (2010) ‘Long-term survival of an urban
fruit bat seropositive for ebola and lagos bat viruses’, PLoS
ONE , 5(8), p. e11978. doi: 10.1371/journal.pone.0011978.
Hernández, P. A. et al. (2006) ‘The effect of sample size and
species characteristics on performance of different species distribution
modeling methods’, Ecography , 29(5), pp. 773–785. doi: DOI
10.1111/j.0906-7590.2006.04700.x.
Hortal, J. et al. (2008) ‘Historical bias in biodiversity
inventories affects the observed environmental niche of the species’,Oikos , 117(6), pp. 847–858. doi:
10.1111/j.0030-1299.2008.16434.x.
Hutchinson, G. E. (1957) ‘Concluding remarks’, Cold Spring Harbor
Symposia on Quantitative Biology , 22, pp. 415–427. doi:
10.1101/SQB.1957.022.01.039.
Jarnevich, C. S. et al. (2015) ‘Caveats for correlative species
distribution modeling’, Ecological Informatics , 29(1), pp. 6–15.
doi: 10.1016/j.ecoinf.2015.06.007.
Jennings, A. P. et al. (2013) ‘Predicted distributions and
conservation status of two threatened Southeast Asian small carnivores:
The banded civet and Hose ’s civet’, Mammalia , 77(3), pp.
261–271. doi: 10.1515/mammalia-2012-0110.
Johnson, C. J. and Gillingham, M. P. (2008) ‘Sensitivity of
species-distribution models to error, bias, and model design: An
application to resource selection functions for woodland caribou’,Ecological Modelling , 213(2), pp. 143–155. doi:
10.1016/j.ecolmodel.2007.11.013.
Jones, K. E. et al. (2008) ‘Global trends in emerging infectious
diseases’, Nature , 451, pp. 990–993. doi: 10.1038/nature06536.
Kadmon, R., Farber, O. and Danin, A. (2003) ‘A systematic analysis of
factors affecting the performance of climatic envelope models’,Ecological Applications , 13(3), pp. 853–867. doi:
10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2.
Kadmon, R., Farber, O. and Danin, A. (2004) ‘Effect of roadside bias on
the accuracy of predictive maps produced by bioclimatic models’,Ecological Applications , 14(2), pp. 401–413. doi:
10.1890/02-5364.
Knut, S.-N. (1997) Animal physiology. Adaptation and Environment .
5th ed. Cambridge University Press.
Lahoz-Monfort, J. J., Guillera-Arroita, G. and Wintle, B. A. (2014)
‘Imperfect detection impacts the performance of species distribution
models’, Global Ecology and Biogeography , 23(4), pp. 504–515.
doi: 10.1111/geb.12138.
Leroy, E. M. et al. (2004) ‘Multiple Ebola Virus Transmission
Events and Rapid Decline of Central African Wildlife’, Science ,
303(5656), pp. 387–390. doi: 10.1126/science.1092528.
Leroy, E. M. et al. (2005) ‘Fruit bats as reservoirs of Ebola
virus’, Nature , 438(7068), pp. 575–576. doi: 10.1038/438575a.
Leroy, J. L. et al. (2007) ‘Current priorities in health research
funding and lack of impact on the number of child deaths per year’,American Journal of Public Health , 97(2), pp. 219–223. doi:
10.2105/AJPH.2005.083287.
Lindsay, S. W. et al. (2010) ‘Assessing the future threat from
vivax malaria in the United Kingdom using two markedly different
modelling approaches’, Malaria Journal , 9(1), p. 70. doi:
10.1186/1475-2875-9-70.
Lobo, J. M., Jiménez-valverde, A. and Real, R. (2008) ‘AUC: A misleading
measure of the performance of predictive distribution models’,Global Ecology and Biogeography , 17(2), pp. 145–151. doi:
10.1111/j.1466-8238.2007.00358.x.
