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Abstract

In this paper, a modified weak Galerkin finite element method on Shishkin mesh has been developed and

analyzed for the singularly perturbed convection-diffusion-reaction problems. The proposed method is based

on the idea of replacing the standard gradient (derivative) and convection derivative by modified weak

gradient (derivative) and modified weak convection derivative, respectively, over piecewise polynomials of

degree k ≥ 1. The present method is parameter-free and has less degree of freedom compared to the weak

Galerkin finite element method. Stability and convergence rate of O((N−1 lnN)k) in the energy norm are

proved. The method is uniformly convergent, i.e., the results hold uniformly regardless of the value of the

perturbation parameter. Numerical experiments confirm these theoretical findings on Shishkin meshes. The

numerical examples are also carried out on B-S meshes to confirm the theoretical results. Moreover, the

proposed method has the optimal order error estimates of O(N−(k+1)) in a discrete L2− norm and converges

at superconvergence order of O((N−1 lnN)2k) in the discrete L∞− norm.

Keywords: singularly perturbed problem, modified weak Galerkin method, Shishkin mesh, uniformly

convergence
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1. Introduction

In this paper we consider the following singularly perturbed convection-diffusion two-point boundary value

problems: Find u ∈ C2(0, 1) ∩ C[0, 1] such that

−εu′′(x) + β(x)u′(x) + γ(x)u(x) = g(x) in Ω = (0, 1),

u(0) = 0, u(1) = 0,
(1)
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where 0 < ε << 1 and we assume that β(x), γ(x) and g(x) are sufficiently smooth functions with β(x) ≥

α > 0, γ(x) ≥ 0, and

γ(x)− 1

2
β′(x) ≥ a > 0 ∀x ∈ Ω, (2)

where a is a constant. Under these assumptions, the problem (1) has a unique solution u ∈ H2(Ω)∩H1
0 (Ω).

For small perturbation parameter ε, the problem is singularly perturbed [1], [2]. If ε is small enough, with

the help of the change of variable w(x) = exp(−ηx)u(x) for a suitable η, the condition β ≥ α > 0 implies

the condition (2) and γ ≥ 0.5

The solution u(x) to the problem (1) has an exponential b boundary layer of width O(ε| ln ε|) at x = 1.

This boundary layer makes the conventional numerical methods such as the standard finite difference and

finite element methods useless unless prohibitively large number of mesh points or smaller than the parameter

ε are used.

It is well known that singularly perturbed problems (SPPs) are difficult challenge to solve when the very10

small perturbation parameter appears in the front of the diffusion. In this case, the solution will have layers

which are very thin regions near the boundaries where the solution and its derivatives are very large. As

a remedy, a popular approach for these problems is the use of layer-adapted meshes such as Bakhvalov-

type mesh [3] and Shishkin mesh [1] which have gained much attention and they are still popular. Some

nonphysical oscillations occur in the approximation even if the layer adapted meshes are employed in two15

dimensions [4]. We refer the readers to the books [1, 5, 6] and references therein for further details.

The other efficient technique for solving singularly perturbed problem is fitted operator methods. Upwind-

type schemes are example of the commonly used fitted operator methods in the literature. The streamline-

diffusion finite element (SDFE) method [7, 8] and its variants [9] have successfully been used for solving

singularly perturbed convection dominated problems. These methods add residuals with weights for the20

stability of the conforming Galerkin method. However, there are some disadvantages of these methods

because of adding too much diffusion and they also have oscillatory solutions [10].

Recently, the weak Galerkin method have been developed for solving elliptic partial differential equations

[11]. The key feature of this method is that the classical derivative is replaced by weak derivative in the

corresponding variational formulation in a way that completely discontinuous functions have been allowed25

to use in the numerical scheme which has a parameter independent stabilizer. The weak Galerkin method

has been studied and applied to a variety of problems including Stokes equations [12], interface problem [13],

Maxwell equation [14] and singularly perturbed elliptic equations [15]. Later on, a modified weak Galerkin

finite element method (MWG-FEM) has been introduced in [16] to reduce the degrees of freedom, i.e., the

number of unknown in the discrete system. The MWG-FEM has less degree of freedom than the local30

discontinuous Galerkin methods which introduce auxiliary variables (e.g., fluxes ) in the formulation and

has the same degrees of freedom with the discontinuous Galerkin methods in primal formulation (see [17]),

however we do not need to choose a sufficiently large stabilization parameters in the MWG-FEM. Recently,

the MWG-FEMs have been applied to parabolic problems [18], convection-diffusion equations [19], Stokes
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equations [20] and convection-dominated diffusion with weakly imposed boundary condition [21].35

The main concern of this paper is to study and analyze the uniform convergence of MWG-FEM for

singularly perturbed convection-diffusion-reaction on layer adapted Shishkin mesh. The uniform convergent

weak Galerkin method has been proposed in [22]. Compared with the weak Galerkin method in [22], the

proposed method here has reduced numbers of unknown and has shorter and simplified error analysis. The

obtained results in this paper are the first uniform convergence results of MWG-FEM for singularly elliptic40

problems in one dimension. We prove a uniform convergence order of O(N−1 lnN)k in the discrete energy

norm and the optimal order error estimates with order of O(N−(k+1)) in a discrete L2− norm for the

strongly convection-dominated cases (e.g., ε = 10−8) and order of O(N−(k+1/2)) in a discrete L2− norm for

the intermediate cases (e.g., ε = 10−3) under some conditions.

The rest of the paper is organized as follows. In Section 2, we introduce some preliminaries and notations.45

Additionally, the bounds for the regular and layer components of the solution and their derivatives are

established and the piecewise uniform Shishkin mesh is given in Section 2. The MWG-FEM scheme for the

singularly perturbed convection-diffusion-reaction problems is introduced in Section 3. The stability and the

error analysis of the method are studied in Section 4 ans Section 5, respectively. Various numerical examples

are given to confirm the theoretical findings in Section 6. In Section 7, conclusion and some future direction50

are summarized.

Throughout this article, we use C for generic constants independent of ε,N and the mesh size h which

may be different at each inequality.

2. Preliminaries

In this section, we first give the decomposition of the analytical solution of the problem (1). Then we will55

derive the bounds for the regular and layer parts of the solution and their derivatives. Next, we provide the

piecewise-uniform Shishkin mesh which is layer adapted mesh to deal with layers. Sobolev spaces with the

related norms and some basic notations are introduced at the end of this section.

2.1. Properties of the solution

We decompose the solution u of the problem (1) into a sum of a regular and layer components in the following60

lemma. This solution decomposition is necessary for the uniform convergence of numerical methods on

Shishkin mesh for SPPs [23].

Lemma 2.1. (Regularity of the solution ) [5] Let m be a positive integer. The exact solution u of the problem

(1) can be decomposed into u = uR + uL where uR and uL are regular and singular parts, respectively and
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they satisfy the following bounds for 0 ≤ l ≤ m

|u(l)
R (x)| ≤ C (3)

|u(l)
L (x)| ≤ Cε−l exp((−α(1− x))/ε). (4)

Here, the constant C is independent of ε and m depends on the smoothness of the solution u.

