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Abstract 10 

Species living in a changing environment are capable of adapting to alterations of various factors. 11 

Physiological acclimatization may be significantly influenced by the heterozygosity, especially with 12 

regards to allele variance and its specific expression (ASE) under different conditions. Data from 13 

RNA-seq experiments can be used to identify and quantify the alleles expressed, in order to detect 14 

and characterize ASE and regulation of gene expression. However, the allele matching the reference 15 

genome creates a mapping bias that prevents a reliable estimation of the allele depth unless the 16 

haplotype of the experimental individuals is provided. We developed a pipeline that allows the 17 

identification of the alleles corresponding to an RNA-seq dataset and their unbiased quantification. 18 

This pipeline does not require the sequencing of the DNA nor the previous knowledge of the 19 

haplotype. The identified SNPs are further substituted in the reference genome, thus creating two 20 

pseudogenomes with the alternative alleles on two independent samples of the experiment. The SNPs 21 

are further called against each pseudogenome thus providing with two SNP datasets that are averaged 22 

for calculation of the allele depth. The final SNP calling file contains the coordinates of the SNPs and 23 

also the ID of genes containing the SNPs, the expressed genotypes, the unbiased allele depth and the 24 

statistical tests for identifying ASE according to the experimental design and correlated with 25 

differentially expressed genes. Therefore, the pipeline presented here can calculate ASE in non-model 26 

organisms and can be applied to previous RNA-seq datasets for expanding studies in gene expression 27 

regulation. 28 

Introduction 29 

High-throughput RNA-seq is a common technique in many researches, providing differential gene 30 

expression (DEGs) data for particular conditions or experimental factors (Marioni et al., 2008). The 31 

quantification of gene expression for each factor is based on the counts of the reads that correspond 32 

to a particular gene. The sequence of those reads include the variants expressed under the different 33 



experimental factors, and therefore it is possible to quantify them (Garber et al., 2011; Ozsolak and 34 

Milos, 2011; Trapnell et al., 2011). This allele expression related to a particular factor is known as 35 

Allele Specific Expression (ASE). ASE in a particular condition is one of the ways in which the 36 

organism can respond to the changing environment. This ability is attributed to the individual’s 37 

heterozygosity and emphasize the importance of genetic variation as a mechanism of adaptation 38 

(Lande and Shannon, 1996; Hermisson and Pennings, 2005; Barrett and Schluter, 2008; Bernatchez, 39 

2016).  40 

There are few studies on the effect of ASE-SNPs under different environmental conditions. These 41 

were mostly related to specific regions of regulation affected by SNPs, also known as expression 42 

quantitative trait loci or eQTLs (Wang, 2017; Zhang et al., 2020). Interestingly, Knowles et al. (2017) 43 

developed a generalized linear model tool for analysing genome x environment interactions for ASE, 44 

known as EAGLE. However, this approach is designed for quantitative factors in human or model 45 

organisms, where many genomic tools and genotype datasets are widely available.  46 

Another determinant factor for ASE is the tissue, as shown in cattle (Chamberlain et al., 2015). Also 47 

in cattle, Guillocheau et al. (2019) found that 13% of the total expressed genes in muscle had SNPs in 48 

ASE associated with phenotypic traits and potentially causative of cis-regulation. In teleosts, SNP 49 

studies discovered the sex determination patterns of ASE in turbot (Scophthalmus maximus) 50 

(Martínez et al., 2019), SNP markers in Atlantic salmon (Salmo salar) with higher performance for 51 

DHA (Horn et al., 2020), eQTL affecting resistance to lice in Atlantic salmon (Robledo et al., 2019) 52 

and detection of broad scale suppression of gene expression in triploid medaka (Oryzias latipes) 53 

(Garcia et al., 2014). Therefore, ASE is a good estimator of tissues modifications under 54 

environmental factors.  55 

A reference genome is used to identify the chromosome and position of the RNA-seq reads after the 56 

alignment of reads and genome sequences. This procedure is known as mapping. The most common 57 

challenge of this approach appears when mapping two different alleles, from which, one is identical 58 

to the same reference sequence. The alignment mismatch between the non-identical allele mapped 59 

against the genome will discard some of the alternative alleles. Therefore, there is a bias towards the 60 

identical or reference allele since some of the reads including the alternative allele are discarded 61 

(Degner et al., 2009). Due to this mapping bias, it is difficult to find the regulatory effects of ASE-62 

SNPs in gene expression experiments (Monsu and Comin, 2021; Zhan, Griswold and Lukens, 2021). 63 

Solving the mapping bias issue requires the knowledge of the sample haplotype, either from DNA-64 

sequencing or by using available genotype data and reference haplotypes, such as HapMap 65 

(Consortium, 2003) and other SNP panels (Rozowsky et al., 2011; Vijaya Satya, Zavaljevski and 66 

Reifman, 2012). Some new approaches indicate the utilization of many reference genomes in order 67 

to provide with a broader view of the SNPs in the population (Chen et al., 2021). Unfortunately, these 68 



approaches can’t apply to RNA-seq experiments designed without considering sampling and 69 

sequencing genomic DNA for haplotype discovery. 70 

We developed a pipeline for SNPs calling and analysis of ASE, using RNA-seq datasets retrieved in 71 

experiments aiming to characterize DEGs under different environmental conditions. This pipeline 72 

enables quantification of ASE in sampled organisms for which there is no prior genotypic knowledge. 73 

We solved the mapping bias without accessing the haplotype of the sampled animals and provide the 74 

distribution of alleles in ASE. Our approach creates two pseudogenomes based on allele variants of 75 

two samples from different experimental groups. The retrieved SNP dataset can be then submitted to 76 

statistical tests for association of allelic expression and environmental or physiological factor. Finally, 77 

it is possible to correlate the coordinates of the ASE SNPs with other data on the gene expression 78 

such as DEGs and metilome sites to complement the results. 79 

In the present article we apply our pipeline to study the effect of high salinity challenge on a 80 

freshwater fish, the Nile tilapia (Oreochromis niloticus). We performed a discovery and unbiased 81 

quantification of bi-allelic sites and statistical assessment of SNPs in ASE in two tissues, gills and 82 

kidney, and two environmental factors, freshwater and brackish water.  83 

 84 

Material and methods 85 

Ethical statement  86 

This study was approved by the Agricultural Research Organization Committee for Ethics in 87 

Experimental Animal Use, and was carried out in compliance with the current laws governing 88 

biological research in Israel (Approval number: IL-715/17). 89 

 90 

Samples origin, processing and sequencing 91 

The sequences used in this study were from an experiment previously described by Root et al. (2021a, 92 

2021b). Briefly, Twelve Nile tilapia male fish were randomly distributed between two 600 l 93 

freshwater tanks. After 2-week acclimation, one group was exposed to a gradual salinity increase of 94 

5 ppt per day up to a final salinity of 25 ppt. Gills and kidney samples were taken after 24 h at the 95 

final salinity. mRNA was extracted using TRIzol reagent (Thermo Fisher Scientific), and purified to 96 

remove DNA contamination using the TURBO DNA-free kit (Invitrogen). Total mRNA samples 97 

were sent to the Israel National Center for Personalized Medicine (INCPM) at the Weizmann Institute 98 

of Science (Rehovot, Israel), where quality was determined on TapeStation Agilent 2200 system, 99 

before library preparation and sequencing on an Illumina Hi-Seq 2500 device. 100 

For validation of the SNP calling, 8 tilapia individuals were sampled. RNA was extracted from the 101 

gills and for genomic DNA was extracted from fin clips, using RNeasy mini kit and DNeasy blood 102 

and tissue kit (Qiagen, Hilden, Germany), respectively. Sequencing of RNA and DNA was performed 103 



with Illumina NovaSeq S1 300 including UMI barcoding at 10x and 30x coverage respectively, in 104 

the INCPM.  105 

 106 

Pipeline for mapping bias removal by the use of pseudogenomes and SNP calling 107 

A pipeline developed in Snakemake (Köster and Rahmann, 2012) is proposed here for retrieving 108 