Maganga, G. D. et al. (2014) ‘Ebola Virus Disease in the
Democratic Republic of Congo’, New England Journal of Medicine ,
371(22), pp. 2083–2091. doi: 10.1056/NEJMoa1411099.
Martinez-Meyer, E. (2005) ‘Climate Change and Biodiversity: Some
Considerations in Forecasting Shifts in Species’ Potential
Distributions’, Biodiversity Informatics , 2, pp. 42–55. doi:
10.17161/bi.v2i0.8.
Martínez-Meyer, E., Peterson, A. T. and Hargrove, W. W. (2004)
‘Ecological niches as stable distributional constraints on mammal
species, with implications for Pleistocene extinctions and climate
change projections for biodiversity’, Global Ecology and
Biogeography , 13(4), pp. 305–314. doi:
10.1111/j.1466-822X.2004.00107.x.
McInerny, G. J. and Etienne, R. S. (2013) “‘Niche” or “distribution”
modelling? A response to Warren’, Trends in Ecology and
Evolution , 28(4), pp. 191–192. doi: 10.1016/j.tree.2013.01.007.
McPherson, J. and Jetz, W. (2007) ‘Effects of species’ ecology on the
accuracy of distribution models’, Ecography , 30(1), pp. 135–151.
doi: 10.1111/j.2006.0906-7590.04823.x.
Newson, S. E. et al. (2009) ‘Indicators of the impact of climate
change on migratory species’, Endangered Species Research , 7, pp.
101–113. doi: 10.3354/esr00162.
Nyakarahuka, L. et al. (2017) ‘Ecological Niche Modeling for
Filoviruses: A Risk Map for Ebola and Marburg Virus Disease Outbreaks in
Uganda’, PLOS Currents Outbreaks , 9. doi:
10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.
Olival, K. J. and Hayman, D. T. S. (2014) ‘Filoviruses in bats: Current
knowledge and future directions’, Viruses , 6(4), pp. 1759–1788.
doi: 10.3390/v6041759.
Omoleke, S. A., Mohammed, I. and Saidu, Y. (2016) ‘Ebola viral disease
in West Africa: A threat to global health, economy and political
stability’, Journal of Public Health in Africa , 7(1), pp. 27–40.
doi: 10.4081/jphia.2016.534.
Osborne, P. E. and Leitão, P. J. (2009) ‘Effects of species and habitat
positional errors on the performance and interpretation of species
distribution models’, Diversity and Distributions , 15(4), pp.
671–681. doi: 10.1111/j.1472-4642.2009.00572.x.
Osterholm, M. T., Moore, K. A. and Gostin, L. O. (2015) ‘Public health
in the age of ebola in west africa’, JAMA Internal Medicine ,
175(1), pp. 7–8. doi: 10.1001/jamainternmed.2014.6235.
Papeş, M. and Gaubert, P. (2007) ‘Modelling ecological niches from low
numbers of occurrences: Assessment of the conservation status of poorly
known viverrids (Mammalia, Carnivora) across two continents’,Diversity and Distributions , 13(6), pp. 890–902. doi:
10.1111/j.1472-4642.2007.00392.x.
Pautasso, M. et al. (2010) ‘Plant health and global change - Some
implications for landscape management’, Biological Reviews . doi:
10.1111/j.1469-185X.2010.00123.x.
Pearce, J., Ferrier, S. and Scotts, D. (2001) ‘An evaluation of the
predictive performance of distributional models for flora and fauna in
north-east New South Wales’, Journal of Environmental Management ,
62(2), pp. 171–184. doi: 10.1006/jema.2001.0425.
Perkins, S. E. et al. (2007) ‘Evaluation of the AR4 climate
models’ simulated daily maximum temperature, minimum temperature, and
precipitation over Australia using probability density functions’,Journal of Climate , 20(17), pp. 4356–4376. doi:
10.1175/JCLI4253.1.