2.2. The piecewise uniform Shishkin mesh

Let N be an even integer. Define the transition point τε by

τε = min
(1

2
,
ε(k + 1)

α
lnN

)
,

where k is the order of polynomials used in the approximation space. In practise, we assume that τε =65

(k + 1)ε

α
lnN for otherwise either ε is not small or N−1 < ε (when N is sufficiently large) which can

be handled by using the uniform mesh and throughout this paper we assume ε < CN−1 which is not a

restriction in the singularly perturbed problems. We divide the computational domain Ω into two intervals

Ω1 = [0, 1 − τε] and Ω2 = [1 − τε, 1]. Then divide each of the subintervals Ω1 and Ω2 into N/2 equal

subintervals.70

We define the nodes of mesh recursively as follows

x0 = 0, xn = xN + hn, hn =

H for n = 1, . . . , N/2,

h for n = N/2 + 1, . . . , N.

(5)

where

H =
2(1− τε)

N
and h =

2τε

N
.

Note that H = O(N−1) and h = O(N−1 lnN). Observe that xN = 1− τε is the transition point.

We denote the mesh and a partition of the domain Ω by In = [xN , xn], n = 1, . . . , N and TN = {In :

n = 1, . . . , N}, respectively. For In ∈ TN , the outward unit normal nIn on In is defined as nIn(xn) = 1 and

nIn(xn−1) = −1; for simplicity, we use n instead of nIn .

3. MWG-FEM75

In this section, we first introduce the notions of weak functions and weak derivatives. Based on these

concepts, we will construct the MWG-FEM for the system (1).
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We define the space of weak functions W(In) on the interval In by

W(In) = {u = {u0, ub} : u0 ∈ L2(In), vb ∈ L∞(∂In)}.

Here, u = {u0, ub} is called a weak function such that u0 is the value of u inside of the interval (xN , xn) and

ub is the value of u on the boundary of the interval ∂In = {xN , xn}. The inclusion map

IW(u) = {u|In , u|∂In}, ∀u ∈ H1(In)

embeds the local Sobolev space H1(In) into the weak function space W(In).

For a given integer k ≥ 1, we define a local weak Galerkin (WG) finite element space SN (In) as follows:

SN (In) = {u = {u0, ub} : u0|In ∈ Pk(In), ub|∂In ∈ P0(∂In) ∀In ∈ TN}, (6)

where Pk(In) is the set of polynomials on In of degree at most k and P0(∂In) is the set of constant polynomials

on ∂In.80

A global WG finite element space SN consists of u = {u0, ub} such that u0|In ∈ Pk(In) and ub is the

constant at the nodes xn for n = 1, . . . , N .

The weak derivative of a weak function u = {u0, ub} ∈ SN denoted by dw,Inu ∈ Pk−1(In) is defined on

In as the unique polynomial satisfying the following equation,

(dw,Inu, v)In = −(u0, v
′)In + 〈ub, vn〉∂In ∀v ∈ Pk−1(In), (7)

where

(w, z)In =

∫
In

w(x)z(x) dx

and

〈w, zn〉∂In = w(xn)z(xn)− w(xN )z(xN ).

The weak convection derivative of a weak function u = {u0, ub} ∈ SN denoted by dβw,Inu ∈ Pk(In) is

defined on In as the unique polynomial satisfying the following equation,

(dβw,Inu, v)In = −(u0, (βv)′)In + 〈ub, βvn〉∂In ∀v ∈ Pk(In). (8)

Then the weak derivatives dwu and dβwu of a weak function u = {u0, ub} on SN is given by

(dwu)|In = dw,In(u|In), (dβwu)|In = dβw,In(u|In)∀u ∈ SN .
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We define the average {u} and jump [u] of a function u ∈ SN at the interelement boundaries

{u(xn)} =
1

2
(u(x+

n ) + u(x−n )), (9)

[u(xn)] = u(x+
n )− u(x−n ), for n = 1, 2 . . . , N. (10)

where u(x±n ) = lims→0 u(xn ± s). We extend the definition of average and jump at the boundary points of

the domain as follows

{u(x0)} = u(x+
0 ), {u(xN )} = u(x−N ),

[u(x0)] = u(x+
0 ), [u(xN )] = −u(x−N ).

In the MWG-FEM, the boundary value ub is replaced by the average {u} of the function u in SN . Thus

the finite element space in the MWG-FEM approximation is defined as

VN =
{
v ∈ L2(Ω) : v|In ∈ Pk(In), In ∈ TN and v(0+) = v(1−) = 0

}
.

The following useful identity will be used repeatedly in our later analysis. For v, w ∈ VN we have

∑
In∈TN

〈v − {v},nw〉∂In =

N∑
n=1

〈[v], {w}〉∂In (11)

For any function v ∈ VN , we define a weak function v = {v, {v}} ∈ SN , which is also denoted by v if there

is no confusion.

Based on (7) and (8), for a function u ∈ VN , the modified weak derivative dmw u ∈ Pk−1(In) and

modified weak convection derivative dβ,mw u ∈ Pk(In) defined on In as the unique polynomial satisfying

the following equation

(
dmw u, v

)
In

= −
(
u, v′

)
In

+
〈
{u}, vn

〉
∂In

∀v ∈ Pk−1(In), (12)

and (
dβ,mw u, v

)
In

= −
(
u, (βv)′

)
In

+
〈
{u}, βvn

〉
∂In

∀v ∈ Pk(In), (13)

respectively.85

Remark 1. This newly defined modified weak derivative is different from the weak derivative operator defined

in [24]. This modified definition replaces the values ub of u by the average operator {u} on the boundary

points of In. This reduces the degree of freedom for the problem, that is, the unknown coefficients in the

system are reduced.

Remark 2. If u is continuous in Ω, then we have {u} = u. Using integration by parts, we see that from
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the definition of weak derivative (7)∫
In

dmw u(x)v(x) dx = −
∫
In

u(x)v′(x) dx+
〈
{u}, vn

〉
∂In

=

∫
In

u′(x)v(x) dx ∀v ∈ Pk−1(In),

(14)

which implies the modified weak derivative in fact is the L2 projection of the standard differential operator90

on the space of polynomials. Thus, we have dmw u(x) = u′(x) when u ∈ Pk(Ω).

Similarly, when u is continuous in Ω, the integration by parts and the definition of modified weak con-

vection derivative (13) lead to∫
In

dβ,mw u(x)w(x) dx = −
∫
In

u(x)(βw)′(x) dx+
〈
β{u}, wn

〉
∂In

=

∫
In

β(x)u′(x)w(x) dx ∀v ∈ Pk(T ).

(15)

showing that the modified weak divergence is the L2 projection of the classical differential operator related to

β(x)u′(x) on the space Pk(Ω). Thus we have dβ,mw u(x) = β(x)u′(x) when u ∈ Pk(Ω) and β(x) is a constant

function.

