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Abstract

Climate  Forecast  System  Reanalysis  data  offer  a  promising  database  for  overcoming  the

limitations in availability and reliability of climatological data and, hence, for understanding the

hydrological processes. Using these data on grid-by-grid, seasonal and yearly scales, the present

study attempts to advance the spatiotemporal evaluation of two radiation-based (Priestley–Taylor
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and  Makkink)  and  three  temperature-based  (Hargreaves–Samani,  Thornthwaite  and  Blaney–

Criddle),  against  estimates  of  grass  reference  evapotranspiration  (ETo)  by  FAO  Penman-

Monteith method (FAO-PM). The analysis was performed for the period 1979–2013, considering

the  second  largest  (79,000  km2)  river  system  in  Ethiopia,  i.e.  Omo-Gibe  basin,  which

accommodates national parks and vast hydropower, cultivation and afforestation developments

and  discharges its flow to Lake Turkan in Kenya. To comprehensively explain the pattern of

PET,  the  influences  of  temperatures,  rainfall,  wind  speed,  radiation,  relative  humidity  and

elevation on PET were also examined. The results emphasize the outperformance of Hargreaves-

Samani method. In overall, both the annual and seasonal FAO-PM estimates are captured by this

method for most of the grid locations.  Annual trends in ETo in the upper region increased but

rainfall trends decreased. These trends might negatively impact the rain-fed food production by

reducing soil  moisture availability  in the river basin. Comparatively,  trends in rainfall  in the

middle and lower regions increased with a higher magnitude while ETo increased with a smaller

magnitude compared. The above-mentioned trends in ETo are attributable to rising temperature

and decreasing relative humidity, wind speed, and solar radiation, respectively. If these trends

would continue, we would expect increase in soil moisture for sugarcane plantation in the middle

and lower region and attenuation of water loss from reservoirs in the river basin. This study

improves  the understanding of the best  potential  evapotranspiration methods in similar  data-

scarce river basins in Ethiopia or other transboundary rivers in the region or worldwide.

Keywords:  Trend  analysis;  FAO  Penman–Monteith;  radiation-based  methods;  temperature-

based methods; Omo-Gibe river basin; NCEP CFSR data
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1. Introduction

Evapotranspiration plays a vital role in connecting the terrestrial and atmospheric component of

the climate system through moisture and energy exchange. It is a vital hydroclimatic parameter

connecting  environment,  carbon-climate  feedbacks,  and  water  resources  development  and

management  (Fisher et  al.  2017).  Hydrological  modeling,  water  resources  management,

irrigation  management  and  environmental  assessment  need  accurate  estimates  of

evapotranspiration  (Khoob,  2008;  Lang  et  al.  2017).  As  it  is  difficult  to  measure  actual

evapotranspiration  (AET)  under  field  condition,  it  is  usually  calculated  relative  to  potential

evapotranspiration (Ding et al.  2013; Jung et  al.  2016). Potential  evapotranspiration (PET) is

vital to quantify the atmospheric demand for water of a river basin. Therefore, PET could be

used for irrigation water management, drought assessment, and understanding impacts of climate

variability.  PET has also been extensively used in the estimation of AET using various remote

sensing-based models (Senay et al. 2007; Maeda et al. 2011; Wagle et al. 2017). As an input in

various water balance model, PET could also be used in assessing AET of a catchment. 

Since many methods have been introduced for estimating PET, the choice of the best one

is  challenging  and  governed  by  availability  of  the  observed  climate  data.  Several  studies

compared and evaluated various PET estimation methods (Lu et al. 2005; Tabari, 2010; Djaman

et al. 2015;  Song et al. 2019).  Bogawski  and Bednorz (2014) developed a simple relationship

between PET candidate  approaches  and FAO Penman-Monteith  (FAO-PM) and its  modified

approaches.  Depending  on  its  physiological  and  aerodynamic  notions,  the  FAO-PM  was

recommended  by  the  Food  and  Agriculture  Organization  (FAO)  and  World  Meteorological

Organization (WMO) as the standard grass reference evapotranspiration (ETo) method (Allen et

al. 1998). As a standard method, FAO-PM can be used worldwide in many regions without the
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need for extra modifications of parameters (Allen et al. 2005; Raziei and Pereira, 2013; Djaman

et al.  2015;  Song et  al.  2019). Its  utility  is however limited in data-scare regions because it

requires many meteorological inputs. It is costly to equip meteorological stations to observe the

full range of climatic elements, including for example solar radiation, wind speed, and relative

humidity in developing countries. Other simple and effective methods, which need only readily

available meteorological data observed on ground, were therefore developed to evaluate PET or

ETo.  Assessing the performance of these simple approaches is however vital for choosing the

suitable ones in accordance to climatic region and availability of climate data. Various estimation

approaches perform differently in agro-climatic zones (Tabari, 2010; Rahimikhoob et al. 2012;

Song et al. 2019). 

Many scientists have narrated the key gaps in climate services and data in Africa and the

need  for  bridging these  gaps  (Washington  et  al.  2006;  Dinku et  al.  2014;  Nordling,  2019).

Ethiopia  is  no  exception  among  the  African  countries  whose  district-level  planning  and

development potentials are hampered by such gaps (Woldesenbet et al. 2017; Dinku et al. 2018).