Peterson, A. T. (2003) ‘Predicting the Geography of Species’ Invasions
via Ecological Niche Modeling’, The Quarterly Review of Biology ,
78(4), pp. 419–433. doi: 10.1086/378926.
Peterson, A. T., Carroll, D. S., et al. (2004) ‘Potential
mammalian filovirus reservoirs’, Emerging Infectious Diseases ,
10(12), pp. 2073–2081. doi: 10.3201/eid1012.040346.
Peterson, A. T. (2006) ‘Ecologic niche modeling and spatial patterns of
disease transmission’, Emerging Infectious Diseases , 12(12), p.
Ecologic niche modeling and spatial patterns of di. doi:
10.3201/eid1212.060373.
Peterson, A. T. et al. (2007) ‘Mammal Taxa Constituting Potential
Coevolved Reservoirs of Filoviruses’, Journal of Mammalogy ,
88(6), pp. 1544–1554. doi: 10.1037/0022-3514.45.5.1096.
Peterson, A. T., Bauer, J. T. and Mills, J. N. (2004) ‘Ecologic and
Geographic Distribution of Filovirus Disease’, Emerging Infectious
Diseases , 10(1), pp. 40–47. doi: 10.3201/eid1001.030125.
Phillips, S. (2017) ‘maxnet: Fitting “Maxent” Species Distribution
Models with “glmnet”’, R Package , p. version 0.1.
Phillips, S. J. et al. (2009) ‘Sample selection bias and
presence-only distribution models: Implications for background and
pseudo-absence data’, Ecological Applications , 19(1), pp.
181–197. doi: 10.1890/07-2153.1.
Phillips, S. J. et al. (2017) ‘Opening the black box: an
open-source release of Maxent’, Ecography , 40(7), pp. 887–893.
doi: 10.1111/ecog.03049.
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006) ‘Maximum
entropy modeling of species geographic distributions’, Ecological
Modelling , 190(3–4), pp. 231–259. doi:
10.1016/j.ecolmodel.2005.03.026.
Phillips, S. J. and Dudík, M. (2008) ‘Modeling of species distributions
with Maxent: New extensions and a comprehensive evaluation’,Ecography , 31(2), pp. 161–175. doi:
10.1111/j.0906-7590.2008.5203.x.
Pigott, D. M. et al. (2014) ‘Mapping the zoonotic niche of Ebola
virus disease in Africa’, eLife , 3, p. e04395. doi:
10.7554/eLife.04395.
Pourrut, X. et al. (2009) ‘Large serological survey showing
cocirculation of Ebola and Marburg viruses in Gabonese bat populations,
and a high seroprevalence of both viruses in Rousettus aegyptiacus’,BMC Infectious Diseases , 9(159). doi: 10.1186/1471-2334-9-159.
R Development Core Team (2018) ‘R statistical software’, R: A
Language and Environment for Statistical Computing . Vienna, Austria: R
Foundation for Statistical Computing.
Rainho, A., Augusto, A. M. and Palmeirim, J. M. (2010) ‘Influence of
vegetation clutter on the capacity of ground foraging bats to capture
prey’, Journal of Applied Ecology , 47(4), pp. 850–858. doi:
10.1111/j.1365-2664.2010.01820.x.
Reddy, S. and Dávalos, L. M. (2003) ‘Geographical sampling bias and its
implications for conservation priorities in Africa’, Journal of
Biogeography , 30(11), pp. 1719–1727. doi:
10.1046/j.1365-2699.2003.00946.x.
Report of a WHO/International Study Team (1978) ‘Ebola haemorrhagic
fever in Sudan, 1976’, Bulletin of the World Health Organization ,
56(2), pp. 247–270. doi: 1978;56(2):247-270.
Robinson, R. A. et al. (2009) ‘Travelling through a warming
world: Climate change and migratory species’, Endangered Species
Research , 7(2), pp. 87–99. doi: 10.3354/esr00095.