SNPs from transcriptome analysis, while eliminating the mapping bias without previous knowledge 109 

of the genotypes (Figure 1, Supplementary 1). The entire code with scripts to the pipeline is available 110 

at GitHub (https://github.com/AylaScientist/Snakemake_for_SNPs). Fastq files received from the 111 

INCPM were processed according to the proposed pipeline: The fastq files were trimmed with 112 

Trimmomatic (Bolger, Lohse and Usadel, 2014) and quality was verified with FASTQC (v0.11.8, 113 

Andrews, 2010). The trimmed fastq files mapped against the reference Genome of O. niloticus 114 

(NMBU GCF_001858045.2) with the RNA-seq alignment tool STAR (v2.7.1a, Dobin et al., 2013). 115 

SNPs were called following GATK best practices (Poplin et al., 2017) as described in GATK best 116 

practices (https://github.com/gatk-workflows/gatk4-rnaseq-germline-snps-indels). Two samples 117 

from different experimental groups were chosen for construction of two pseudogenomes from a vcf 118 

file, following the protocol by Johan Zicola (https://github.com/johanzi/make_pseudogenome, MIT 119 

license). Fastq files were processed against the pseudogenomes described above. Two final vcf files 120 

joining the SNPs from all samples were annotated using ANNOVAR (Wang, Li and Hakonarson, 121 

2010). In order to annotate the SNPs of the non-model species Nile tilapia, we constructed a database 122 

using the annotation file from the same release as the genome of reference and the ANNOVAR scripts 123 

meant for creating such a database. Allele depth and genotype were collected into a table 124 

(VariantsToTable, GATK). The two datasets were then submitted to home developed scripts in 125 

Python v3.7.3. These scripts calculate the average counts for the reference and alternative allele, 126 

calculate the allele frequency, checks the correction of the mapping bias and develop the statistical 127 

analysis according to the experimental design. The home made scripts are part of the pipeline 128 

designed in snakemake and can be found in the release on gitHub. 129 

 130 

Data engineering and statistical analysis 131 

The pipeline provided with two datasets, each one containing the SNP sites called to one of the 132 

pseudogenomes. The two datasets were merged and filtered for multiallelic sites with Python using 133 

pandas and Numpy specific for data science methods that can be found in the gitHub. Afterwards, the 134 

counts of each reference and alternative polymorphic site were averaged (Figure 2A). SNPs for which 135 

the depth of one allele was less than 3 and SNPs for which the total allele depth from reference and 136 

alternative alleles was less than 10, were deleted. Those sites that had a monoallelic expression were 137 

removed. Only SNPs shared by all individuals were left on the final data of consensus SNPs. 138 

https://github.com/johanzi/make_pseudogenome


These resultant SNPs were submitted to statistical analysis for Allele Specific Expression of treatment 139 

using a Chi-square test for comparison between salinity treatments. Each experimental group was 140 

compared with each other leading to four Chi-square tests (Table 1). The p-values were adjusted with 141 

the Bonferroni test using the python library Multitest. 142 

Significant ASE SNPs for each treatment were analysed for GO function of its gene. DEG analysis 143 

was performed with DESeq package (Anders et al., 2010) in R (v 3.6.3, Development Core Team, 144 

2013) for salinity. In order to find regulatory pathways, the SNPs in ASE where contrasted with the 145 

significant DEGs. 146 

 147 

Validation by sequencing / re-sequencing:  148 

For validation of SNP calling by the above described pipeline, eight additional fish were sampled. 149 

RNA extracted from the gills and DNA extracted from fins of each individual were sequenced and 150 

processed with the pipeline for SNP calling as described before in the text. The retrieved SNPs from 151 

DNA were selected for exonic single nucleotide variant (SNVs), thus avoiding indels and intronic 152 

sites. The monoallelic expression was also deleted in order to obtain normal distributed data for the 153 

allele frequency. The selection of SNVs obtained with the pseudogenomes was contrasted with the 154 

retrieved SNVs from RNA obtained with the reference using a T-Student test. A deeper analysis with 155 

IGV (Robinson et al., 2017) was performed with 20 SNV among false positives. 156 

 157 

Results 158 

 159 

We were able to determine 103,843 informative SNPs from our experimental population present in 160 

all the tilapia individuals, from which, 99,885 present monoallelic expression and 3,740 follow a 161 

normal distribution.  162 

The method for SNP calling was tested by comparing abundance distribution of the allele frequencies. 163 

The comparison was performed on the SNPs that didn’t present monoallelic expression. There are 164 

two clearly different distributions (p<0.01), one for classical SNP calling against reference genome 165 

and the other for the calling against two pseudogenomes developed in this study (Figure 3, table 2). 166 

The SNPs called in the kidney show a normal distribution of the frequency for both calling methods 167 

(Supplementary 5, F and H). In these groups the most frequent alleles called after the reference 168 

genome are at 0.65 and 0.6 in the fresh and salty water respectively. In the gills, the calling on the 169 

reference genome produced three different distributions. One is biased towards the reference allele, 170 

the second is biased towards the alternative allele and a third is a normal distribution. The highest 171 

frequency of the alleles was biased mostly towards the reference allele but also to the alternative. The 172 

alleles that show a normal distribution include the smallest number of alleles. The average allele 173 



frequency in the normal distribution shows of 0.55 in the fresh and salty water groups (Supplementary 174 

5, B and D). The SNP called after mapping to the pseudogenomes shows unbiased normal distribution 175 

marked by the highest frequency of the alleles at 0.5 for all the studied experimental groups. The 176 

Student T-test shows significant differences in the distributions of the allele frequencies (Figure 3, 177 

table 2, p<0.01).  178 

Chi-square tests indicated ASE for the different salinities tested in the gills and the kidney on the 179 

SNPs that do not show monoallelic expression (Table 1, Supplementary 1, 2, 3 and 4). The significant 180 

ASE SNPs were classified according to their function (Figure 4, table 3). Nearly all SNPs were from 181 

non-coding regions correspond to 3’UTR, non-coding region and 5’UTR for all the tests. 182 

Substitutions occur in synonymous and non-synonymous variants with higher frequency for 183 

synonymous. Few upstream/downstream, stop loss or stop gain, frameshift or non-frameshift 184 

insertion or deletion were found. Additionally, some variants are found to be assigned to intronic, 185 

intergenic upstream and downstream variants (Figure 4, table 3). 186 

The analysis of differentially expressed genes indicated 899 SNPs corresponding to also differentially 187 

expressed genes when comparing gills and kidney in fresh water (test 1), and 1,153 SNPs in 188 

differentially expressed genes between gills and kidney in salty water (test 2) (Table 1, Supplementary 189 

6 and 7 respectively). From these, 629 (69.6%) and 790 (68.5%) correspond to regulatory regions 190 

such as UTRs and ncRNAs for tests 1 and 2 respectively. When comparing the salinity, there were 191 

15 DEG with ASE SNPs in the gills (test 3) and none in the kidney (test 4). From these, 12 SNPs 192 

(80%) are located in 3’UTR as the only regulatory region (Supplementary 8). No ASE SNPs with 193 

differentially expressed genes in the kidney have been retrieved.  194 

The CHI-tests (Figure 5) show 50 common SNPs in ASE independent of tissue or salinity treatment. 195 

There are 929 SNPs in ASE found differentially expressed between gills and kidney, independently 196 

of the salinity conditions. No SNPs in ASE were found common uniquely to the effect of the salinity 197 

in gills and in kidney.  198 

The comparative heatmap of the allele frequencies shows a differential pattern for tissues and salinity 199 

(Figure 6).  200 

The function described by Gene Ontology (GO) analysis in the ASE SNPs was compared for the 201 

salinity challenge and the tissue differences. The ASE variants between tissues conserve a similar 202 

proportion of functions both in fresh and salty water. On the other hand, the ASE SNPs between 203 

salinities change the gene function within the kidney and within the gills (Figure 7).  204 

The chromosomic regions of interest for significant ASE SNPs are illustrated in the Manhattan plot 205 