Climate variability in the Omo-Gibe basin results in frequent droughts. Accurate estimates of

PET are important  in drought monitoring and forecasts in southern Ethiopia.  The Omo-Gibe

river  basin  is  one  of  the  most  crucial  river  basins  in  Ethiopia  in  terms  of  water  resources

development and climate change impacts.  Studies assessing the performance of different PET

equations are rare in the literature for Omo-Gibe river basin.

Moreover, there is no study dedicated to the analysis of trends in PET nor in its most

influential input climate variables.  Therefore, the objectives of this paper are threefold. Firstly,

five simple PET methods are compared with the standard combination method of FAO-PM in

the Omo-Gibe  river  basin.  The  candidate  PET  estimation  methods  are  temperature-based
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(Thornthwaite:  TW,  Hargreaves-Samani:  HS  and  Blaney-Criddle:  BC),  radiation  methods

(Priestley–Taylor: PT and Makkink: MK). Secondly, trend analysis for both PET estimates and

input  climatic  variables  are  investigated.  Thirdly,  the  most  influential  climatic  variables  in

changing the  PET are  identified.  To this  end,  the  analysis  utilized  Climate  Forecast  System

Reanalysis (CFSR) data of the National Centers for Environmental Prediction (NCEP). Unlike

most  common practices,  the present  study put emphasis  on performing the analysis  on grid,

annual and seasonal bases. 

2. Study Area

The Omo-Gibe River and its tributaries is one of the twelve river basins in Ethiopia (Figure 1). It

has an area of around 79,000 km2. It is located from 6°25’ N to 9°24’ N latitude and from 35°36’

E to 38°34’ E longitude. Topographically, the upper region of the river basin is characterized by

complex rugged terrain. The elevation ranges between 270 and 4000 m above the mean sea level

(Figure  1).  Rainfall  shows  both  unimodal  (upper  and  central  region)  and  bimodal  for  the

southern parts (Jillo et al. 2017). The annual rainfall takes a range between 400 mm in the south

to 1900 mm in the high elevation areas.  Rainfall  in  the study region is  classified into three

seasons,  namely  Kiremt  (June  to  September),  Belg  (March  to  May)  and  Belg  (October  to

February). However, the dominant rainfall season varies spatially in the Omo-Gibe river basin.

Omo-Gibe basin is also categorized into three regions, namely upper region, middle region, and

lower region, based on the contribution of seasonal to the total annual rainfall. The upper region

is where the Kiremt rainfall contributes more than 50 % of the total annual rainfall. It represents

the last third of the grid points in Figure S1. The lower region represents the lower one-third of

the grid points where Kiremt season contributes only less than 30 % of total annual rainfall. For

this region, the dominant rainy season is Belg (Figure S1). In between the two regions, lies the
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Middle region represented by the middle one-third of the grid points in which Kiremt rainfall

contributes between 30 to 50% of annual rainfall.

The mean annual temperature in the basin varies between 17 °C and 29 °C (MoWR,

1996).  Highland and lowland soils  prevail  the basin.  Highland soils  in  the study region are

characterized by moderate natural fertility while lowland soils are generally coarse-grained with

nutrient-poor soil. Humic nitisol (27.4 %) and himic alisol (18.1 %) are the dominant soils types

in the basin. Cultivation in the low lands is usually constrained by moisture deficiency due to

warm climate (MoWR, 1996). The total mean annual flow is estimated to be 16.6 Billion cubic

meter (MoWR, 1996). 

The elevation, total annual rainfall and annual mean values of the climatic elements for

the  grid  locations  considered  in  the  current  study  are  given  in  Table  S1.  Basin-wide,  the

corresponding measures of central tendencies of the climatic elements are shown in  Table S2.

High variations in temperatures, relative humidity, wind speed, and solar radiation reflect a wide-

range of agro-ecological zones that are encompassed by the basin.

The dominant land use/land cover (Figure 1) in the basin is woodland and natural forest (both

combined account for about 85 %). Cultivation land is dominant only in the highland region of

the basin. Cultivation dominates in the upper region of the basin while the flatter lowlands of the

northern catchments are normally used for eucalyptus tree plantations instead of cultivation. The

eastern part of the basin is characterized as one of the most densely populated area in Ethiopia

and, in turn, as intensively farmed areas in the basin. Both the southern part and deep gorges are

less populated and, hence, are covered with natural vegetation (Woodroofe, 1996). Omo and

Mago national parks as well as Tama wildlife reserve are found in the lower part of the basin

(Figure S2). Three cascaded hydropower schemes, such as Gibe I (184 MW), Gibe II (240 MW)
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and  Gibe  III  (1870  MW),  are  under  operation  in  the  study  area  (Figure  S2). Upstream

hydropower generation  enables  Kuraz Sugar  Development  (around 175,000 ha)  in  the lower

Omo valley. 