Royle, J. A., Nichols, J. D. and Kéry, M. (2005) ‘Modelling occurrence
and abundance of species when detection is imperfect’, Oikos ,
110(2), pp. 353–359. doi: 10.1111/j.0030-1299.2005.13534.x.
Russo, D., Cistrone, L. and Jones, G. (2012) ‘Sensory Ecology of Water
Detection by Bats: A Field Experiment’, PLoS ONE , 7(10), p.
e48144. doi: 10.1371/journal.pone.0048144.
Segurado, P., Araújo, M. B. and Kunin, W. E. (2006) ‘Consequences of
spatial autocorrelation for niche-based models’, Journal of
Applied Ecology , 43(3), pp. 433–444. doi:
10.1111/j.1365-2664.2006.01162.x.
Soberón, J. (2007) ‘Grinnellian and Eltonian niches and geographic
distributions of species’, Ecology Letters , 10(12), pp.
1115–1123. doi: 10.1111/j.1461-0248.2007.01107.x.
Stephens, P. A. et al. (2015) ‘Management by proxy? The use of
indices in applied ecology’, Journal of Applied Ecology , 52(1),
pp. 1–6. doi: 10.1111/1365-2664.12383.
Stigall, A. L. (2012) ‘Using ecological niche modelling to evaluate
niche stability in deep time’, Journal of Biogeography , 39(4),
pp. 772–781. doi: 10.1111/j.1365-2699.2011.02651.x.
Thomas, D. W. and Cloutier, D. (1992) ‘Evaporative Water Loss by
Hibernating Little Brown Bats, Myotis lucifugus’, Physiological
Zoology , 65, pp. 443–456. doi: 10.1086/physzool.65.2.30158262.
Thorn, J. S. et al. (2009) ‘Ecological niche modelling as a
technique for assessing threats and setting conservation priorities for
Asian slow lorises (Primates: Nycticebus)’, Diversity and
Distributions , 15(2), pp. 289–298. doi:
10.1111/j.1472-4642.2008.00535.x.
Tsoar, A. et al. (2007) ‘A comparative evaluation of
presence-only methods for modelling species distribution’,Diversity and Distributions , 13(4), pp. 397–405. doi:
10.1111/j.1472-4642.2007.00346.x.
Warren, C. C. et al. (2013) ‘Detection heterogeneity and
abundance estimation in populations of Golden-cheeked Warblers’,The Auk , 130(4), pp. 677–688. doi: 10.1525/auk.2013.13022.
Warren, D. L. and Seifert, S. N. (2011) ‘Ecological niche modeling in
Maxent : the importance of model complexity and the performance of
model selection criteria C ommunications’, Ecological
Applications , 21(2), pp. 335–342. doi: 10.1890/10-1171.1.
Warton, D. I. and Shepherd, L. C. (2010) ‘Poisson point process models
solve the “pseudo-absence problem” for presence-only data in ecology’,Annals of Applied Statistics , 4(3), pp. 1383–1402. doi:
10.1214/10-AOAS331.
Wolfe, N. D. et al. (2005) ‘Bushmeat hunting, deforestation, and
prediction of zoonotic disease emergence’, Emerging Infectious
Diseases , 11(12), pp. 1822–1827. doi: 10.3201/eid1112.040789.
Wolfe, N. D., Dunavan, C. P. and Diamond, J. (2007) ‘Origins of major
human infectious diseases’, Nature , 447(7142), pp. 279–283. doi:
10.1038/nature05775.
Yackulic, C. B. et al. (2013) ‘Presence-only modelling using
MAXENT: When can we trust the inferences?’, Methods in Ecology and
Evolution , 4(3), pp. 236–243. doi: 10.1111/2041-210x.12004.
Yoccoz, N. G., Nichols, J. D. and Boulinier, T. (2001) ‘Monitoring of
biological diversity in space and time’, Trends in Ecology &
Evolution , 16(8), pp. 446–453. doi:
http://dx.doi.org/10.1016/S0169-5347(01)02205-4.