Reference
Aboulaich, N., Chung, W. K., Thompson, J. H., Larkin, C., Robbins, D.,
& Zhu, M. (2014). A novel approach to monitor clearance of host cell
proteins associated with monoclonal antibodies. Biotechnol Prog 30(5):
1114-1124. doi: 10.1002/btpr.1948.
Bielser, J. M., Wolf, M., Souquet, J., Broly, H., & Morbidelli, M.
(2018). Perfusion mammalian cell culture for recombinant protein
manufacturing - A critical review. Biotechnol Adv 36(4): 1328-1340. doi:
10.1016/j.biotechadv.2018.04.011.
Bracewell, D. G., Francis, R., & Smales, C. M. (2015). The future of
host cell protein (HCP) identification during process development and
manufacturing linked to a risk-based management for their control.
Biotechnol Bioeng 112(9): 1727-1737. doi: 10.1002/bit.2562.
Chiu, J., Valente, K. N., Levy, N. E., Min, L., Lenhoff, A. M., & Lee,
K. H. (2017). Knockout of a difficult-to-remove CHO host cell protein,
lipoprotein lipase, for improved polysorbate stability in monoclonal
antibody formulations. Biotechnol Bioeng 114(5): 1006-1015. doi:
10.1002/bit.26237.
Dixit, N., Salamat-Miller, N., Salinas, P. A., Taylor, K. D., & Basu,
S. K. (2016). Residual Host Cell Protein Promotes Polysorbate 20
Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid
Particles. J Pharm Sci 105(5): 1657-1666. doi:
10.1016/j.xphs.2016.02.029.
Du, Y., Walsh, A., Ehrick, R., Xu, W., May, K., & Liu, H. (2012).
Chromatographic analysis of the acidic and basic species of recombinant
monoclonal antibodies. MAbs 4(5): 578-585. doi: 10.4161/mabs.21328.
Gomez, N., Lull, J., Yang, X., Wang, Y., Zhang, X., Wieczorek, A.,
Harrahy, J., Pritchard, M., Cano, M., Shearer, M., Goudar, C. (2020).
Improving Product Quality and Productivity of Bispecific Molecules
Through the Application of Continuous Perfusion Principles. Biotechnol
Prog. 36(4):e2973. doi: 10.1002/btpr.2973.
Hall, T., Sandefur, S. L., Frye, C. C., Tuley, T. L., & Huang, L.
(2016). Polysorbates 20 and 80 Degradation by Group XV Lysosomal
Phospholipase A2 Isomer X1 in Monoclonal Antibody Formulations. J Pharm
Sci 105(5): 1633-1642. doi: 10.1016/j.xphs.2016.02.022.
Heo, J. H., Mou, X., Wang, F., Troisi, J. M., Sandifer, C. W., Kirby,
S., Driscoll, D., Mercorelli, S., Pollard, D. J. (2014). A Microfluidic
Approach to High-Throughput Quantification of Host-Cell Protein
Impurities for Bioprocess Development. Pharmaceut. Bioprocess 2(2):
129-139. doi: 10.2217/pbp.14.12.
Hogwood, C. E., Bracewell, D. G., & Smales, C. M. (2013). Host cell
protein dynamics in recombinant CHO cells: impacts from harvest to
purification and beyond. Bioengineered 4(5): 288-291. doi:
10.4161/bioe.23382.
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009a). Bioinformatics
enrichment tools: paths toward the comprehensive functional analysis of
large gene lists. Nucleic Acids Res 37(1): 1-13. doi:
10.1093/nar/gkn923.
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009b). Systematic and
integrative analysis of large gene lists using DAVID bioinformatics
resources. Nat Protoc 4(1): 44-57. doi: 10.1038/nprot.2008.211
Karst, D. J., Steinebach, F., & Morbidelli, M. (2018). Continuous
integrated manufacturing of therapeutic proteins. Curr Opin Biotechnol
53: 76-84. doi: 10/1016/j.copbio.2017.12.015.
Karst, D. J., Steinhoff, R. F., Kopp, M. R. G., Serra, E., Soos, M.,
Zenobi, R., & Morbidelli, M. (2017). Intracellular CHO Cell Metabolite
Profiling Reveals Steady-State Dependent Metabolic Fingerprints in
Perfusion Culture. Biotechnol Prog 33(4): 879-890. doi:
10.1002/btpr.2421.
Kreimer, S., Gao, Y., Ray, S., Jin, M., Tan, Z., Mussa, N. A., Tao, L.,
Li, Z., Ivanov, A. R., Karger, B. L. (2017). Host Cell Protein Profiling
by Targeted and Untargeted Analysis of Data Independent Acquisition Mass
Spectrometry Data with Parallel Reaction Monitoring Verification. Anal
Chem 89(10): 5294-5302. doi: 10.1021/acs.analchem.6b04892.
Lavoie, R. A., di Fazio, A., Blackburn, R. K., Goshe, M. B., Carbonell,
R. G., & Menegatti, S. (2019). Targeted Capture of Chinese Hamster
Ovary Host Cell Proteins: Peptide Ligand Discovery. Int J Mol Sci 20(7).
doi: 10.3390/ijms20071729.