3. Data and Methodology

3.1.Data

In this study, the NCEP global weather data, i.e. CFSR (Saha et al. 2010) were used. Daily high

resolution  data  were  downloaded  for  the  period  1979  to  2013  from

https://globalweather.tamu.edu.  The  climatic  parameters  acquired  were  wind  speed,

precipitation, solar radiation, and relative humidity at 0.25 X 0.25 ° spatial resolution covering

the  study  region.  Applicability  of  CFSR data  for  hydro-climatological  studies  in  data-scare

regions like Abay river basin in Ethiopia was found very promising. Fuka et al. (2013) reported

for  Abay watershed that  streamflow using CFSR data is  equivalent  to  streamflow simulated

using ground-observed rainfall  data.  Worqlul  et  al  (2014) indicated  that  rainfall  volume and

pattern are captured better using CFSR rainfall data at Lake Tana sub-basin. Dile and Srinivasan

(2014) also reported that CFSR data for hydrological modeling is a good alternative for data-

scare region.

3.2. Description of the six evapotranspiration estimation methods

Based  on the  data  required,  the  evapotranspiration  calculation  methods  are  categorized  into

temperature-based (HS, BC and TH), radiation-based (PT and MK) and combination methods

(FAO-PM).

4.1.1. Blaney-Criddle method

The  Blaney-Criddle  method  was  established  in  the  United  States  but  has  been  extensively

exercised in various regions (Doorenbos et al. 1977). The coefficient of the BC was adjusted by
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the  FAO  in  harmony  with  relative  humidity,  sunshine  hours  and  wind  speed,  and  it  is

recommended  for  data-scare  areas  (Doorenbos  et  al.  1977).  This  method  only  considers

temperature element at a particular region for computing reference evapotranspiration as follows:

ET o=δ (0.46T m+8)     (1)

where δ is the mean daily percentage of annual day length in hours as a function of the latitude of

region and Tm is the mean temperature (°C).

4.1.2.  Thornthwaite Method

Thornthwaite  (1948)  suggested  an  empirical  equation  used  to  compute  reference

evapotranspiration through heat index and temperature. The equation relates evapotranspiration

and mean air temperature. in the following fom:

PET=ET non−corrected( N
12 )(

dm

30 )          (2)

ET noncorrected=16 (10 T m

I )
α

(3)

I=∑
i=1

12

(
T mi

5 )
1.514

            (4)

where ETnon-corrected is the gross monthly evapotranspiration calculated over 30 days long with a

theoretical 12 hours of sunshine per day; N is the maximum day length in hours expressed as a

function of the month and latitude;  I  is the monthly heat index;  dm is the number of days per

month; Tm is the mean temperature (°C); and finally

α=0.49239+1792∗10−5 I−771∗10−7 I 2
+675∗10−9 I 3 (5)
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4.1.3. Priestley-Taylor method

To make Penman-Monteith (Monteith, 1965) equation less data demanding, Priestley and Taylor

(1972)  substituted the aerodynamic term by an empirical multiplier.  They estimated the actual

evaporation  to  be higher  than the  potential  evaporation  by a  factor  of  1.26 representing  the

aerodynamic term. PT requires only temperature and long-wave radiation to compute the PET by

the following equation:

PET=1.26
∆

∆+γ
( Rn−G )

1
λ

(6)

where,  Δ  is the slope of vapor pressure-temperature curve (kPa °C−1);  γ is the psychrometric

constant (kPa °C−1);  Rn is the net radiation of the crop surface (MJm−2day−1);  G is the soil heat

flux d (MJm−2day−1); λ is the latent heat of vaporization (MJ kg−1). The slope of vapor pressure-

temperature diagram (Δ) is estimated as:

∆=
2503.058
Tm+273.3

exp(
17.27T m

T m+237.3 )              (7)

The Psychrometric constant (γ) is calculated as follows:

γ=0.665∗10−3*P                                    (8)

where P is the atmospheric pressure, which is calculated for different elevation points as:

P=101.3 (293−0.0065∗Z
293 )

5.26

                    (9)

where Z is elevation of the climate station (m).

The net radiation (Rn) is given by: 

Rn=Rns−Rnl (10)
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where Rns and Rnl are the net shortwave and longwave radiations (MJ m−2 day−1), respectively,

where Rns = 0.77Rs.  Rnl can be determined based on the corrected Stefan-Boltzmann law for

cloudiness and humidity as given below:

Rnl=σ [T 4
max, K+T 4

min , K

2 ] (0.34−0.14√ea )(1.35
(as+bs

n
N )Ra

0.75 Ra
)−0.35

 (11)

where  Tmax,K and  Tmin,K  are  the  maximum and  minimum absolute  temperatures,  respectively,

during a 24-hour period (K=°C + 273.16), and σ  is the Stefan-Boltzmann constant (4.903*10-9

MJ K-4 m-2 day-1).

4.1.4.  Makkink Method

Makkink (1957) simplified the method for PET estimation by the use of only two parameters,

namely radiation and temperature:

       PET=0.61
∆

∆+γ

R s

λ
−0.12 (12)

where Δ is as defined before in Eq. (7); γ is as defined before in Eq. (8); a λ is the latent heat of

vapor and equals 58.5 MJ kg−1; and Rs is the solar radiation of the crop surface in MJm−2 day−1.