We use the following basic notations. L2(Ω) denotes the space of square integrable functions on Ω with

the norm ‖u‖2L2(Ω) =
∫
Ω
u2(x) dx which sometimes denoted by ‖u‖2. The standard Sobolev space is denoted

by Hk(Ω) with the norm ‖ · ‖k,Ω and semi-norm | · |k,Ω given as

‖u‖2k,Ω =

k∑
j=0

‖u(j)‖2L2(Ω), |u|2k,Ω = ‖u(k)‖2L2(Ω).

For each interval In, the broken Sobolev space is defined by

Hk
N (Ω) = {u ∈ L2(Ω) : u|In ∈ Hk(In), ∀In ∈ Th},

and the corresponding norm and semi-norm

‖u‖2Hk
N (Ω) =

N∑
n=1

‖u‖2k,In , |u|2Hk
N (Ω) =

N∑
n=1

|u|2k,In .
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For the future reference, we adopt the following notations

(
u, v
)
In

=

∫
In

u(x)v(x) dx,
(
u, v
)

=
∑
In∈TN

(
u, v
)
In

‖u‖2In =
(
u, u

)
In
, ‖u‖2 =

N∑
n=1

‖u‖2In ,〈
u, v
〉
∂In

= u(x−n )v(x−n ) + u(x+
n−1)v(x+

n−1),〈
u, v
〉

=
∑
In∈TN

〈
u, v
〉
∂In

, ‖u‖2∂In =
〈
u, u

〉
∂In

.

The variational formulation of the problem (1), after multiplying the equation (1) by the test functions

v ∈ H1
0 (Ω) is to seek u ∈ H1

0 (Ω) such that

ε
(
u′, v′

)
+
(
βu′, v

)
+
(
γu, v

)
=
(
g, v
)
, ∀v ∈ H1

0 (Ω). (16)

We now formulate the MWG-FEM for the problem (1) based on the variational formulation (16) as follows:95

Algorithm 1 The modified weak Galerkin scheme for convection-diffusion-reaction problem

The MWG-FEM for the problem (1) is to find uN ∈ VN satisfying the following equation:

a(uN , vN ) = L(vN ) ∀vN ∈ VN . (17)

where the bilinear form a(v, z) = ad(v, z) + ac(v, z) + sd(v, z) + sc(v, z) and the linear functional L(·) on

VN are given by:

ad(v, z) = ε
(
dmw v, d

m
w z
)
, ∀v, z ∈ VN , (18)

ac(v, z) =
(
dβ,mw v, z

)
+
(
γv, z

)
, ∀v, z ∈ VN , (19)

sd(v, z) =

N∑
n=1

σn〈[v], [z]〉∂In , ∀v, z ∈ VN , (20)

sc(v, z) =

N∑
n=1

〈
βnIn(v − {v}), z − {z}

〉
∂+In

, ∀v, z ∈ VN , (21)

L(v) =
(
g, v
)
, ∀v ∈ VN , (22)

where ∂+In = {x ∈ ∂In : β(x)nIn(x) ≥ 0}, and σn ≥ 0 is a penalization parameter associated with the

node xn. The penalization parameter σn is very sensitive for the uniform convergence analysis and will be

determined exactly in the error analysis below.
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4. Stability of the MWG-FEM100

The following multiplicative trace inequality will be useful in proving the error estimates.

Lemma 4.1. [25] If φ ∈ H1(In), we have

‖φ‖2∂In ≤ C
(
h−1
n ‖φ‖2In + ‖φ‖In‖φ′‖In

)
. (23)

We define an energy norm ||| · ||| in VN : for v ∈ VN ,

|||v|||2 = ε‖v‖2w + ‖v‖2a, (24)

where

‖v‖2w =

N∑
n=1

||dmw v‖2In + s2
d(v, v), (25)

‖v‖2a =

N∑
n=1

cn|
√
β(xn)(v − {v})(x−n )|2 +

N∑
n=1

‖v‖2In , (26)

with cn =


1
2 , for n = N

1, for n = 1, . . . , N − 1.

We also introduce the discrete H1 energy norms ||| · |||ε in VN +H1
0 (Ω) defined as

|||v|||2ε = ε‖v‖21,ε + ‖v‖2a (27)

where

‖v‖21,ε =

N∑
n=1

||v′‖2In + s2
d(v, v). (28)

We show that the norms ||| · ||| and ||| · |||ε are equivalent in the MWG finite element space VN .

Lemma 4.2. If vN ∈ VN , then there are two positive constant Cl and Cs such that

Cl|||vN ||| ≤ |||vN |||ε ≤ Cs|||vN |||. (29)

Proof. For vN ∈ VN , by using the definition of weak derivative (12) and integration by parts we arrive at

(
dmw vN , w)In = (v′N , w

)
In

+
〈
{vN} − vN , wn

〉
∂In

, ∀w ∈ Pk−1(In). (30)
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Choosing w = dmw vN in the above equation (30) yields

‖dmw vN‖2In =
(
v′N , d

m
w vN

)
In

+
〈
{vN} − vN , dmw vNn

〉
∂In

.

Summing up the above equation over all interval In and using the identity (11) and the trace inequality, we

get

‖dmw vN‖2 =
(
v′N , d

m
w vN

)
+
〈
[vN ], {dmw vN}

〉
≤ C

( N∑
n=1

||v′N‖2In +

N∑
n=1

h−1
n ‖[vN ]‖2∂In

)1/2‖dmw vN‖.
This shows that

ε‖dmw vN‖2 ≤ C
( N∑
n=1

ε||v′N‖2In +

N∑
n=1

εh−1
n ‖[vN ]‖2∂In

)
. (31)

We choose the penalty parameter σn (see (75)) such that

εh−1
n

σn
≤ C n = 1, 2, . . . , N.

Then we have
N∑
n=1

εh−1
n ‖[vN ]‖2∂In =

N∑
n=1

εh−1
n

σn
σn‖[vN ]‖2∂In ≤ Csd(vN , vN ).

Therefore, we have

ε‖dmw vN‖2 ≤ C
( N∑
n=1

ε||v′N‖2In + s2
d(vN , vN )

)
. (32)

Taking w = v′N in the equation (30) yields

‖v′N‖2In =
(
v′N , d

m
w vN

)
In
−
〈
{vN} − vN , v′Nn

〉
∂In

.

We sum up the above equation over all interval In and use the identity (11) along with the trace inequality

to get

‖v′N‖2 =
(
v′N , d

m
w vN

)
−
〈
[vN ], {v′N}

〉
≤ C

( N∑
n=1

||dmw vN‖2In +

N∑
n=1

h−1
n ‖[vN ]‖2∂In

)1/2‖v′N‖.
This shows that

ε‖v′N‖2 ≤ C
( N∑
n=1

ε||dmw vN‖2In + s2
d(vN , vN )

)
. (33)

We obtain the desired result (29) in view of the inequalities (32) and (33) and the definition of the norms
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||| · || and ||| · |||ε. Thus we complete the proof. �105

We next show the coercivity property of the bilinear form a(·, ·) given in (17).