(Figure 8). 206 

 207 

Validation by sequencing 208 



The SNP calling through the pipeline from the gills transcriptome sequences of 8 Nile tilapia 209 

individuals resulted in 85% of them also called from the genome sequences. We performed an 210 

analysis of 20 single nucleotide variants (SNV) from the 15% of the SNPs not corresponding to the 211 

genome, by visualization with IGV software (Robinson et al., 2017). SNVs called from the 212 

transcriptome showed to be false SNPs in 14 cases, from which 7 cases where the allele counts were 213 

below 5. Additionally, 6 SNVs proved to exist in the RNA. From those, 1 SNV was also present in 214 

the DNA, and the other 5 SNVs were present only in RNA.  215 

 216 

 217 

Data availability 218 

The sequencing data was submitted to SRA under the bioproject PRJNA669315. The snakemake 219 

pipeline is submitted to the GitHub https://github.com/AylaScientist/snakemake_for_SNPs 220 

 221 

Discussion 222 

Two methods for SNP calling were compared in the present study. The first method is the commonly 223 

used, which includes the mapping of the reads to the reference genome previous to the SNP calling. 224 

As our results show, the allele frequency of the kidney follows a normal distribution with a slight bias 225 

towards the reference genome marked by the highest density of allele frequency at 60% reference 226 

allele versus 40% alternative allele (Supplementary 5 F and H). In the gills, most of the alleles follow 227 

a binomial distribution, including some monoallelic expression and bias towards both the reference 228 

and the alternative alleles (Supplementary 5 B and D). In the second method, using our new approach, 229 

the SNP calling takes place after mapping the reads to pseudogenomes (Figure 1). These 230 

pseudogenomes contain the SNPs expressed in the experimental set. Our result shows that the allele 231 

frequency of the average counts on these SNPs will follow an unbiased normal distribution (Figure 232 

3, supplementary 5, table 2, p<0.01).  233 

Previous strategies for removing mapping bias require prior knowledge of genotypes (Rozowsky et 234 

al., 2011; Yuan and Qin, 2012; Pandey et al., 2013; Xin et al., 2013; Mayba et al., 2014; Braasch et 235 

al., 2016; Guillocheau et al., 2019), elimination of sites showing bias after simulation (Pickrell et al., 236 

2010; Stevenson, Coolon and Wittkopp, 2013; Panousis et al., 2014; Hodgkinson et al., 2016), the 237 

SNPs previously informed in a panel (Van De Geijn et al., 2015; Salavati et al., 2019; Gutierrez-238 

Arcelus et al., 2020) or direct use of a variant-aware alignment (Hach et al., 2014; Buchkovich et al., 239 

2015; Miao et al., 2018). The pipeline developed in this study does not require this previous 240 

knowledge. Instead, it detects the sites expressed in at least one of the individuals in the experiment. 241 

This detection takes place after mapping to the reference genome previous to SNP calling (Figure 1). 242 



The sites revealed in this first calling may correspond to alleles found in the genotype, but also to few 243 

SNPs generated after mRNA modifications or editing.  244 

Editing of RNA consists of discrete changes to specific nucleotide sequences within an RNA molecule 245 

after it has been transcribed by RNA polymerase (Maas and Rich, 2000; Kiss, 2001). This molecular 246 

process is found in every living organism and it is evolutionary conserved (Song, Yi and He, 2012; 247 

Li and Mason, 2014; Meyer and Jaffrey, 2014; Sun et al., 2016). It can include deamination of single 248 

sites leading the substitution of cytidine (C) to uridine (U) and adenosine (A) to inosine (Takenaka et 249 

al., 2014; Shikanai, 2015; Licht et al., 2016; Licht, Hartl, et al., 2019; Licht, Kapoor, et al., 2019) but 250 

also generalized insertions and deletions of uracil in the same transcript by an editosome, also known 251 

as pan-editing (Blum, Bakalara and Simpson, 1990; Stuart, 1991; Benne, 1994; Simpson and 252 

Thiemann, 1995; Jan Arts and Benne, 1996; Alfonzo, Thiemann and Simpson, 1997; Kable, 253 

Heidmann and Stuart, 1997). If the editing takes place in the mRNA it can derive in the modification 254 

of the aminoacid sequence of the protein encoded (Brennicke, Marchfelder and Binder, 1999).  255 

These editions in RNA can modify the cell biology by modifying the RNA structure, tuning 256 

interactions within the ribosome and by recruiting specific binding proteins that intersect with other 257 

signalling pathways (Nachtergaele and He, 2017). Interestingly, they are also dynamic, changing in 258 

distribution or level in response to stresses, such as heat shock and nutrient deprivation (Carlile et al., 259 

2014; Schwartz et al., 2014; Li et al., 2015), translation control in immune processes (Piccirillo et al., 260 

2014; Araki et al., 2017; Wolf et al., 2020), during cancer proliferation (Gingold et al., 2014; Zviran 261 

et al., 2019), post-transcriptional modifications in development and stem cells (Frye and Blanco, 262 

2016) and during physiologically normal proliferation of T cells (Rak et al., 2021). In our pipeline, 263 

the SNPs found in the mRNA belong to the expression under experimental conditions. These variants 264 

can include both genomic alleles and post-transcriptional editions that are substituted into the 265 

reference genome thus creating a pseudogenome.  266 

Finally, the constitution of two pseudogenomes with RNA expressed under two different conditions 267 

of the study compiles a wider scope of the variability in the analysis. By mapping to the 268 

pseudogenomes, the pipeline developed here may allow the unbiased quantification of the SNPs in 269 

the genotype and of the post-transcriptional modifications of the mRNA also. We performed a 270 

validation of the SNV sites identified by our pipeline towards the genotype of a control population of 271 

tilapia exposed to fresh water. The results indicate that 85% of the SNVs are correctly called after an 272 

existing genotype. The study of 20 SNV sites among the 15% that were not found in the genotype 273 

revealed that only 60% of them are false positives and mostly related to a low count of the reads. 274 

Interestingly, 30% of these SNVs were consistently expressed in the sequenced mRNA and the allele 275 

depth estimation allowed a correct allelic imbalance estimated by the pipeline. These results indicate 276 

a possible mRNA editing among the sources of false positives. Consequently, the SNPs in ASE from 277 



our analysis may include the variant sites whose expression and modification is regulated under the 278 

salinity challenge and the different studied tissues, gills and kidney. 279 

Our analysis on the allele frequency indicates two types of imbalanced SNPs: monoallelic expression 280 

and normal distribution (Supplementary 9 A). The monoallelic expression is represented by the allele 281 

frequencies 0 or 1 in heterozygote sites indicating allele imprinting. Tissue-specific imprinting was 282 

described before in human and mouse (Babak et al., 2015) concluding that nearly all the imprinted 283 

alleles were imprinted in early development. In our analysis, when MAE alleles detected in one tissue, 284 

they show higher allelic imbalance towards the reference allele in another studied tissue 285 

(Supplementary 9 A). Such distribution has been described previously and was called variable ASE 286 

(Skelly et al., 2011). Variable ASE is represented by non-normal distribution of the allele frequencies 287 

in the graphs (Supplementary 9 A). This distribution is consistent with the one described by Skelly et 288 

al. (2011), indicating greater dispersion in read counts after differential exon expression. This indicates 289 

complex patterns of ASE, such as allele specific alternative splicing. Tissue-specific genetic control 290 

of splicing have been described in humans for polymorphisms affecting splicing and expression in 291 

human blood and brain tissues (Heinzen et al., 2008). Tissue-specific isomorphs can be regulated by 292 

alternative polyadenylation of the 3’UTR length in human (Weng et al., 2016; Macdonald, 2019), 293 

Drosophila (Sanfilippo, Wen and Lai, 2017), Caenorhabditis elegans (Khraiwesh and Salehi-ashtiani, 294 