PET Mak=

0.61∗Δ
Δ+γ

∗R s

58.5
−0.12

(13)

where Rs is calculated following the procedure proposed by Allen et al. (1998) which links the

surface shortwave radiation to the extraterrestrial radiation and the daily duration of sunshine as:

      R s=(as+bs ×
n
N )× Ra (14)

where as and bs are regression constants having the values 0.25 and 0.50, respectively; n is the

daily hours of sunshine; and N is the day length in hours. Then, for clear-sky days (n = N), Rs clear

can be calculated as:
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R s clear=0.75 Ra (15)

where Ra represents the extraterrestrial radiation (MJ m−2 day−1) calculated according to Allen et

al. (1998). 

4.1.5.  Hargreaves-Samani method

Depending  on  lysimeter  data,  Hargreaves  and  Samani  (1985) recommended  a  method  for

computing the potential  evapotranspiration considering minimum and maximum temperatures

and extraterrestrial radiation. The HS equation is a simple method proposed as an alternative to

the  physically-sound  but  data-demanding  FAO-PM  (Allen  et  al.  1998).  The  equation  is

formulated as follows: 

PET=0.0023 (T m+17.8 ) (T max−T min)
0.5 × Ra

   (16)

where Tmax, Tm, and Tmin are the maximum, mean and minimum temperatures (°C), respectively,

and Ra is the extraterrestrial radiation (MJ m−2 day−1).

4.1.6.  FAO Penman-Monteith equation

The FAO  Penman-Monteith equation is a physically  based method taking into account most

relevant atmospheric processes. It can be used to develop reference potential evapotranspiration

using  the  FAO  parameterization  (Allen  et  al.  1998).  FAO-PM  is  a  globally  used  standard

reference  evapotranspiration  estimation  method  (Allen  et  al.  1998).  This  is  a  combination

method of the aerodynamic and radiation terms as follows:

ET o=

0.408 Δ ( Rn−G )+γ
900

T+273
u2 (es−ea )

Δ+γ (1+0.34 u2 )
(17)

where ETo is the grass reference evapotranspiration (mm day−1);  Rn is the net radiation of the

crop  surface  (MJm−2 day−1);  G and  γ are  as  defined  before  in  Eq.  (6);  T is  the  mean  air
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temperature at 2 m height (°C);  u2 is the wind speed at 2 m height (m s−1);  es and  ea are the

saturation and actual vapor pressures (kPa); Δ is the slope of vapor pressure-temperature curve

(kPa°C−1).

3.3. Comparison of PET methods using statistical metrics

To quantitatively measure the accuracy and reliability of the PET methods, seasonal and annual

PET  evapotranspiration  estimates  obtained  by  each  method  were  compared  with  the  ETo

calculated using the FAO-PM. Three commonly used performance metrics were applied in this

study. The Kendall correlation (Kendall, 1948) explains the correspondence between the FAO-

PM ETo and the candidate PET approaches. To quantify the deviation of the PET using the

candidate approaches from ETo obtained by FAO-PM, the root mean square error (RMSE) and

the percentage bias error (PE) were used.  The RMSE indicates how concentrated the data is

around the line of best fit.

3.4. Spatio-temporal trend analysis

Trend analysis was implemented using Mann-Kendall (Mann, 1945; Kendall, 1975) test for the

period 1979 to 2013 to check if the PET and ETo as well as their contributing climate variables,

such as mean, minimum and maximum temperatures, rainfall, wind speed, relative humidity and

radiation, have increased or decreased. The trend rates were computed for all the grid points on

annual and seasonal scales. 

The Mann–Kendall test (Mann, 1945; Kendall, 1975) is a non-parametric test applied to

analyze the existence of a monotonic trend. The null hypothesis of the test is such that no change

exists in the mean of a time series versus the alternative hypothesis of a decrease or an increase

in mean of the series over time. Kendall’s statistic S is calculated as follows:
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S=∑
i=1

n−1

∑
j=i−1

n

Sgn ( X j−X i )              (18)

Sgn ( X j−X i )={
+1 if ( X j−X i )>0

0 if ( X j−X i )=0

−1 if ( X j−X i )<0

                      (19)

where n is the number of observations, Xj and Xi are sequential data (j > i), and Sign (Xj−Xi) is a

sign function that indicates whether the difference is positive or negative. The Statistic S, which

is normally distributed with zero mean and variance, is calculated as: 

Var (S )=
[n (n−1 ) (2 n+5 )−∑

i=1

m

t (t−1)(2t +5)]
18

                   (20)

where n is length of data records, t is the size of the ith tie, m is the number of ties, and ∑ is the

summation of all ties. 

The current study used the Mann-Kendall trend test by considering the effective sample size

approach and removing all autocorrelations that are significant at the 95% confidence level. The

variance of the test was adjusted as suggested by Yue and Wang (2004):  

Variance¿
( S )=Variance (S )

m
m¿

(21)

where Variance*(S) is the adjusted variance, Variance (S) is the variance of the Mann-Kendall

statistic prior to the adjustment, m is the actual sample size of the time series under study and m*

is the effective sample size, which is calculated as follows:

m¿
=

n

1+2.∑
k=1

n−1

(1−
k
n )rk

  (22)

where rk is the significant lag-k serial correlation coefficient calculated following Yue and Wang

(2004):
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rk=

1
n−k ∑t=1

n−k

{X t−[1
n∑t=1

n

X t ]}{X t+ k−[ 1
n∑t=1

n

X t]}
1
n
∑
t =1

n

{X t−[1
n
∑
t=1

n

X t ]}
2

(23)

Mann-Kendall statistic Z is estimated below: 

Z={
S−1

√Var (S)
if S>0

0 if S=0
S+1

√Var (S)
if S<0

                          (24)

where Z is  the standard normal  variable  indicative  of  increasing and decreasing  trends with

positive and negative values, respectively.