Lemma 4.3. There is a positive constant C such that

a(vN , vN ) ≥ C|||vN |||2, ∀vN ∈ VN . (34)

Proof. If vN , zN ∈ VN , we obtain from the definition of the modified weak convection derivative (13) and

integration by parts that

(
dβ,mw vN , zN

)
= −

(
vN , (βzN )′

)
+
〈
{vN}, βzNn

〉
=
(
βv′N , zN

)
−
〈
β(vN − {vN}), zNn

〉
,

(35)

and

(
dβ,mw zN , vN

)
= −

(
zN , (βvN )′

)
+
〈
{zN}, βvNn

〉
= −

(
zN , (βvN )′

)
+
〈
{zN}, βn(vN − {vN})

〉
,

(36)

where we use the facts that
∑N
n=1

〈
βn{vN}, {zN}

〉
∂In

= 0 in the last equality. Taking vN = zN and summing

up the equations (35) and (36), we arrive at

(
dβ,mw vN , vN

)
= −1

2

(
β′vN , vN

)
− 1

2

〈
βn(vN − {vN}), vN − {vN}

〉
. (37)

A simple calculation reveals that

sc(vN , vN )− 1

2

〈
βn(vN − {vN}), vN − {vN}

〉
=

N∑
n=1

cn|
√
β(xn)(v − {v})(x−n )|2.

Thus, we have

ac(vN , vN ) + sc(vN , vN ) =
(
(γ − 1

2
β′)vN , vN

)
+

N∑
n=1

cn|
√
β(xn)(v − {v})(x−n )|2

≥
(
avN , vN

)
+

N∑
n=1

cn|
√
β(xn)(v − {v})(x−n )|2

≥ C‖vN‖2a.

Combining this with the trivial result that ε2
(
dmw vN , d

m
w vN

)
+
(
γvN , vN

)
+ sd(vN , vN ) ≥ C|||vN |||2, we have

a(vN , vN ) ≥ C|||vN |||2,
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with C = min{a, 1}. The proof is now completed.

�

Lemma 4.3 implies that

|||uN ||| ≤ ||g||,

which in turn implies that the problem (17) has a unique solution. The existence follows from the uniqueness.110

From Lemma 4.2 and Lemma 4.3, we have the following coercivity property in ||| · |||ε− norm.

Lemma 4.4. There is a positive constant C such that

a(vN , vN ) ≥ C|||vN |||2ε, ∀vN ∈ VN . (38)

5. Error analysis

In this section, we derive the error estimates for the MWG-FEM for the problem (1). We will establish an

optimal order of convergence for the MWG-FEM. We adapt the idea given in [26]. On each interval In, we

introduce the set of k + 1 nodal functional N` defined as follows: for any v ∈ C(In)

N0(v) = v(xn−1), Nk(v) = v(xn),

Nm(v) =
1

hmn

∫ xn

xn−1

(x− xn−1)m−1v(x) dx, m = 1, . . . , k − 1.

A local interpolation I : H1(In)→ Pk(In) is now defined by

Nm(Iv − v) = 0, m = 0, 1, . . . , k. (39)

A continuous global interpolation can be constructed from the local interpolation operator I.

Since Iv|In is continuous on In and is in the H1(In) space, we denote Iv|∂In by Iv|In for simplicity.

Form this fact we observe that for any v ∈ H1(In) we have

dmw (Iv) = (Iv)′. (40)

Lemma 5.1. [26][22] Let the exact solution u = uR + uL of the problem (1) can be decomposed into

a regular and layer component, respectively. If IuR and IuL are the interpolations uR and uL on a layer

adapted uniform Shishkin mesh, respectively. Then, we have Iu = IuR+IuL and the following interpolation

12



estimates

‖u− Iu‖L∞(Ω1) ≤ CN−(k+1), (41)

‖u− Iu‖L∞(Ω2) ≤ C(N−1 lnN)k+1, (42)

‖(uR − IuR)(l)‖L2(Ω) ≤ CN l−(k+1), l = 0, . . . , k, (43)

‖uL − IuL‖L2(Ω2) ≤ Cε1/2(N−1 lnN)k+1, (44)

N−1‖(IuL)′‖L2(Ω1) + ‖IuL‖L2(Ω1) ≤ C(ε1/2 +N−1/2)N−(k+1), (45)

‖uL‖L∞(Ω1) + ε−1/2‖uL‖L2(Ω1) ≤ CN−(k+1), (46)

‖u′L‖L2(Ω1) ≤ Cε−1/2N−(k+1). (47)

If u ∈ Hk+1(Ω) we also have

‖(uL − IuL)(l)‖L2(Ω1) ≤ Cε1/2−lN−(k+1), (48)

‖(uL − IuL)(l)‖L2(Ω2) ≤ Cε1/2−l(N−1 lnN)k+1−l (49)

when l = 1, 2.

In order to perform the error analysis, the following error equations will be needed.115

Lemma 5.2. Let u be the solution of the problem (1). Then for any vN ∈ VN , we have

−ε
(
u′′, vN

)
= ε
(
dmw (Iu), dmw vN

)
− T1(u, vN ), (50)(

γu, vN
)

=
(
γIu, vN

)
− T2(u, vN ), (51)

where

T1(u, v) = ε
〈
{(u− Iu)′}, [vN ]

〉
, (52)

T2(u, v) =
(
γ(Iu− u), vN

)
. (53)

Proof. For any vN ∈ VN , we know from the commutativity of the interpolation operator (40) that dmw (Iu) =

(Iu)′. Then we have (
dmw (Iu), dmw vN

)
In

=
(
(Iu)′, dmw vN

)
In
, ∀In ∈ TN . (54)

By using the definition of the weak derivative (12) and integration by parts, one can show that

(
dmw vN , (Iu)′

)
In

= −
(
vN , (Iu)′′

)
In

+
〈
(Iu)′, {vN}n

〉
∂In

=
(
v′N , (Iu)′

)
In
−
〈
(Iu)′, (vN − {vN})n

〉
∂In

. (55)
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From the property of the interpolation (39), we have

(
v′N , (Iu)′

)
In

=
(
v′N , u

′)
In
, ∀vN ∈ VN . (56)

We infer from the equations (54),(55) and (56) that

(
dmw (Iu), dmw vN

)
In

=
(
v′N , u

′)
In
−
〈
(Iu)′, (vN − {vN})n

〉
∂In

. (57)

Summing up the equation (57) over all interval In ∈ Th, we find

(
dmw (Iu), dmw vN

)
=
(
v′N , u

′)− 〈(Iu)′, (vN − {vN})n
〉
. (58)

Using integration by parts, we have

−
(
u′′, vN

)
In

=
(
u′, v′N

)
In
−
〈
u′, vNn

〉
∂In

.