2017) and yeast (Liu et al., 2017). Our analysis indicates that a tissue-specific imprinting and splicing 295 

may occur in gills and kidney of Nile tilapia driven by ASE. Interestingly, when MAE sites are strictly 296 

filtered (Supplementary 9 B) the variable ASE is also filtered, meaning that the SNPs in charge of the 297 

variable ASE may be also related to the monoallelic expression in other tissues. Further analyses on 298 

imprinted genes may illustrate this phenomenon and evaluate the network of MAE genes associated 299 

to variable ASE phenomenon, especially in regard to the tissue function under environmental 300 

challenge.  301 

 302 

Salinity challenge in tilapia 303 

In the present study we obtained an unbiased counting of allele expressed in different tissues, gills 304 

and kidney, after exposure to salinity challenge. The process followed the GATK best practices 305 

recommendations (Poplin et al., 2017) and provided with unbiased SNPs from which 236 are 306 

associated to the salinity challenge in gills and 1,126 in the kidney. Other algorithms depending on 307 

DNAseq data for calculating ASE have also established genomic x environmental interactions, as for 308 

example the EAGLE tool (Knowles et al., 2017). This tool is only applying to certain model 309 

organisms and it provided with 442 ASE SNPs (associations in the article) for the reaction of the 310 

human liver to different molecules. Therefore, the number of ASE SNPs retrieved after the 311 



environmental challenge in our pipeline with non-model organism are within the range of results 312 

obtained with tools limited to model organisms. 313 

The statistical analysis showed more SNPs in ASE for the tests between tissues than for the tests on 314 

the salinity challenge, independently of the salinity process. The GO functions of the genes containing 315 

the ASE SNPs between gills and kidney are highly similar between both salinities tested, also in 316 

proportion of functions. Previous studies of cattle ASE SNPs, in tissues of one individual, evaluated 317 

the allelic imbalance within each tissue. This analysis reported that at minimum 89% of the total SNPs 318 

were imbalanced in at least one tissue out of 18 studied (Chamberlain et al., 2015). Allelic imbalance 319 

was also common between 19 muscles samples of the Limousine cattle breed (Guillocheau et al., 320 

2019). Tissue-specific regulation of allele expression was also studied in mouse allelome 321 

(Andergassen et al., 2017), finding that the regulation of ASE may be driven by tissue-specific 322 

enhancers or by post-transcriptional differences. In our study we also find a basal regulation of this 323 

tissue-specific allelic expression affecting 1,589 SNPs for gills and kidney independently of the 324 

salinity (Figure 5 and Figure 6). More epigenomic analyses are needed for testing if there is tissue 325 

specific epigenomic regulation of SNP expression such imprinting in tilapia, as previously suggested 326 

for mouse development (Andergassen et al., 2017).  327 

The number of SNPs in ASE for the challenged gills (236 SNPs) is about a quarter of the SNPs in 328 

ASE for the kidney (1,126 SNPs) (Table 1). Some of the SNPs in ASE where associated with 329 

differentially expressed genes. Both gills and kidney have SNPs in ASE related to protein binding, 330 

membrane and integral components of membrane, membrane and oxidation-reduction process 331 

(Figure 7). On the other hand, gills change the expression of SNPs in genes associated to tricarboxylic 332 

acid cycle, transmembrane transport and oxoglutarate dehydrogenase activity that is not present in 333 

the kidney. Previous transcriptomic and proteomic analysis on these data indicated that there is a 334 

response in the gills to salinity by differential expression of genes related to epithelium turnover 335 

(Root, Campo, Macniven, Con, Cnaani and Kültz, 2021; Campo et al., 2022). Not only that, the 336 

proteomic analysis revealed higher post-translational modifications in the kidney as a response to the 337 

salinity exposure in contrast with few differentially expressed genes (Root, Campo, Macniven, Con, 338 

Cnaani and Kûltz, 2021). These results are consistent with this complementary analysis where ASE 339 

SNPs are associated to DEGs in the gills but not in the kidney. All taken together may indicate the 340 

differential expression found in gills to cope with the salinity challenge may be regulated partially by 341 

ASE SNP, thus driving the epithelium turnover. Our results suggest that the salinity, as environmental 342 

factor, may challenge each tissue in a different manner. While the response in gills correspond to a 343 

higher DEG, the response in the kidney provides with higher number of ASE SNPs. 344 

The 3’UTR SNPs is the most frequent type of SNP found (Figure 4, table 3). The role of 3’UTR in 345 

regulation of mRNA was reviewed by Mayr (2017), finding functions of degradation, translation and 346 



localization as well as interactions to noncoding and small RNA. Additionally, the functional 347 

interpretation of variants in the 3’UTR has been related to modification of alternative polyadenylation 348 

motifs and RNA-binding protein binding sites, also known as 3’QTLs, and can be used to interpret 349 

16.1% of trait-associated variants in human (Li et al., 2019). Therefore, some of the found SNPs are 350 

likely regulatory ones. 351 

After 3’UTR, the second most common SNPs identified for significant allelic expression were found 352 

in codifying regions, mostly synonymous SNPs. The synonymous sites were around 11 to 13 times 353 

more abundant than the non-synonymous in all the tests, except in the comparison of the gills from 354 

fresh to salty water (test 3, table 3), where the ratio of synonymous vs. non-synonymous is ~8. 355 

Diversity among non-synonymous SNPs is significantly lower than among synonymous substitutions 356 

(Graur and Li, 1997) due to the natural selection acting on the non-synonymous SNPs (Ohta, 1995), 357 

and that was the case in all our comparisons. It yet to be determine if different ratios of 358 

synonymous/non-synonymous SNPs in ASE between tissues can indicate different evolutionary 359 

adaptation mechanism between them.  360 

Intronic SNPs in ASE were captured in our analysis. Nascent RNAs of longer genes often include 361 

extensive intronic regions that would commonly be removed in the mature RNAs captured in the 362 

whole cells (Mercer et al., 2012; Lake et al., 2017), thus indicating RNA previous to the splicing was 363 

captured. Additionally, the presence of intronic RNAs have been related to transcriptional regulation 364 

events such as splicing and also to cellular identity (Ameur et al., 2011; Gaidatzis et al., 2015; Lake 365 

et al., 2016; Sheng et al., 2017; Yang et al., 2017). Therefore, the significant change in the allele 366 

frequency of intronic SNPs may be related to de novo expression of genes and specific splicing 367 

processes depending on tissue and also salinity challenge. The little variation that was found for 368 

upstream/downstream, stop loss or stop gain, frameshift nor non-frameshift insertion or deletion, 369 

indicating that nonsense-mediated decay and other pathological processes are not dominating the 370 

specific expression after salinity exposure on the studied tissues. 371 

 372 

Conclusions 373 

Our pipeline succeeded in providing a robust method on quantification of SNPs that allow the 374 

unbiased determination of SNPs in ASE, under different factors, without the prior knowledge of the 375 

genotype. This approach is suitable for any non-model organism, independently of the strain or the 376 

available genome of reference. 377 

Our tool provides with the possibility to reanalyze data of DEGs experiments in order to find gene 378 

regulation and new protein to protein interactions determined by specifically expressed alleles. The 379 

coordinates of the SNPs can be also merged with other sources of transcript data such as methylome. 380 



After adaptating of the database for gene annotation, transcriptomes can also be used for SNP calling 381 

in case there is no genome of reference. 382 

In the presented example of use for this pipeline we discovered allelic resources for copying with 383 

salinity exposure in the kidney and in the gills, and that there is differential allelic response to 384 

environment factor, depending on tissue. 385 

 386 

Acknowledgements 387 

This investigation was supported by grant 2016611 from the US-Israel Binational Science 388 

Foundation BSF and the US-Israel Binational Agricultural Research and Development Fund 389 

(BARD) Grant (IS-5358-21). 390 

 391 

Bibliography 392 

Alfonzo, J. D., Thiemann, O. and Simpson, L. (1997) ‘The mechanism of U insertion / deletion 393 

RNA editing in kinetoplastid mitochondria’, Nucleic Acid Research, 25(19), pp. 3751–3759. 394 

Ameur, A. et al. (2011) ‘Total RNA sequencing reveals nascent transcription and widespread co-395 

transcriptional splicing in the human brain’, Nature Structural & Molecular Biology. Nature 396 