The trend magnitude is obtained as the slope of the trends in the non-parametric Mann-

Kendall test using the Theil-Sen’s estimator (β) as follows:

β=Median[ X j−X i

j−i ] for all i<J                                      (25)

where Xj and Xi are sequential data (j>i). A positive β indicates an increasing trend and vice

versa.

3.5. Multiple regression

To opt the attribution of the variation in PET or ETo, a multiple regression analysis was carried

out on each grid point by taking into account the series of PET or ETo as a dependent variable

and the four climatic  variables,  viz minimum and maximum temperatures,  relative humidity,

wind speed, and radiation, as independent variables.  A standardized beta coefficient estimates

how strongly each individual independent variable influences the dependent variable. The larger

the  absolute  value  of  the  standardized  beta  coefficient,  the  bigger  the  influence  of  the

independent  variable  on  dependent  variable.  Standardized  beta  coefficients  have standard

deviations as their units. It is the amount of change in the dependent variable per unit of change

in the independent variable. A positive standardized beta coefficient implies that the outcome

variable will increase by the beta coefficient value for every one-unit increase in the predictor,

and vice-versa.
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4. Results

4.1. Best performing PET approach

The performance of the PET methods were compared with the ETo calculated using the FAO-

PM. The plots of the relationships between the candidate approaches and the FAO-PM method

are presented in  Figure S3  using daily mean values. All the relationships are non-linear with

coefficient of determination (R2) ranging from 0.34 to 0.64. The HS correlates better with FAO-

PM than the other candidate approaches. Next to HS is BC, which shows R2 of 0.63, whereas PT

is the least performing approach in terms of the variations of FAO-PM estimates it explains. The

HS  has  a  least  RMSE  (0.8  mm/day)  and  lowest  percentage  bias  error  (−2.5%)  for  daily

evapotranspiration estimations.

The best performing PET approach across the grid points is given spatially in Figures 2

and 3 on annual  and seasonal  scales  in  terms of Kendall  correlation,  percent  bias  error and

RMSE. It is striking that HS performs better spatially than the remaining candidate approaches

on  the  annual  scale  with  reference  to  all  the  performance  metrics.  However,  the  seasonal

distribution of the best performing approach varies from region to region. Below is the main

description of the results with reference to each performance indicator. For details on the sub-

regional results, the reader is referred to the supplementary information.

4.1.1. Kendall correlation
Table  1  indicates  the  number  of  grid  points  with  significant  and  highly  significant  Kendall

correlation between the candidate approaches and FAO-PM method in the lower, middle and

upper  regions  of  the  basin  on  the  annual  and  seasonal  scales.  HS  and  MK  show  higher

correlation coefficient on the annual and seasonal scales. HS shows either better or comparable
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performance in terms of Kendall correlation and number of grids with significant correlation for

the three regions.

4.1.2. Percentage Bias Error
Percentage bias errors of the estimates obtained using the candidate approaches in comparison to

those made by FAO-PM method are indicated in  Figure S4.  HS shows lower percentage bias

error on the annual and seasonal scales for all the three regions. It is worth mentioning that the

percentage bias error varies both in magnitude and sign between the time scales and the grid

locations.

4.1.3. RMSE

The RMSE for the candidate approaches in comparison to FAO-PM method are shown in

Figure S5. On the annual scale, the RMSE in the lower region is smaller than in the middle and

upper  regions.  Relatively  smaller  RMSE manifests  in  the  middle  region  in  Belg  and  Bega

seasons.  The candidate  approaches on the annual  and seasonal  scales  demonstrate  consistent

increase of RMSE from the lower to the higher region (Figure S5). Using PT, RMSE diminishes

in Kiremt from the lower to the upper region. For almost all the grid points, the RMSEs of HS

are similar on the annual and seasonal scales except for grid points located in the lower region,

where the seasonal RMSE is higher than that of the annual one. 

4.1.4. Number of grid points with better performance metrics

Large number of grid points show strongest Kendall correlation (54), lowest percent error

(60)  and lowest  RMSE (57) for  HS on the annual  scale  (Figure S6).  In Kiremt season,  HS

outperformed in terms of percentage bias error (59 grid points), and MK in terms of RMSE (54

grid points) and Kendall correlation (50 grid points). For Belg season, HS performs the best in

terms of Kendall correlation (49 grid points), RMSE (55 grid points) and percentage bias error

(32  grid  points).  Similarly,  HS surpasses  considering  Kendall  correlation  at  43  grid  points,
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RMSE at 53 grid points and percentage bias error at 40 grid points in Bega season. As indicated

in Figure S6, the performance of all the candidate approaches except HS varies depending on the

time scale (annual or seasonal) under consideration and the given performance metrics.