Summing up the above equation over all interval In ∈ Th, we get

(
u′, v′N

)
= −

(
u′′, vN

)
+
〈
u′, (vN − {vN})n

〉
, (59)

where we used the fact that
〈
u′, {vN}n

〉
= 0. Finally, combining the equation (59) and (58) and making use

of the identity (11) yield the desired result (50).

Finally, the equation (51) is obvious. Thus, we complete the proof.

�

We proceed with establishing an error equation related to modified weak convection derivative.120

Lemma 5.3. Let u solve the problem (1). For any vN ∈ VN , we have the following

(
βu′, vN

)
=
(
dβ,mw (Iu), vN

)
− T3(u, vN ), (60)

where

T3(u, v) =
(
u− Iu, (βvN )′

)
. (61)

Proof. From the definition of the modified weak convection derivative (13) we have

(
dβ,mw (Iu), vN

)
= −

(
Iu, (βvn)′

)
+
〈
Iu, βvNn

〉
. (62)
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On the other hand, by using integration by parts one can show

(
βu′, vN

)
= −

(
u, (βvN )′

)
+
〈
u, βvNn

〉
. (63)

Note that Iu = u on ∂In for each n = 1, 2, . . . , N , thus we have the desired result by combining the

equation (62) with the equation (63). �

We split the error u−uN into the interpolation error θ := u−Iu and the discretization error ρ := Iu−uN
so that u− uN = θ + ρ. To establish the error bound for the error u− uN , we obtain the interpolation and

discretization errors separately, as the triangle inequality implies the result

|||u− un|||ε ≤ |||θ|||ε + |||ρ|||ε.

Lemma 5.4. Let u and uN be the exact solution and the numerical approximation of the problem (1) and

(17), respectively. Then we have the following error equation for the discretization error ρ

a(ρ, vN ) = T (u, vN ), ∀vN ∈ VN , (64)

where T (u, v) =
∑3
j=1 Tj(u, v) and Tj(u, v), j = 1, 2, 3 are defined by (52), (53) and (61), respectively.

Proof. Multiplying the equation (1) by vN ∈ VN , we obtain

−ε
(
u′′, vN

)
+
(
βu′, vN

)
+
(
γu, vN

)
=
(
g, vN

)
. (65)

We infer from the equations (50) and (60) that the above equation (65) becomes

ad(Iu, vN ) + ac(Iu, vN ) =
(
g, vN

)
+ T (u, vN ).

The continuity of Iu implies that Sd(Iu, vN ) = Sc(Iu, vN ) = 0. Therefore, we have

a(Iu, vN ) =
(
g, vN

)
+ T (u, vN ). (66)

Finally we obtain the desired result by subtracting the equation (17) from the above equation (66). �

Lemma 5.5. The average of the derivative of interpolation error {θ′} satisfies the following bounds

N/2∑
n=1

‖{θ′}‖2∂In ≤ Cε
−2N−(2k+1),

N∑
n=N/2+1

‖{θ′}‖2∂In ≤ Cε
−2(N−1 lnN)2k−1.
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Proof. From the definition of the average operator and the trace inequality, Lemma 4.1, we have

{θ′(xn)}2 =
1

4

(
θ′(x+

n ) + θ′(x−n )
)2 ≤ 1

2

(
θ′(x+

n )2 + θ′(x−n )2
)

≤ h−1
n ||θ′||2In + ||θ′||In ||θ′′||In + h−1

n+1||θ′||2In+1
+ ||θ′||In+1

||θ′′||In+1
.

(67)

We now find the bounds for the terms ||θ′||In and ||θ′′||In . The interpolation errors (uR − IuR)′ and

(uR − IuR)′′ of the regular part of the solution can be bounded using the estimate (43) as

||(uR − IuR)′||In ≤ CN−k,

||(uR − IuR)′′||In ≤ CN−k+1.

We also deduce from the estimates (48) and (49) that

||(uL − IuL)′||In ≤ Cε
−1
2 N−k−1, In ⊂ Ω1,

||(uL − IuL)′′||In ≤ Cε
−3
2 N−k−1, In ⊂ Ω1,

||(uL − IuL)′||In ≤ Cε
−1
2 (N−1 lnN)k, In ⊂ Ω2,

||(uL − IuL)′′||In ≤ Cε
−3
2 (N−1 lnN)k−1, In ⊂ Ω2.

Combining the above error estimates and using the triangle inequality, we arrive at

‖θ′‖In ≤ Cε−1/2N−k(ε1/2 +N−1), In ⊂ Ω1

‖θ′‖In ≤ Cε−1/2(N−1 lnN)k, In ⊂ Ω2.
(68)

and

‖θ′′‖In ≤ Cε−3/2N−k+1(ε3/2 +N−2), In ⊂ Ω1,

‖θ′′‖In ≤ Cε−3/2(N−1 lnN)k−1, In ⊂ Ω2.
(69)

Plugging the above estimates (68) and (69) into the inequality (67) and summing on Ω1 and Ω2 respectively125

conclude the desired estimate. Thus the proof of Lemma 5.5 is completed. �

Theorem 5.6. Let u be the solution of the problem (1) and Iu be the interpolation defined by (39) of the

solution u, then we have the following interpolation error estimate

|||θ|||ε ≤ C(N−1 lnN)k.
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Proof. Since u and Iu are continuous in Ω, we have [θ(xn)] = θ(xn)−{θ(xn)} = 0 for n = 1, 2, . . . , N . Thus,

|||θ|||2ε = ε

N∑
n=1

‖θ′‖2In +

N∑
n=1

‖θ‖2In .

The interpolation estimates (41) and (42) imply that

N∑
n=1

‖θ‖2In ≤ (1− τε)‖θ‖2L∞(Ω1) + τε‖θ‖2L∞(Ω2)

≤ CN−(k+1) + C lnN(N−1 lnN)2(k+1)

≤ C
(
N−(k+1) +N−2 ln3N(N−1 lnN)2k

)
≤ C(N−1 lnN)2k,

(70)

where we used the fact N−2 ln3N < 1.

From the estimate (68), one can show that

ε

N∑
n=1

‖θ′‖2In ≤ ε
N∑
n=1

‖θ′‖2In + ε

N∑
n=N

‖θ′‖2In

≤ Cεε−1N−2k(ε+N−2) + Cεε−1(N−1 lnN)2k

≤ C(N−2k−1 + (N−1 lnN)2k)

≤ C(N−1 lnN)2k.