Publishing Group, 18(12), pp. 1435–1440. doi: 10.1038/nsmb.2143. 397 

Andergassen, D. et al. (2017) ‘Mapping the mouse Allelome reveals tissue-specific regulation of 398 

allelic expression’, eLife, 6(Xci), pp. 1–29. doi: 10.7554/eLife.25125. 399 

Anders, S. et al. (2010) ‘Differential expression analysis for sequence count data via mixtures of 400 

negative binomials’, Advances in Environmental Biology, 7(10), pp. 2803–2809. Available at: 401 

http://amsdottorato.unibo.it/6741/1/bonafede_elisabetta_tesi.pdf. 402 

Andrews, S. (2010) ‘FastQC: a quality control tool for high throughput sequence data’. Babraham 403 

Bioinformatics, Babraham Institute, Cambridge, United Kingdom. 404 

Araki, K. et al. (2017) ‘Translation is actively regulated during the differentiation of CD8+ effector 405 

T cells’, Nature immunology, 18(9), pp. 1046–1057. doi: 10.1038/ni.3795. 406 

Babak, T. et al. (2015) ‘Genetic conflict reflected in tissue-specific maps of genomic imprinting in 407 

human and mouse’, Nature Genetics. Nature Publishing Group, 47(5), pp. 544–549. doi: 408 

10.1038/ng.3274. 409 

Barrett, R. D. H. and Schluter, D. (2008) ‘Adaptation from standing genetic variation’, Trends in 410 

Ecology and Evolution, 23(1), pp. 38–44. doi: 10.1016/j.tree.2007.09.008. 411 

Benne, R. (1994) ‘Review RNA editing in trypanosomes’, European Journal of Biochemistry, 221, 412 

pp. 9–23. 413 

Bernatchez, L. (2016) ‘On the maintenance of genetic variation and adaptation to environmental 414 



change: considerations from population genomics in fishes’, Journal of Fish Biology, 89(6), pp. 415 

2519–2556. doi: 10.1111/jfb.13145. 416 

Blum, B., Bakalara, N. and Simpson, L. (1990) ‘A model for RNA editing in kinetoplastid 417 

mitochondria: RNA molecules transcribed from maxicircle DNA provide the edited information’, 418 

Cell. Elsevier, 60(2), pp. 189–198. 419 

Bolger, A. M., Lohse, M. and Usadel, B. (2014) ‘Trimmomatic: A flexible trimmer for Illumina 420 

sequence data’, Bioinformatics, 30(15), pp. 2114–2120. doi: 10.1093/bioinformatics/btu170. 421 

Braasch, I. et al. (2016) ‘The spotted gar genome illuminates vertebrate evolution and facilitates 422 

human-teleost comparisons’, Nat Genet, 48(4), pp. 427–437. doi: 10.1038/ng.3526. 423 

Brennicke, A., Marchfelder, A. and Binder, S. (1999) ‘RNA editing’, FEMS Microbiology Reviews, 424 

23, pp. 297–316. 425 

Buchkovich, M. L. et al. (2015) ‘Removing reference mapping biases using limited or no genotype 426 

data identifies allelic differences in protein binding at disease-associated loci’, BMC Medical 427 

Genomics. BMC Medical Genomics, 8(1), pp. 1–15. doi: 10.1186/s12920-015-0117-x. 428 

Campo, A. et al. (2022) ‘Different transcriptomic architecture of the gill epithelia in Nile and 429 

Mozambique tilapia after salinity challenge’, Comparative Biochemistry and Physiology - Part D: 430 

Genomics and Proteomics, 41, p. 100927. doi: https://doi.org/10.1016/j.cbd.2021.100927. 431 

Carlile, T. M. et al. (2014) ‘Pseudoridine profiling reveals regulated mRNA pseudouridylation in 432 

yeast and human cells’, Nature. Nature Publishing Group, 515(7525), pp. 143–146. doi: 433 

10.1038/nature13802. 434 

Chamberlain, A. J. et al. (2015) ‘Extensive variation between tissues in allele specific expression in 435 

an outbred mammal’, BMC Genomics. BMC Genomics, 16(1), pp. 1–20. doi: 10.1186/s12864-015-436 

2174-0. 437 

Chen, N. et al. (2021) ‘Reference flow : reducing reference bias using multiple population 438 

genomes’, Genome Biology. Genome Biology, 22(8), pp. 1–17. doi: https://doi.org/10.1186/s13059-439 

020-02229-3. 440 

Consortium, I. H. (2003) ‘A haplotype map of the human genome The International HapMap 441 

Consortium’, Physiological Genomics, 437(7063), pp. 1299–320. Available at: 442 

http://physiolgenomics.physiology.org/cgi/content/full/13/1/3. 443 

Degner, J. F. et al. (2009) ‘Effect of read-mapping biases on detecting allele-specific expression 444 

from RNA-sequencing data’, Bioinformatics, 25(24), pp. 3207–3212. doi: 445 

10.1093/bioinformatics/btp579. 446 

Development Core Team, R. (2013) ‘R: A language and environment for statistical computing’. 447 

Vienna, Austria: R Foundation for statistical computing. 448 

Dobin, A. et al. (2013) ‘STAR: Ultrafast universal RNA-seq aligner’, Bioinformatics, 29(1), pp. 449 



15–21. doi: 10.1093/bioinformatics/bts635. 450 

Frye, M. and Blanco, S. (2016) ‘Post-transcriptional modifications in development and stem cells’, 451 

Development, 3, pp. 3871–3881. doi: 10.1242/dev.136556. 452 

Gaidatzis, D. et al. (2015) ‘Analysis of intronic and exonic reads in RNA-seq data characterizes 453 

transcriptional and post-transcriptional regulation’, Nature Biotechnology. Nature Publishing 454 

Group, 33(7), pp. 1–10. doi: 10.1038/nbt.3269. 455 

Garber, M. et al. (2011) ‘Computational methods for transcriptome annotation and quantification 456 

using RNA-seq’, Nature Methods. Nature Publishing Group, 8(6), pp. 469–477. doi: 457 

10.1038/nmeth.1613. 458 

Garcia, T. I. et al. (2014) ‘Novel method for analysis of allele specific expression in triploid Oryzias 459 

latipes reveals consistent pattern of allele exclusion’, PLoS ONE, 9(6), p. 100250. doi: 460 

10.1371/journal.pone.0100250. 461 

Van De Geijn, B. et al. (2015) ‘WASP: Allele-specific software for robust molecular quantitative 462 

trait locus discovery’, Nature Methods, 12(11), pp. 1061–1063. doi: 10.1038/nmeth.3582. 463 

Gingold, H. et al. (2014) ‘A Dual Program for Translation Regulation in Cellular Proliferation and 464 

Differentiation’, Cell. Elsevier Inc., 158(6), pp. 1281–1292. doi: 10.1016/j.cell.2014.08.011. 465 

Graur, D. and Li, W. (1997) Fundamentals of molecular evolution. second. Sunderland, MA: 466 

Sinauer Associates, Incorporated Publishers. 467 

Guillocheau, G. M. et al. (2019) ‘Survey of allele specific expression in bovine muscle’, Scientific 468 

Reports, 9(1), pp. 1–11. doi: 10.1038/s41598-019-40781-6. 469 

Gutierrez-Arcelus, M. et al. (2020) ‘Allele-specific expression changes dynamically during T cell 470 

activation in HLA and other autoimmune loci’, Nature Genetics. Springer US, 52(3), pp. 247–253. 471 

doi: 10.1038/s41588-020-0579-4. 472 

Hach, F. et al. (2014) ‘MrsFAST-Ultra: A compact, SNP-aware mapper for high performance 473 

sequencing applications’, Nucleic Acids Research, 42(W1), pp. 494–500. doi: 10.1093/nar/gku370. 474 

Heinzen, E. L. et al. (2008) ‘Tissue-specific genetic control of splicing: Implications for the study 475 

of complex traits’, PLoS Biology, 6(12), pp. 2869–2879. doi: 10.1371/journal.pbio.1000001. 476 