4.1.5. Spatial distribution of PET and ETo

The spatial  distribution  of  the  annual  PET estimated  by the  candidate  approaches  in

comparison to the annual ETo obtained by FAO-PM is shown in Figure 4. These results indicate

underestimation  by  TW at  almost  all  the  grid  points  in  the  middle  and  lower  regions.  BC

underestimates the annual FAO-PM value mainly at the grids located in the lower region. MK

underestimates FAO-PM ETo at the grids situated in the lower region but displays overestimates

at the grids existing in the upper region. Estimates by both HS and MK resemble the FAO-PM

values at the grids lying in the middle region. However, the grids in the upper region indicate

slight overestimation by HS and MK. PT shows huge overestimation of the annual ETo at the

grids found in the upper and middle regions. The grids in the upper and middle regions show

annual  PET  by  HS comparable  to  ETo  of  the  FAO-PM.  All  the  candidate  approaches

underestimate  the  FAO-PM values  at  the  grids  located  in  the  lower  region  although  PT is

relatively comparable to FAO-PM. 

4.2. Trends in candidate PET approaches

The  number  of  grid  points  with  significant  annual  and  seasonal  trends  for  various  PET

approaches is presented in Table 3. The results depict that number of grid points with significant

trend and its magnitude vary among the candidate approaches and seasons. Temperature-based

approaches indicate higher number of grids with significant trends (BC followed by TW and HS)

compared to the other approaches. 
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Figures 5 and S7  to  S9  give the spatial distribution of the trend magnitude of PET on

annual and seasonal scales using Sen’s slope estimator for the candidate approaches.  Using both

BC and TW, PET shows statistically significant trend for all grid points on the annual and Bega

seasonal scales. For BC, PET shows similar pattern of trend as that of the maximum temperature.

On the annual scale, the multiple regression analysis also shows that maximum temperature is

the  most  influential  parameter  with  standardized  beta  coefficient  of  0.88.  The  mean  annual

standardized beta coefficients under BC are the lowest in comparison with the other candidate

approaches for radiation (−0.16), minimum temperature (0.14), wind speed (0.07) and relative

humidity (0.07), respectively. 

TW is dominated with both minimum and maximum temperatures (Figures 5 and S7 to

S9). The lower region is influenced by minimum temperatures and manifested very high trend

magnitude.  In  the  middle  region,  where  the  trend  magnitude  for  maximum  and  minimum

temperate were mild, PET trend magnitude is the lowest among the PET trends for the three sub-

regions. The mean annual standardized beta coefficients were highest for minimum temperature

(0.44) followed by maximum temperature (0.43), and smallest for wind speed (0.12) and relative

humidity (0.10). PET is not sensitive to radiation.

Using HS, the PET trend magnitude is decreasing. Multiple regression analysis showed

that HS is mainly influenced by maximum temperature but offset by minimum temperature. As a

result, downstream region with lower trend magnitude in maximum temperature and higher trend

magnitude in minimum temperature showed non-significant or significant decreasing trend. The

mean  annual  standardized  beta  coefficients  for  the  basin  were  highest  for  maximum  and

minimum temperatures (1.79 and −1.02), and lowest for radiation (−0.07), wind speed (0.03) and

relative  humidity  (−0.03).  These  results  indicated  that  10%  increase  in  either  maximum
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temperature or wind speed results in 17.9% or 0.3% increase in PET, respectively.  But 10%

decrease in minimum temperature, radiation and relative humidity would result in 10.2%, 0.7%

and 0.3% increase in PET respectively.

PT and MK on annual scale portrayed increasing trends in PET in the upper region of the

study area, which has shown significant increasing trend in radiation and decreasing trends in

relative  humidity.  Multiple  regression  analysis  also  indicated  that  radiation  is  the  dominant

variable influencing PET in both PT and MK. The mean annual standardized beta coefficients

under  PT  were  highest  for  radiation  (1.04)  and  relative  humidity  (0.49),  intermediate  for

maximum temperature (0.33), and smallest for minimum temperature and wind speed (0.04 and

0.02, respectively). The mean annual standardized beta coefficients for the study basin under MK

were highest for radiation (0.91) and lowest for minimum temperature (−0.17), relative humidity

(−0.09), maximum temperature (0.08), and wind speed (0.01).

Trend magnitude for annual PET using FAO-PM is highest for the basin manifested with

higher  warming  rate  of  daytime  temperature,  significant  increasing  trend  in  radiation  and

significant decreasing rate in relative humidity (Figures 5 and 6). The mean annual standardized

beta coefficients for the study basin under FAO-PM were the highest for wind speed (0.43),

intermediate for maximum temperature (0.32) and radiation (0.28), and smallest for minimum

temperature (0.13) and relative humidity (−0.10). These results imply that a 10% increase in

maximum and minimum temperatures, wind speed, radiation would result in a 3.2%, 1.3%, 4.3%

and 2.8 % increase in PET, respectively whereas a 10% decrease in relative humidity would

result in a 1% increase in PET. Grids points with significant decreasing trends in wind speed

manifested non-significant trend magnitude for FAO-PM. Number of grid points with significant

trend using FAO-PM are far less in Belg and Bega seasons than that for annual and Kiremt
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seasons. Except BC and TW, all the approaches portrayed significant decreasing trends in Belg

season for grids in the lower region. Kiremt season portrayed significant increasing trends for

grids in the lower region for the majority of the PET approaches. The annual trend magnitude is

highest  compared to  the  seasonal  trend magnitudes  for  almost  all  grid  points  and candidate

approaches. It is worth mentioning that the number of grid points with significant trends and

trend magnitude vary from region to region and among seasons (Figures 5 and S7 to S9). 