Therefore, we get

|||θ|||ε ≤ C(N−1 lnN)k,

which is the desired result. Hence, the proof is completed. �

Next, we derive the error estimate for the discretization error ρ = Iu − uN for the MWG-FEM (17) in

the ||| · |||ε.130

Theorem 5.7. Let u be the solution of the problem (1) and uN ∈ VN be the MWG-FEM approximation of

(17) on the layer adapted piecewise uniform Shishkin mesh. Then, there is a positive constant C independent

of ε,N and hn such that

|||ρ|||ε ≤ C(N−1 lnN)k. (71)

Proof. From the coercivity of the bilinear form (38), we have

C|||ρ|||2ε ≤ a(ρ, ρ). (72)
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Taking vN = ρ in (64), we get

a(ρ, ρ) = T (u, ρ). (73)

It remains to estimate the term T (u, ρ). We begin with the first term T1(u, ρ). Using the Cauchy-Schwarz

inequality and Lemma 5.5, we have

T1(u, ρ) =

N∑
n=1

〈
ε{θ′}, [ρ]

〉
∂In
≤

N∑
n=1

ε‖{θ′}‖∂In‖[ρ]‖∂In

≤
( N∑
n=1

ε2

σn
‖{θ′}‖2∂In

)1/2( N∑
n=1

σn‖[ρ]‖2∂In
)1/2

≤ C(N−1 lnN)k|||ρ|||ε,

(74)

where σn is defined as

σn =

1 for n = 1 . . . , N/2

N(lnN)−1 for n = N/2 + 1, . . . , N.

(75)

Next, we estimate the terms T2(u, ρ) and T3(u, ρ) as follows. We infer from (53) and (61)

T2(u, ρ) + T3(u, ρ) =
(
θ, (β′ − γ)ρ

)
+
(
θ, βρ′

)
:= Z1(θ, ρ) + Z2(θ, ρ).

For Z1(θ, ρ), we infer from Theorem 5.6 that

|Z1(θ, ρ)| ≤ C‖θ‖‖ρ‖ ≤ C(N−1 lnN)k|||ρ|||ε. (76)

We estimate Z2(θ, ρ) by making use of the Cauchy-Schwartz inequality and the estimate (70)

|Z2(θ, ρ)| ≤ C
(
‖θ‖L2(Ω)‖ρ′‖L2(Ω))

≤ C(N−1 lnN)k|||ρ|||ε. (77)

Combining the inequalities above (74), (76) and (77), we obtain

|T (u, ρ)| ≤ C(N−1 lnN)k|||ρ|||ε,N . (78)

Plugging (78) into (73), we get the desired result (71). �

Remark 3. We see that from Lemma 5.5 and the estimate (74), the penalization parameter σn is the key

ingredient in the uniform convergence. In [25], uniform convergent nonsymmetric interior penalty Galerkin

(NIPG) methods have been presented with the penalty parameter chosen as σn = N in Ω2 and σ = 1 in Ω1
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for the problem (1). In the weak or modified weak Galerkin methods [13, 15, 16], this penalty parameter is135

chosen as σn = εh−1
n for the elliptic and singularly perturbed convection-dominated problems, however, the

uniform convergence results can not be achieved for this choice.

The main result of this section is given in the following theorem.

Theorem 5.8. Let u be the solution of the problem (1) and uN be the MWG-FEM approximation of (17)

on the layer adapted piecewise uniform Shishkin mesh. Then, we have

|||u− uN |||ε ≤ C(N−1 lnN)k.

Proof. By triangle inequality we know that

|||u− uN |||ε ≤ |||θ|||ε + |||ρ|||ε.

Then the result follows from Theorem 5.6 and Theorem 5.7. This completes the proof. �

6. Numerical Experiment140

In this section, we give various numerical examples to verify numerically the theoretical convergence results

obtained in this paper.

Example 1. Consider the following singularly perturbed convection-diffusion-reaction problem with homo-

geneous Dirichlet boundary condition on Ω = [0, 1]:

−ε2u′′(x) + u′(x) + u(x) = g(x), x ∈ Ω,

u(0) = u(1) = 0.
(79)

The function g is given so that the true solution is

u(x) = sin(x)(1− exp(
−(1− x)

ε
)).

The solution u has a boundary layer near x = 1 of the width O(ε| ln ε|). We use the piecewise uniform

Shishkin mesh with N number of interval where N = 2l, l = 3, 4, 5, 6, 7, 8, 9. We choose the transition

point 1 − τε where τε = ε(k + 1) lnN . Then we divide uniformly each interval (0, 1 − τε) and (1 − τε, 1)

into N/2 elements (intervals). We display the numerical results with linear element functions (k = 1),

quadratic element functions (k = 2) and cubic element functions (k = 3) in energy-like norm defined in (27)

in Table 1 for different values of the parameter ε, respectively. The logarithmic order of convergence (LOC)

is calculated by the formula p =
ln(E(N/2)/E(N))

ln(2 ln(N/2)/ ln(N))
and the order of convergence (OC) is computed by
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N |||u− uN |||ε LOC |||u− uN |||ε LOC |||u− uN |||ε LOC

k = 1 ε = 10−3 ε = 10−8 ε = 10−9

8 2.5634E-01 - 2.5610E-01 - 2.5610E-01 -
16 1.7826E-01 0.8958 1.7810E-01 0.8959 1.7810E-01 0.8959
32 1.1442E-01 0.9433 1.1431E-01 0.9434 1.1431E-01 0.9434
64 6.9638E-02 0.9720 6.9657E-02 0.9721 6.9571E-02 0.9721
128 4.0914E-02 0.9866 4.0875E-02 0.9867 4.0875E-02 0.9866
256 2.3463E-02 0.9936 2.3441E-02 0.9936 2.3441E-02 0.9936
512 1.3222E-02 0.9968 1.3209E-02 0.9969 1.3209E-02 0.9968
k = 2 ε = 10−3 ε = 10−8 ε = 10−9

8 7.9019E-02 - 7.8904E-02 - 7.8904E-02 -
16 3.8608E-02 1.7664 3.8540E-02 1.7665 3.8549E-02 1.7665
32 1.5952E-02 1.8804 1.5927E-02 1.8805 1.5927E-02 1.8805
64 5.9078E-03 1.9446 5.8984E-03 1.9446 5.8983E-03 1.9446
128 2.0372E-03 1.9752 2.0340E-03 1.9752 2.0340E-03 1.9752
256 6.6937E-04 1.9888 6.6830E-04 1.9888 6.6833E-04 1.9888
512 2.1242E-04 1.9948 2.1208E-04 1.9948 2.1266E-04 1.9901
k = 3 ε = 10−3 ε = 10−8 ε = 10−9

8 2.4397E-02 - 2.4349E-02 - 2.4349E-02 -
16 8.4573E-03 2.6128 8.4396E-03 2.6131 8.4396E-03 2.6131
32 2.2653E-03 2.8027 2.2604E-03 2.8029 2.2604E-03 2.8028
64 5.1208E-04 2.9109 5.1095E-04 2.9110 5.1094E-04 2.9110
128 1.0376E-04 2.9618 1.0354E-04 2.9616 1.0374E-04 2.9685
256 1.9538E-05 2.9836 1.9494E-05 2.9835 1.9494E-05 2.9834
512 3.4919E-06 2.9927 3.4846E-06 2.9924 3.4846E-06 2.9924