Hermisson, J. and Pennings, P. S. (2005) ‘Soft sweeps: Molecular population genetics of adaptation 477 

from standing genetic variation’, Genetics, 169(4), pp. 2335–2352. doi: 478 

10.1534/genetics.104.036947. 479 

Hodgkinson, A. et al. (2016) ‘A haplotype-based normalization technique for the analysis and 480 

detection of allele specific expression’, BMC Bioinformatics. BMC Bioinformatics, 17(1), pp. 1–10. 481 

doi: 10.1186/s12859-016-1238-8. 482 

Horn, S. S. et al. (2020) ‘Accuracy of selection for omega-3 fatty acid content in Atlantic salmon 483 

fillets’, Aquaculture. Elsevier, 519(April 2019), p. 734767. doi: 10.1016/j.aquaculture.2019.734767. 484 



Jan Arts, G. and Benne, R. (1996) ‘Mechanism and evolution of RNA editing in kinetoplastida’, 485 

Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1307(1), pp. 39–54. doi: 486 

https://doi.org/10.1016/0167-4781(96)00021-8. 487 

Kable, M. L., Heidmann, S. and Stuart, K. D. (1997) ‘RNA editing: getting U into RNA’, Trends in 488 

biochemical sciences. Elsevier, 22(5), pp. 162–166. 489 

Khraiwesh, B. and Salehi-ashtiani, K. (2017) ‘Alternative Poly(A) Tails Meet miRNA Targeting in 490 

Caenorhabditis elegans’, 206(June), pp. 755–756. 491 

Kiss, T. (2001) ‘Small nucleolar RNA-guided post-transcriptional modi ® cation of cellular RNAs’, 492 

The EMBO journal, 20(14), pp. 3617–3622. 493 

Knowles, D. A. et al. (2017) ‘Allele-specific expression reveals interactions between genetic 494 

variation and environment’, Nature Methods. Nature Publishing Group, 14(7), pp. 699–702. doi: 495 

10.1038/nmeth.4298. 496 

Köster, J. and Rahmann, S. (2012) ‘Snakemake-a scalable bioinformatics workflow engine’, 497 

Bioinformatics, 28(19), pp. 2520–2522. doi: 10.1093/bioinformatics/bts480. 498 

Lake, B. B. et al. (2016) ‘Neuronal subtypes and diversity revealed by single-nucleus RNA 499 

sequencing of the human brain’, 352(6293), pp. 352–357. 500 

Lake, B. B. et al. (2017) ‘single-nucleus and single-cell transcriptomes confirms accuracy in 501 

predicted cell-type expression from nuclear RNA’, Scientific Reports. Springer US, (October 2016), 502 

pp. 1–8. doi: 10.1038/s41598-017-04426-w. 503 

Lande, R. and Shannon, S. (1996) ‘The Role of Genetic Variation in Adaptation and Population 504 

Persistence in a Changing Environment Author ( s ): Russell Lande and Susan Shannon Published 505 

by : Society for the Study of Evolution Stable URL : http://www.jstor.org/stable/2410812 506 

Accessed : 07’, Evolution, 50(1), pp. 434–437. 507 

Li, L. et al. (2019) ‘Genetic Basis of Alternative Polyadenylation is an Emerging Molecular 508 

Phenotype for Human Traits and Diseases’, bioRxiv. 509 

Li, S. and Mason, C. E. (2014) ‘The Pivotal Regulatory Landscape of RNA Modifications’, Annual 510 

Review of Genomics and Human Genetics, 15, pp. 127–150. doi: 10.1146/annurev-genom-090413-511 

025405. 512 

Li, X. et al. (2015) ‘Chemical pulldown reveals dynamic pseudouridylation of the mammalian 513 

transcriptome’, Nature Chemical Biology, 11(8), pp. 592–597. doi: 10.1038/nchembio.1836. 514 

Licht, K. et al. (2016) ‘Adenosine to Inosine editing frequency controlled by splicing efficiency’, 515 

Nucleic Acids Research, 44(13), pp. 6398–6408. doi: 10.1093/nar/gkw325. 516 

Licht, K., Kapoor, U., et al. (2019) ‘A high resolution A-to-I editing map in the mouse identifies 517 

editing events controlled by pre-mRNA splicing’, Genome R, 29, pp. 1453–1463. doi: 518 

10.1101/gr.242636.118.Freely. 519 



Licht, K., Hartl, M., et al. (2019) ‘NAR Breakthrough Article Inosine induces context-dependent 520 

recoding and translational stalling’, Nucleic Acids Research. Oxford University Press, 47(1), pp. 3–521 

14. doi: 10.1093/nar/gky1163. 522 

Liu, X. et al. (2017) ‘Comparative analysis of alternative polyadenylation in S . cerevisiae and S . 523 

pombe’, pp. 1685–1695. doi: 10.1101/gr.222331.117.27. 524 

Maas, S. and Rich, A. (2000) ‘Changing genetic information through RNA editing’, Bioessays. 525 

Wiley Online Library, 22(9), pp. 790–802. 526 

Macdonald, C. C. (2019) ‘Tissue-specific mechanisms of alternative polyadenylation : Testis , brain 527 

, and beyond ( 2018 update )’, (August 2018), pp. 1–11. doi: 10.1002/wrna.1526. 528 

Marioni, J. C. et al. (2008) ‘RNA-seq: An assessment of technical reproducibility and comparison 529 

with gene expression arrays’, Genome Research, 18(9), pp. 1509–1517. doi: 530 

10.1101/gr.079558.108. 531 

Martínez, P. et al. (2019) ‘Multiple evidences suggest sox2 as the main driver of a young and 532 

complex sex determining ZW/ZZ system in turbot (Scophthalmus maximus)’, bioRxiv, p. 834556. 533 

doi: https://doi.org/10.1101/834556. 534 

Mayba, O. et al. (2014) ‘MBASED: Allele-specific expression detection in cancer tissues and cell 535 

lines’, Genome Biology, 15(8), pp. 1–21. doi: 10.1186/s13059-014-0405-3. 536 

Mayr, C. (2017) ‘Regulation by 3 -Untranslated Regions’, Annual Review of Genetics, 51, pp. 171–537 

194. 538 

Mercer, T. R. et al. (2012) ‘letters Targeted RNA sequencing reveals the deep complexity of the 539 

human transcriptome’, Nature Biotechnology. Nature Publishing Group, 30(1), pp. 99–107. doi: 540 

10.1038/nbt.2024. 541 

Meyer, K. D. and Jaffrey, S. R. (2014) ‘The dynamic epitranscriptome : N 6 -methyladenosine and 542 

gene expression control’, Molecular Cell Biology. Nature Publishing Group, 15(May), pp. 313–326. 543 

doi: 10.1038/nrm3785. 544 

Miao, Z. et al. (2018) ‘ASElux: An ultra-fast and accurate allelic reads counter’, Bioinformatics, 545 

34(8), pp. 1313–1320. doi: 10.1093/bioinformatics/btx762. 546 

Monsu, M. and Comin, M. (2021) ‘Fast alignment of reads to a variation graph with application to 547 

SNP detection’, Journal for Integrative Bioinformatics, 18(4), pp. 1–9. 548 

Nachtergaele, S. and He, C. (2017) ‘The emerging biology of RNA post-transcriptional 549 

modifications’, RNA biology. Taylor & Francis, 14(2), pp. 156–163. doi: 550 

10.1080/15476286.2016.1267096. 551 

Ohta, T. (1995) ‘Synonymous and Nonsynonymous Substitutions in Mammalian Genes and the 552 

Nearly Neutral Theory’, Journal of Molecular Evolution, 40, pp. 56–63. 553 

Ozsolak, F. and Milos, P. M. (2011) ‘RNA sequencing: Advances, challenges and opportunities’, 554 



Nature Reviews Genetics. Nature Publishing Group, 12(2), pp. 87–98. doi: 10.1038/nrg2934. 555 