Le Borgne, R., & Hoflack, B. (1998). Protein transport from the
secretory to the endocytic pathway in mammalian cells. Biochim Biophys
Acta 1404(1-2): 195-209. doi: 10.1016/s0167-4889(98)0057-3.
Levy, N. E., Valente, K. N., Choe, L. H., Lee, K. H., & Lenhoff, A. M.
(2014). Identification and characterization of host cell protein
product-associated impurities in monoclonal antibody bioprocessing.
Biotechnol Bioeng 111(5): 904-912. doi: 10.1002/bit.25158.
Lintern, K., Pathak, M., Smales, C. M., Howland, K., Rathore, A., &
Bracewell, D. G. (2016). Residual on column host cell protein analysis
during lifetime studies of protein A chromatography. J Chromatogr A
1461: 70-77. doi: 10.2026/j.chroma.2016.07.055.
Mora, J. R., Obenauer-Kutner, L., & Patel, V. (2010). Application of
the Gyrolab Platform to Ligand-Binding Assays: A User’s Perspective.
Bioanalysis 2(10): 1711-1715. doi: 10.4155/bio.10.122.
Pacis, E., Yu, M., Autsen, J., Bayer, R., & Li, F. (2011). Effects of
cell culture conditions on antibody N-linked glycosylation–what
affects high mannose 5 glycoform. Biotechnol Bioeng 108(10): 2348-2358.
doi: 10.1002/bit.23200.
Pan, X., Dalm, C., Wijffels, R. H., & Martens, D. E. (2017). Metabolic
characterization of a CHO cell size increase phase in fed-batch
cultures. Appl Microbiol Biotechnol 101(22): 8101-8113. doi:
10.1007/s00253-017-8531-y.
Park, J. H., Jin, J. H., Lim, M. S., An, H. J., Kim, J. W., & Lee, G.
M. (2017). Proteomic Analysis of Host Cell Protein Dynamics in the
Culture Supernatants of Antibody-Producing CHO Cells. Sci Rep 7: 44246.
doi: 10.1038/srep44246.
Rodrigues, M. E., Costa, A. R., Henriques, M., Azeredo, J., & Oliveira,
R. (2010). Technological progresses in monoclonal antibody production
systems. Biotechnol Prog 26(2): 332-351. doi: 10.1002/btpr.348.
Shanshan, Y., Beibei, J., Li, T., Minna, G., Shipeng, L., Li, P., &
Yong, Z. (2017). Phospholipase A2 of Peroxiredoxin 6 Plays a Critical
Role in Cerebral Ischemia/Reperfusion Inflammatory Injury. Front Cell
Neurosci 11: 99. doi: 10.3389/fncel.2017.00099.
Vergara, M., Torres, M., Muller, A., Avello, V., Acevedo, C., Berrios,
J., Reyes, J. G., Valdez-Cruz, N. A., Altamirano, C. (2018). High
glucose and low specific cell growth but not mild hypothermia improve
specific r-protein productivity in chemostat culture of CHO cells. PLoS
One 13(8): e0202098. doi: 10.1371/journal.pone.0202098.
Walker, D. E., Yang, F., Carver, J., Joe, K., Michels, D. A., & Yu, X.
C. (2017). A modular and adaptive mass spectrometry-based platform for
support of bioprocess development toward optimal host cell protein
clearance. MAbs 9(4): 654-663. doi: 10.1080/19420862.2017.1303023.
Walther, J., Lu, J., Hollenbach, M., Yu, M., Hwang, C., McLarty, J., &
Brower, K. (2019). Perfusion Cell Culture Decreases Process and Product
Heterogeneity in a Head-to-Head Comparison With Fed-Batch. Biotechnol J
14(2): e1700733. doi: 10.1002/biot.201700733.
Zhu, J. (2012). Mammalian cell protein expression for biopharmaceutical
production. Biotechnol Adv 30(5): 1158-1170. doi:
10.3389/fbioe.2019.00420.
Figure 1. Profiles of (a) viable cell density (b) viability,
and (c) mAb1 productivity during fed-batch and perfusion processes.
Figure 2. 2D-gel image for HCP profile comparisons between
culture processes from mAb1-producing CHO HCCF. (a) fed-batch culture
process on day 11 (b) SS perfusion culture process on day 5 (c) SS
perfusion culture process on day 14 (c) NSS perfusion culture process on
day 5 (d) NSS perfusion culture process on day 14
Figure 3. Profiles of charge variation of mAb1 during fed-batch
(day11), SS perfusion (day12) and NSS perfusion (day12).
Figure 4. Heatmap showing the fold changes in the relative
abundance of HCPs. The y-axis reflects different individual proteins and
the x-axis represents the fold change in relative abundance of perfusion
processes respect from fed-batch process. The color scale illustrates
the relative abundance level of each protein; red and blue indicate high
and low abundance compared to the fed-batch culture process,
respectively. The color intensity indicates the degree of fold increase
or decrease.