Table 1: The numerical errors in the ||| · |||ε norm and their orders of convergence for Example 1

r =
ln(E(N/2)/E(N))

ln(2)
where E(N) = u−uN is the computed error. In Table 2 and Table 3, we also provide

history of convergence of the MWG-FEM with linear element functions (k = 1), quadratic element functions

(k = 2) and cubic element functions (k = 3) in the discrete L2− norm defined by

‖u− uN‖L2(TN ) :=

{
N∑
n=1

‖u− uN‖2L2(In)

}1/2

,

and in the discrete L∞− norm defined by

‖u− uN‖L∞(TN ) := max
0≤n≤N

|u(xn)− uN (xn)|

for different values of the parameter ε, respectively. Similar to other upwind scheme, we remark that the

MWG-FEM converges poorly for relatively small diffusion parameter (e.g., ε = 10−3) and it has the order of

convergence O(N−(k+1/2)) in this case, however it converges very well in the strongly convection-dominated145

cases and has the the order of convergence O(N−(k+1)) in the discrete L2− norm. We see that the numerical

results for |||u−uN |||ε are in excellent agreement with the theoretical fact of Theorem 5.8. From Table 3, we

observe that the MWG-FEM has the superconvergence rate of O(N−2k ln2kN) in the discrete L∞− norm.
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N ||u− uN || OC ||u− uN || OC ||u− uN || OC

k = 1 ε = 10−3 ε = 10−8 ε = 10−9

8 3.4865E-03 - 3.4458E-03 - 3.4458E-03 -
16 7.5237E-04 2.2122 6.6559E-04 2.3721 6.6559E-04 2.3721
32 2.0253E-04 1.8932 1.3490E-04 2.3027 1.3489E-04 2.3027
64 6.4006E-05 1.6619 2.9184E-05 2.2086 2.9183E-05 2.2086
128 2.0976E-05 1.6094 6.6773E-06 2.1278 6.6770E-06 2.1278
256 6.7687E-06 1.6318 1.5878E-06 2.0722 1.5870E-06 2.0722
512 2.1322E-06 1.6664 3.8645E-07 2.0386 3.8640E-07 2.0387
k = 2 ε = 10−3 ε = 10−8 ε = 10−9

8 3.3302E-04 - 2.4599E-04 - 2.4599E-04 -
16 8.2905E-05 2.0061 2.5566E-05 3.2663 2.5564E-05 3.2663
32 2.1210E-05 1.9666 2.7926E-06 3.1945 2.7916E-06 3.1945
64 4.7720E-06 2.1521 3.2018E-07 3.1246 3.2004E-07 3.1246
128 9.6960E-07 2.2991 3.8122E-08 3.0702 3.7969E-08 3.0702
256 1.8322E-07 2.4038 4.6567E-09 3.0332 4.6404E-09 3.0332
512 3.2833E-08 2.4803 5.7918E-10 3.0072 5.7554E-10 3.0072
k = 3 ε = 10−3 ε = 10−8 ε = 10−9

8 6.8044E-05 - 1.9436E-05 - 1.9436E-05 -
16 1.5612E-05 2.1237 8.6550E-07 4.4890 8.6447E-07 4.4907
32 2.6645E-06 2.5507 3.9305E-08 4.4607 3.9305E-08 4.4819
64 3.6607E-07 2.8637 2.0564E-09 4.2565 2.0543E-09 4.2564
128 4.3612E-08 3.0692 1.1347E-10 4.1797 1.1314E-10 4.1796
256 4.7155E-09 3.2092 6.7147E-12 4.0788 6.7102E-12 4.0784
512 4.7542E-10 3.3101 4.1147E-13 4.0284 4.1103E-13 4.0279

Table 2: The numerical errors in the || · ||L2 norm and their orders of convergence for Example 1

Plotted in Figure 1a and Figure 1b are the errors in the norms |||u−uN |||ε, ||u−uN || and ||u−uN ||∞ for

Example 1 with ε = 1.0e − 10 on log-log scale using linear and quadratic element functions. It is observed150

that the order of convergence in the |||u − uN |||ε-norm is O((N−1 lnN)k) verifying the theoretical results

developed in Theorem 5.8. Figure 1 suggests that the proposed MWG-FEM has the order of convergence

O(N−(k+1)) in the discrete L2− norm and the super-convergence rate of O(N−2k ln2kN) in the discrete

L∞− norm.

In [27], some classes of S − type meshes have been introduced. Getting from the coarse mesh [0, 1− τε]

to the fine mesh [1− τε, 1], a mesh-generating function has been used. Assume that φ : [1/2, 1]→ [lnN, 0]

is strictly decreasing mesh-generating function. Let

xn = 1−
(k + 1)ε

α
φ(n/N), n = N/2, . . . , N.

Such meshes are called S − type meshes. A mesh characterizing function ψ which is very closely related to

φ is defined by

ψ := exp(−φ) : [1/2, 1]→ [1/N, 1].

In the present paper we have used the piecewise uniform Shishkin mesh and we have max |ψ′(x)| = O(lnN). A
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N ||u− uN ||∞ LOC ||u− uN ||∞ LOC ||u− uN ||∞ LOC

k = 1 ε = 10−3 ε = 10−8 ε = 10−9

8 9.8031E-03 - 9.7987E-03 - 9.7987E-03 -
16 4.5910E-03 1.8708 4.5910E-03 1.8698 4.5910E-03 1.8698
32 2.0510E-03 1.7153 2.0490E-03 1.7164 2.0490E-03 1.7164
64 7.9190E-04 1.8620 7.9157E-04 1.8618 27.9157E-04 1.8618
128 2.7995E-04 1.9292 2.7983E-04 1.9291 2.7983E-04 1.9291
256 9.3782E-05 1.9554 9.3681E-05 1.9554 9.3681E-05 1.9554
512 3.0089E-05 1.9746 3.0076E-05 1.9746 3.0077E-05 1.9746
k = 2 ε = 10−3 ε = 10−8 ε = 10−9

8 1.2360E-03 - 1.2375E-03 - 1.2375E-03 -
16 2.8414E-04 3.6259 2.8425E-04 3.6279 2.8425E-04 3.6279
32 4.4170E-05 3.9604 4.4273E-05 3.9562 4.4273E-05 3.9562
64 6.1150E-06 3.8707 6.1404E-06 3.8672 6.1404E-06 3.8672
128 7.3376E-07 3.9338 7.3838E-07 3.9298 7.3838E-07 3.9298
256 7.9744E-08 3.9658 7.3838E-07 3.9298 8.0538E-08 3.9593
512 8.0363E-09 3.9885 8.2002E-09 3.9706 8.2002E-09 3.9706
k = 3 ε = 10−3 ε = 10−8 ε = 10−9

8 1.0987E-04 - 1.0951E-04 - 1.0951E-04 -
16 1.3301E-05 5.2075 1.3259E-05 5.2072 1.3259E-05 5.2072
32 8.7071E-07 5.8006 8.6903E-07 5.7979 8.6903E-07 5.7979
64 4.2563E-08 5.9087 4.2408E-08 5.9410 4.2408E-08 5.9410
128 1.7169E-09 5.9563 1.7105E-09 5.9569 1.7105E-09 5.9569
256 6.1328E-11 5.9836 6.1328E-11 5.9472 6.1328E-11 5.9472
512 1.9413E-12 6.0012 1.9428E-12 6.0011 1.9428E-12 6.0011

Table 3: The numerical errors in the || · ||∞ norm and their orders of convergence for Example 1
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(b) Quadratic element.