Pandey, R. V. et al. (2013) ‘Allelic imbalance metre (Allim), a new tool for measuring allele-556 

specific gene expression with RNA-seq data’, Molecular Ecology Resources, 13(4), pp. 740–745. 557 

doi: 10.1111/1755-0998.12110. 558 

Panousis, N. I. et al. (2014) ‘Allelic mapping bias in RNA-sequencing is not a major confounder in 559 

eQTL studies’, Genome Biology, 467(15), pp. 1–8. 560 

Piccirillo, C. A. et al. (2014) ‘Translational control of immune responses: from transcripts to 561 

translatomes’, Nature Immunology, 15(6), pp. 503–511. doi: 10.1038/ni.2891. 562 

Pickrell, J. K. et al. (2010) ‘Understanding mechanisms underlying human gene expression 563 

variation with RNA sequencing’, Nature. Nature Publishing Group, 464(7289), pp. 768–772. doi: 564 

10.1038/nature08872. 565 

Poplin, R. et al. (2017) ‘Scaling accurate genetic variant discovery to tens of thousands of samples’, 566 

bioRxiv, p. 201178. doi: 10.1101/201178. 567 

Rak, R. et al. (2021) ‘Dynamic changes in tRNA modifications and abundance during T cell 568 

activation’, Cell Biology, 118(42), pp. 1–12. doi: 10.1073/pnas.2106556118. 569 

Robinson, J. T. et al. (2017) ‘Variant review with the integrative genomics viewer’, Cancer 570 

Research, 77(21), pp. e31–e34. doi: 10.1158/0008-5472.CAN-17-0337. 571 

Robledo, D. et al. (2019) ‘Discovery and functional annotation of quantitative trait loci affecting 572 

resistance to Sea lice in Atlantic salmon’, Frontiers in Genetics, 10(FEB), pp. 1–10. doi: 573 

10.3389/fgene.2019.00056. 574 

Root, L., Campo, A., Macniven, L., Con, P., Cnaani, A. and Kûltz, D. (2021) ‘A data-independent 575 

acquisition ( DIA ) assay library for quantitation of environmental effects on the kidney proteome 576 

of Oreochromis niloticus’, Molecuar Ecology Resources. doi: 577 

10.22541/au.160553713.37893872/v1. 578 

Root, L., Campo, A., Macniven, L., Con, P., Cnaani, A. and Kültz, D. (2021) ‘Nonlinear effects of 579 

environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate 580 

epithelial cell turnover’, Genomics. Elsevier Inc., 113(5), pp. 3235–3249. doi: 581 

10.1016/j.ygeno.2021.07.016. 582 

Rozowsky, J. et al. (2011) ‘AlleleSeq: Analysis of allele-specific expression and binding in a 583 

network framework’, Molecular Systems Biology. Nature Publishing Group, 7(522), pp. 1–15. doi: 584 

10.1038/msb.2011.54. 585 

Salavati, M. et al. (2019) ‘Elimination of Reference Mapping Bias Reveals Robust Immune Related 586 

Allele-Specific Expression in Crossbred Sheep’, Frontiers in Genetics, 10(September), pp. 1–16. 587 

doi: 10.3389/fgene.2019.00863. 588 

Sanfilippo, P., Wen, J. and Lai, E. C. (2017) ‘Landscape and evolution of tissue-specific alternative 589 



polyadenylation across Drosophila species’, Genome Biology. Genome Biology, 229(18), pp. 1–22. 590 

doi: 10.1186/s13059-017-1358-0. 591 

Schwartz, S. et al. (2014) ‘Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated 592 

Pseudouridylation of ncRNA and mRNA’, Cell, 159(September), pp. 148–162. 593 

Sheng, K. et al. (2017) ‘Effective detection of variation in single-cell transcriptomes using MATQ-594 

seq’, Nature Methods, 14(3), pp. 267–274. doi: 10.1038/nmeth.4145. 595 

Shikanai, T. (2015) ‘Biochimica et Biophysica Acta RNA editing in plants : Machinery and fl 596 

exibility of site recognition ☆’, BBA - Bioenergetics. Elsevier B.V., 1847(9), pp. 779–785. doi: 597 

10.1016/j.bbabio.2014.12.010. 598 

Simpson, L. and Thiemann, O. H. (1995) ‘Sense from Nonsense : RNA Editing in Mitochondria of 599 

Kinetoplastid Protozoa and Slime Molds’, Cell, 81, pp. 837–840. 600 

Skelly, D. A. et al. (2011) ‘A powerful and flexible statistical framework for testing hypotheses of 601 

allele-specific gene expression from RNA-seq data’, Genome Research, 21(10), pp. 1728–1737. 602 

doi: 10.1101/gr.119784.110. 603 

Song, C., Yi, C. and He, C. (2012) ‘Mapping recently identified nucleotide variants in the genome 604 

and transcriptome’, Nature Biotechnology. Nature Publishing Group, 30(11), pp. 1107–1117. doi: 605 

10.1038/nbt.2398. 606 

Stevenson, K. R., Coolon, J. D. and Wittkopp, P. J. (2013) ‘Sources of bias in measures of allele-607 

specific expression derived from RNA-seq data aligned to a single reference genome’, BMC 608 

Genomics, 14(1), pp. 1–13. doi: 10.1186/1471-2164-14-536. 609 

Stuart, K. (1991) ‘RNA editing in mitochondrial mRNA of trypanosomatids’, Trends in 610 

Biochemical Sciences, 16, pp. 68–72. doi: https://doi.org/10.1016/0968-0004(91)90027-S. 611 

Sun, W. et al. (2016) ‘RMBase : a resource for decoding the landscape of RNA modifications from 612 

high-throughput sequencing data’, Nucleic Acids Research, 44(October 2015), pp. 259–265. doi: 613 

10.1093/nar/gkv1036. 614 

Takenaka, M. et al. (2014) ‘RNA editing in plant mitochondria —Connecting RNA target 615 

sequences and acting proteins’, Mitochondrion, 19, pp. 191–197. doi: 616 

https://doi.org/10.1016/j.mito.2014.04.005. 617 

Trapnell, C. et al. (2011) ‘Transcript assembly and abundance estimation from RNA-Seq reveals 618 

thousands of new transcripts and switching among isoforms’, Nature Biotechnology, 28(5), pp. 619 

511–515. doi: 10.1038/nbt.1621.Transcript. 620 

Vijaya Satya, R., Zavaljevski, N. and Reifman, J. (2012) ‘A new strategy to reduce allelic bias in 621 

RNA-Seq readmapping’, Nucleic Acids Research, 40(16), pp. 1–9. doi: 10.1093/nar/gks425. 622 

Wang, J. (2017) ‘The computer program structure for assigning individuals to populations: easy to 623 

use but easier to misuse’, Molecular Ecology Resources, 17(5), pp. 981–990. doi: 10.1111/1755-624 



0998.12650. 625 

Wang, K., Li, M. and Hakonarson, H. (2010) ‘ANNOVAR: Functional annotation of genetic 626 

variants from high-throughput sequencing data’, Nucleic Acids Research, 38(16), pp. 1–7. doi: 627 

10.1093/nar/gkq603. 628 

Weng, L. et al. (2016) ‘Poly ( A ) code analyses reveal key determinants for tissue-specific mRNA 629 

alternative polyadenylation’, Bioinformatics, 22, pp. 813–821. doi: 10.1261/rna.055681.115.4. 630 

Wolf, T. et al. (2020) ‘Dynamics in protein translation sustaining T cell preparedness’, Nature 631 

Immunology. Springer US, 21(August), pp. 927–940. doi: 10.1038/s41590-020-0714-5. 632 

Xin, H. et al. (2013) ‘Accelerating read mapping with FastHASH’, BMC Genomics, 14(Suppl 1), 633 

pp. 1–13. doi: 10.1186/1471-2164-14-S1-S13. 634 

Yang, S. H. et al. (2017) ‘The ultrastructural characterization of mitochondria-rich cells as a 635 

response to variations in salinity in two types of teleostean pseudobranch: milkfish (Chanos chanos) 636 

and Mozambique tilapia (Oreochromis mossambicus)’, Journal of Morphology, 278(3), pp. 390–637 

402. doi: 10.1002/jmor.20650. 638 

Yuan, S. and Qin, Z. (2012) ‘Read-mapping using personalized diploid reference genome for RNA 639 

sequencing data reduced bias for detecting allele-specific expression’, Proceedings - 2012 IEEE 640 