Annual and Kiremt season rainfall show significant decreasing trends for the upper most

region (Figure S10). This region also showed highest warming rate during the daytime, higher

radiation rate, and declined relative humidity. 

4.3. Trends in input climatic parameters for PET

Trend magnitude using Sen’s slope estimator for input climatic variables are indicated in Figure

6.  For radiation, 24 grid points show statistically significant increasing trend whereas one grid

point only shows decreasing trend. The significant trends in radiation are concentrated in the

upper region of the study catchment, which is characterized by relatively higher humidity and

lower temperature.  Similar to radiation,  significant trends in relative humidity exhibits in the

upper  region.  Out  of  26  grid  points  showing significant  trends,  only  2  grid  points  indicate

increasing trends while the remaining ones show decreasing trends). Not only few grid points (10

grid points) show significant decreasing trends in wind speed, but they also manifest weak trend

magnitudes. Those grid points with significant decreasing trend are found in the western part of

the  middle  region,  which  is  characterized  by  mean temperature  of  20.4  °C (less  than  basin

average) and relative humidity of 65.8 % (slightly higher than basin average).

The maximum, minimum and mean temperatures show highly significant trends for all

grid points on the annual scale (Figure 6). The trend magnitude for the maximum temperature
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ranges from 0.2 to 0.9 °C/decade. It decreases while moving from the upper region to the lower

region. The warming rate during daytime in the sub-humid (upper) region of the catchment is

higher than that in the dry arid (lower) region. The minimum temperature manifests opposite

patterns on the trend magnitude (Figure 6), i.e the trend magnitude during night is decreasing in

the direction from the upper region to the lower region and ranges from 0.3 to 0.5 °C/decade.

Lastly,  the  mean  temperature  also  shows similar  patterns  in  trend magnitude  as  that  of  the

maximum temperature,  i.e. increasing from the lower region to the upper region, but at rates

ranging from 0.3 to 0.6 °C/decade.

5. Discussion

5.1 Performance of PET approaches in the context of literature

This  study has  shown that  the radiation-based approaches  are  outperformed by temperature-

based approaches.  Among the latter  set  of approaches,  HS is  the best  in light  of bias error,

Kendall correlation and RMSE. It followed the same spatial trend as that of FAO-PM across the

study region. The method finds several advocates in literature.  Tabari (2010) reported that the

HS equation was most accurate under the humid condition in Iran. Li et al. (2018) recommended

HS  in  opposition  to  TW  for  PET  estimation.  Rahimikhoob  et  al.  (2012)  reported  that HS

compared very well with  FAO-PM values in northern Iran. Both our results and these studies

contest  the  argument  that  favors  the  radiation-based  methods  over  their  peers,  which  are

temperature in the evaluation of PET in eastern Asia (Xu and Chen, 2005; Tukimat et al. 2012;

Jadhav et  al.  2015).  The result  of our study is  also in  disagreement  with that  conducted  by

Trajkovic and Kolakovic, (2009),  who  discerned relatively higher error with HS compared to

TW and PT for humid locations in Western Balkans. 
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Among the radiation-based methods, MK exhibits better performance than PT, especially

in the upper and middle regions of the Omo-Gibe river basin which is characterized by relatively

high humidity, less temperature and less evapotranspiration. Compared to the other approaches

under consideration in the present study, it is established that TW performs poorly under the

humid climate in southwestern China (Lang et al.  2017). This result is in accord with results

obtained by  Chen et al.  (2005) and Lu et al.  (2005)  that TW performed worse in China and

Southeastern United States. 

5.2 Attributing trends of PET in the context of literature

In the current study, PET has shown highest increasing rate in regions where temperature

is increasing with higher rates.  The result of significant increasing trends in temperatures is in

agreement  with  results  obtained  by  Gebrechorkos  et  al.  (2019), who  indicated  significant

increasing trends in maximum and minimum temperatures in Ethiopia.  Warming climate does

not always increase the PET, but literature reports both increasing and decreasing trends in PET.

Increasing trends in PET, for instance, were indicated by  Espadafor et al. (2011) for southern

Spain and by Kousari and Ahani (2012) for Iran. Conversely, Jhajharia et al. (2012), Irmak et al.

(2012) and  Shan  et  al. (2016)  found decreasing PET trends for India,  the United States and

northwestern China, respectively. Inverse relationship has been exhibited in the present study

area between the PET – using both HS and MK – and minimum temperature likewise in different

parts of the world (Roderick et al. 2007; Jung et al. 2010; Hans et al. 2012; Brutsaert, 2013;

Padmakumari et al. 2013; Bian et al. 2020).

Different  trend magnitudes of rainfall  and input climatic  parameters  for PET/ETo are

manifested  in  the  lower,  middle  and  upper  regions  of  the  Omo-Gibe  basin.  Spatially

heterogeneous changes of temperatures, wind speed, relative humidity, and solar radiation have
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been observed in different parts of the world which resulted in varying PET (Sherwood  et al.