Figure 1: Convergence rates of three norms using Linear and Quadratic elements for Example 1 with ε = 10−10.
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ε k = 1 k = 2 k = 3

S-mesh B-S mesh S-mesh B-S mesh S-mesh B-S mesh
10−3 2.3463E-02 9.6537E-03 6.6937E-04 8.2544E-05 1.9538E-05 5.9106E-07
10−4 2.3443E-02 9.6464E-03 6.6655E-04 8.2544E-05 1.9499E-05 5.9110E-07
10−5 2.3441E-02 9.6456E-03 6.6655E-04 8.2533E-05 1.9499E-05 5.9108E-07
10−6 2.3441E-02 9.6456E-03 6.6655E-04 8.2532E-05 1.9499E-05 5.9109E-07
10−7 2.3441E-02 9.6456E-03 6.6655E-04 8.2532E-05 1.9499E-05 5.9109E-07
10−8 2.3441E-02 9.6456E-03 6.6655E-04 8.2551E-05 1.9499E-05 5.9109E-07

Table 4: Errors in |||u− uN |||ε− norms on S- mesh and B-S mesh

popular and frequently used optimal mesh is the Bakhvalov-Shishkin (B-S) mesh where the mesh-characterizing

function

Ψ(x) = 1− 2(1− t)(1− 1/N), max |ψ′(x)| ≤ 2.

The mesh points are defined by

xn =


nH, for n = 0, 1, . . . , N/2− 1

1 +
(k + 1)ε

α
ln
(
1− 2(1− 1/N)(1− n

N )
)
, for n = N/2, . . . , N.

(80)

Some examples of S − type meshes can be found in details in [27].155

In Table 4, we report the errors in the |||u− uN |||ε- norm for the MWG-FEM for the different values of

the parameter ε ∈ {10−3, 10−4, . . . , 10−8} with linear element functions (k = 1), quadratic element functions

(k = 2) and cubic element functions (k = 3) on the piecewise uniform Shishkin mesh defined by (5) and

B-S mesh defined by (80) using N = 256 elements. We see that the MWG-FEM is stable with higher order

elements with respect to the parameter ε→ 0.160

Example 2. Consider the following variable convection coefficient convection-diffusion-reaction equation

−ε2u′′(x) + (3− x)u′(x) + u(x) = g(x), x ∈ Ω,

u(0) = u(1) = 0,
(81)

where the force function g is chosen such that the exact solution is

u(x) = x− e−(1−x)/ε − e−1/ε

1− e−1/ε
.

The history of convergence of MWG-FEM in the |||u−uN |||ε− norm for different values of the perturbation

parameter is presented in Table 5 for Example 2. Plotted in Figure 2a and Figure 2b are the errors in the

norms |||u−uN |||ε, ||u−uN || and ||u−uN ||∞ for Example 2 with ε = 1.0e− 10 on log-log scale using linear

and quadratic element functions. Again, these results match the theory we have developed in Theorem 5.8.

23



N ε = 10−3 ε = 10−5 ε = 10−8

k = 1 |||u− uN |||ε LOC |||u− uN |||ε LOC |||u− uN |||ε LOC
8 2.9230E-01 - 2.9230E-01 - 2.9230E-01 -
16 2.0494E-01 0.8756 2.0496E-01 0.8754 2.0496E-01 0.8754
32 1.3303E-01 0.9193 1.3307E-01 0.9190 1.3307E-01 0.9190
64 8.1686E-02 0.9548 8.1697E-02 0.9550 8.1697E-02 0.9550
128 4.8256E-02 0.9765 4.8257E-02 0.9767 4.8257E-02 0.9767
256 2.7757E-02 0.9881 2.7758E-02 0.9882 2.7758E-02 0.9882
512 1.5667E-02 0.9939 1.5667E-02 0.9940 1.5667E-02 0.9940

k = 2 |||u− uN |||ε OC |||u− uN |||ε OC |||u− uN |||ε OC
8 8.7170E-02 - 8.7173E-02 - 8.7173E-02 -
16 4.3465E-02 1.7162 4.3465E-02 1.7163 4.3465E-02 1.7163
32 1.8324E-02 1.8377 1.8322E-02 1.8378 1.8322E-02 1.8378
64 6.8831E-03 1.9168 6.8826E-03 1.9167 6.8826E-03 1.9167
128 2.3935E-03 1.9597 2.3934E-03 1.9596 2.3934E-03 1.9597
256 7.9003E-04 1.9807 7.9002E-04 1.9807 7.9003E-04 1.9807
512 2.5132E-04 1.9906 2.5132E-04 1.9905 2.5132E-04 1.9905

k = 3 |||u− uN |||ε OC |||u− uN |||ε OC |||u− uN |||ε OC
8 2.6503E-02 - 2.6504E-02 - 2.6504E-02 -
16 9.4167E-03 2.5521 9.4169E-03 2.5521 9.4169E-03 2.5522
32 2.5824E-03 2.7526 2.5824E-03 2.7526 2.5824E-03 2.7527
64 5.9377E-04 2.8777 5.9377E-04 2.8777 5.9378E-04 2.8777
128 1.2154E-04 2.9429 1.2154E-04 2.9429 1.2156E-04 2.9426
256 2.3016E-05 2.9735 2.3016E-05 2.9735 2.3016E-05 2.9730
512 4.1260E-06 2.9874 4.1260E-06 2.9872 4.1260E-06 2.9874

Table 5: Errors in |||u− uN |||ε− norms and their convergence rate for Example 2.
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Figure 2: Convergence rates of there norms of the Linear and Quadratic elements for Example 2 with ε = 10−10.
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7. Conclusion and future direction165

In this paper, the MWG-FEM on the piecewise-uniform mesh is proposed and applied to the one dimensional

singularly perturbed convection-diffusion-reaction problem. In order to obtain the uniform error estimate,

special type of interpolation operator and a special stabilization parameter have been used in the proposed

method. We theoretically showed that the present method on the Shishkin mesh has optimal and parameter-

uniform convergent error bounds of order k in the energy norm. The numerical examples verify the theoretical170

findings. Moreover, the numerical experiments indicate that the proposed method has the superconvergence

rates in the discrete L∞− norm. Similar error analysis can be carried out in the two dimensional singularly

perturbed convection-diffusion-reaction problems. The key step for establishing the optimal and paramater-

uniform convergent error estimates is a special interpolation operator which is uniformly convergent on the

tensor product of the 1− d Shishkin mesh. This will be explored in the future work.175
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