International Conference on Bioinformatics and Biomedicine Workshops, BIBMW 2012, pp. 718–641 

724. doi: 10.1109/BIBMW.2012.6470225. 642 

Zhan, S., Griswold, C. and Lukens, L. (2021) ‘Zea mays RNA-seq estimated transcript abundances 643 

are strongly affected by read mapping bias’, BMC Genomics. BMC Genomics, 22:285, pp. 1–12. 644 

doi: https://doi.org/10.1186/s12864-021-07577-3. 645 

Zhang, F. et al. (2020) ‘Genetic architecture of quantitative traits in beef cattle revealed by genome 646 

wide association studies of imputed whole genome sequence variants: I: feed efficiency and 647 

component traits’, BMC Genomics. BMC Genomics, 21(1), pp. 1–22. doi: 10.1186/s12864-019-648 

6362-1. 649 

Zviran, A. et al. (2019) ‘Deterministic Somatic Cell Reprogramming Involves Continuous 650 

Transcriptional Changes Governed by Resource Deterministic Somatic Cell Reprogramming 651 

Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules’, 652 

Cell stem cell. Elsevier Inc., 24(February), pp. 328–341. doi: 10.1016/j.stem.2018.11.014. 653 

  654 

  655 



Tables: 656 

Test description 
Test 

number 
SNPs in 

ASE 
Genes containing 

ASE 
DEGs with SNPs in 

ASE 

Gills and kidney in fresh water 1 1731 963 899 

Gills and kidney in salty water 2 2311 1254 1153 

Gills in fresh and salty water 3 236 193 15 

Kidney in fresh and salty 
water 

4 1126 715 0 

 657 

Table 1: Number of SNPs obtained in each test after applying the pipeline. Chi-sq test on the allele 658 

frequency data for each individual. Five individuals in each group, n=10 for each test, p<0.05. 659 

 660 

Group T-statistic P-value 

GF 17,40 1,57E-66 

GS 8,62 8,14E-18 

KF 9,47 3,65E-21 

KS 4,66 3,22E-06 

 661 

Table 2: Statistics and p-value of each T-student test. The test was performed on the abundance of 662 

the allele frequencies called against the reference genome and called against the pseudogenome, n= 663 

3,740 SNPs. One test was performed in each experimental group: GF gills fresh water, GS gills 664 

salty water, KF kidney fresh water, KS kidney salty water. 665 

 666 

SNP type Test 1 Test 2 Test 3 Test 4 

UTR3 1064 1379 122 613 

CDS 474 611 63 347 

ncRNA_exonic 50 106 23 58 

UTR5 45 66 7 37 

Downstream 38 51 2 24 

Intergenic 26 40 11 20 

Intronic 20 28 2 13 

upstream\x3bdownstream 7 12 1 4 

Upstream 5 9 4 7 

ncRNA_intronic 2 8 1 2 

synonymous_SNV 432 548 54 316 

nonsynonymous_SNV 35 49 7 23 

Ratio synonymous/non-synonymous 12,34 11,18 7,71 13,74 

nonframeshift_deletion 3 4 1 3 

nonframeshift_insertion 1 2 0 1 

frameshift_insertion 1 4 1 1 

Unknown 1 1 0 1 

frameshift_deletion 1 3 0 2 

UTR5\x3bUTR3 0 1 0 1 

 667 



Table 3: Type of SNPs in ASE found for each test, namely: test 1 gills and kidney in fresh water, 668 

test 2 gills and kidney in salty water, test 3 gills in fresh and salty water, test 4 kidney in fresh and 669 

salty water; Chi-sq test, p<0.05 670 

  671 

Figures 672 

Figure 1: Schema representing the key steps of the pipeline. The RNA is extracted from the 673 

experimental samples and sequenced for obtaining of the fastq files. These files are trimmed and 674 

after quality filters are mapped to the reference genome for a first SNP calling. The biallelic variant 675 

sites obtained in this first call are then used for the creation of two pseudogenomes. The fastq files 676 

are then mapped twice, one to each pseudogenome, and the SNP call is performed also twice. The 677 

resulting variant call files are then submitted to home scripts for the merging and averaging of the 678 

allele depths. The pipeline is developed in snakemake and the scripts are submitted to GitHub.  679 

 680 

Figure 2: A. Calculation of the average allele depth after the calling to the two pseudogenomes. 681 

The first genotype of the allele found in the first sample for a site is considered as reference and it is 682 

marked in blue. The next genotype found for the same site in the allele is set as alternative and it is 683 

marked in orange. Only biallelic sites are considered in this pipeline. The figure illustrates the 684 

possibilities of homozygosis and heterozygosis, as well as the no expression after a sample is called 685 

to pseudogenome 1 (PSG1) or pseudogenome 2 (PSG2). B. Assignation of the reference and 686 

alternative alleles after homozygosis in one pseudogenome, or different order of the alleles in each 687 

pseudogenome. The first sample is established as a model for the reference and alternative alleles. 688 

The next samples reorganize their position following the model of the first sample. If a site is found 689 

expressed in a sample different than the first model, the position of the alleles is set as the next 690 

sample where there is expression (symbol *). 691 

 692 

Figure 3: T-student test on each experimental group. The test was performed on the abundance of 693 

the allele frequencies called against the reference genome and called against the pseudogenome, n= 694 

3,740 SNPs. One test was performed in each experimental group. 695 

 696 

Figure 4: Classification of the ASE SNPs by the type predicted from the coordinates as set in the 697 

annotation. On the right the classification of the non-coding section and on the left the classification 698 

of the coding section. Tests are as follows: : test 1 gills and kidney in fresh water, test 2 gills and 699 

kidney in salty water, test 3 gills in fresh and salty water, test 4 kidney in fresh and salty water. 700 

 701 

Figure 5: Venn graph illustrating the common ASE SNPs for each test. Absolute values of SNPs. 702 

 703 

Figure 6: Heatmap including the allele frequencies of the total SNPs found in each experimental 704 

group. The linkage group is described on the left. 705 



 706 

Figure 7: GO functions and percentage of the ASE SNPs found in each test. 707 

 708 

Figure 8: Manhattan plot generated with the ASE SNPs found in each tests.  709 

 710 

Supplementary 1: Table including ASE SNPs contained in genes that are differentially expressed 711 

between gills and kidney in fresh water (test 1). Coordinates of chromosome and position, as well as 712 

CHI statistic, product description and GO function associated. 713 

Supplementary 2: Table including ASE SNPs contained in genes that are differentially expressed 714 

between gills and kidney in salty water (test 2). Coordinates of chromosome and position, as well as 715 

CHI statistic, product description and GO function associated. 716 

Supplementary 3: Table including ASE SNPs contained in genes that are differentially expressed 717 

between gills in fresh and salty water (test 3). Coordinates of chromosome and position, as well as 718 

CHI statistic, product description and GO function associated. 719 

Supplementary 4: Table including ASE SNPs contained in genes that are differentially expressed 720 

between kidney in fresh and salty water (test 4). Coordinates of chromosome and position, as well 721 

as CHI statistic, product description and GO function associated.  722 

Supplementary 5: Figure including the distribution of the allele frequencies on the experimental 723 

groups. A, gills in fresh water called against the pseudogenomes. B, gills in fresh water called 724 

against the reference genome. C, gills in salty water called against the pseudogenomes. D, gills in 725 

salty water called against the reference genome. E, kidney in fresh water called against the 726 

pseudogenomes. F, kidney in fresh water called against the reference genome. G, kidney in salty 727 

water called against the pseudogenomes. H, kidney in salty water called against the reference 728 

genomes. 729 

Supplementary 6: Table including the differentially expressed genes between gills and kidney in 730 

fresh water (test 1) that present ASE SNPs for the same test. 731 

Supplementary 7: Table including the differentially expressed genes between gills and kidney in 732 

fresh water (test 2) that present ASE SNPs for the same test. 733 

Supplementary 8: Table including the differentially expressed genes between gills and kidney in 734 

fresh water (test 3) that present ASE SNPs for the same test. 735 