2010;  Celik  and Cengiz,  2014; Shan et  al.  2016;  Liu et  al.  2017). Wind speed in  Africa is

generally decreasing (Wu et al. 2018). This increase could be one of the key factors reducing the

atmospheric water demand (Song et al. 2010). The dominant climate variables playing the role in

changing  PET  varies  with  location  and  climate.  For  instance,  Xu  et  al.  (2006)  noted  that

decreasing trends in the wind speed and net total radiation are main causes of the declining PET

in the Changjiang catchment, China. Liu et al. (2010) attributed the increasing PET to a rise in

temperature  and declining  wind speed in  the Yellow River  Basin,  China.  Huo et  al.  (2013)

indicated that wind speed is predominantly changing PET in the arid northwestern regions of

China. In the Loess  Plateau of China,  declines in both solar radiation and wind speed and an

increase in actual vapor pressure were found responsible for the decrease in PET  (Ning et al.

2018).  Similarly,  results  for  Iran  demonstrate  varying  conclusions. Although  Mosaedi  et  al.

(2016) reported the changes in maximum temperature and relative humidity as attributes  for

changes in PET in Iran, others found that actual vapor pressure and temperature to be the main

and the least influential variables, respectively, in the changes in PET noted for Iran (Sharifi and

Dinpashoh 2014). In some arid environments, Nouri et al. (2017) showed that the change of wind

speed is an example of underlying cause of the trend in annual PET.

5.3 Influence of elevation and rainfall on ETo (FAO-PM)

Elevation strongly impacts climatic parameters thereby affecting PET.  The relationship

between annual  PET using  FAO-PM and elevation  as  well  PET with  rainfall  distribution  is

shown in  Figure 7. Results indicated that annual PET using  FAO-PM significantly correlated

with both elevation of the grid points and annual rainfall amount. Yang et al. (2019) revealed that

ETo using FAO-PM decreased as the elevation increased in northwest China.  Thomas, (2000)
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reported a positive relation between evapotranspiration change and station elevation in southwest

China. The correlation of PET with annual rainfall amount is stronger than that of altitude.

6. Conclusions

Aiming at selecting appropriate methods for estimating evapotranspiration in Omo-Gibe River

Basin in Ethiopia, the performance of five simple evapotranspiration methods has been examined

in this study using the CFSR climatic data. To extensively explore the changing behavior of PET

in the basin,  the trends in annual potential  evapotranspiration PET, maximum and minimum

temperatures,  wind  speed,  relative  humidity,  solar  radiation  and  rainfall  have  also  been

quantitatively studied for the period 1979−2013. Spatio-temporal analysis was carried out for

various  PET  approaches  on  a  seasonal  basis.  The  relative  contribution  of  various  climatic

variables to PET trend has been examined. Besides, the spatial distributions and trends of the

climatic variables were investigated to further explain the most influential climatic parameter for

various PET approaches. 

The magnitude of statistical performance metrics used varies in space and from season to

season  for  the  candidate  approaches.  Among  the  five  evapotranspiration  methods,  the

temperature-based HS portrayed similar magnitude of PET as that exhibited by the FAO-PM

method at annual scale. HS outperforms in the upper and middle regions of the Omo-Gibe River

Basin which  are  characterized  by  relatively  high  humidity,  less  temperature  and  less

evapotranspiration. MK is comparable with FAO-PM in the middle region of the river basin. For

the  lower region,  HS and MK perform better  in  terms of  RMSE and number  of  grids  with

significant Kendall correlations. PT is the best alternative to FAO-PM in terms of percentage

error in the lower region. All the candidate approaches underestimated FAO-PM estimates of

evapotranspiration in the lower edge of the river basin, which is a region characterized by very
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hot, less humid and high evapotranspiration climate conditions. However, PT portrays FAO-PM

in terms of PET magnitude in the lower edge of the study area. In view of the limitations in the

availability and reliability of the climate data in the study region, the adequate performance of

HS must be highlighted since it only requires measuring air temperatures. 

The  trend  magnitude  and  direction  of  the  climatic  input  parameters  for  PET/ETo

estimates varied spatially,  but none of the changes in PET or ETo could be attributed to the

changes in a single climatic variable.  Depending on the candidate approach and time-scale of

analysis (seasonal or annual) under consideration, the results indicated that the  number of grid

points with significant trend and magnitude varied between the different regions across the basin.

Over  the period 1979−2013,  the  annual  FAO-PM PET increased  with  higher  rate  while  the

annual and Kiremt season rainfall declined in the upper region of the study river basin. Given the

dominant rain-fed agricultural activities, the ramifications of a continuation of this trend might

manifest in food production/security due to reducing soil moisture availability. Therefore, soil

moisture conservation during the rainy season might support proper water management in upper

region of the Omo-Gibe river basin. In contrary, the decline in PET for the main rainy season

coupled  with  higher  rate  of  increase  in  rainfall  in  the  lower  region  might  amplify  water

availability thereon through reduced irrigation demand for sugarcane plantation, less reservoir

water evaporation and increased water gain through rainfall on the reservoirs. The increasing

PET,  however,  noted  during  seasons  with  less  rainfall  might  further  reduce  soil  moisture

availability  and  increase  evaporation  from  reservoirs,  thus  might  increase  irrigation  water

demand in the lower region. Therefore, water management programs in the study river basin

should consider these negative and positive implications. 
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