Yueqing Xie

and 5 more

Groundwater discharge to headwater streams and concomitant terrestrial dissolved inorganic carbon (DIC) export play a significant role in headwater stream CO2 evasion. However, previous studies rarely examined diffuse groundwater discharge and its impact on headwater stream CO2 evasion, thereby lacking the understanding of the role of diffuse groundwater discharge in terrestrial DIC export and stream CO2 evasion. This study quantified diffuse groundwater discharge along a 43 km semiarid headwater stream by combining hydraulic, isotopic (radon-222) and chemical (electrical conductivity) approaches, and estimated the reach-level CO2 budgets of the stream. Reach-scale water and mass balance modeling yielded highly variable diffuse groundwater discharge rates (n = 16, range: 1.08-7.80 m2/d, mean ± 1 sd: 4.57 ± 1.81 m2/d). Groundwater was supersaturated with CO2 at all sites, with strongly variable CO2 partial pressure (pCO2) and DIC concentrations at 1,223-27,349 μatm and 30-119 mg/L, respectively. Diffuse groundwater discharge dominated terrestrial DIC export to the stream (12-111 g C m-2 d-1, normalized to water surface area). A portion of groundwater dissolved CO2 transported to the stream was emitted to the atmosphere with evasion rates varying at 0.62-3.18 g C m-2 d-1. However, most dissolved CO2 was transformed into HCO3- through carbonate buffering because of the regulation of carbonate equilibrium. Overall, the stream CO2 evasion was driven by carbon transfer but limited by carbon supply. This study provides a bottom-up perspective to understand terrestrial DIC export and stream CO2 evasion in arid and semiarid areas.

Yanhui Dong

and 4 more

Groundwater age is often used to estimate groundwater recharge through a simplified analytical approach. This estimated recharge is thought to be representative of the mean recharge between the point of entry and the sampling point. However, given the complexity in actual recharge, whether the mean recharge is reasonable is still unclear. This study examined the validity of the method to estimate long-term average groundwater recharge and the possibility of obtaining reasonable spatial recharge pattern. We first validated our model in producing reasonable age distributions using a constant flux boundary condition. We then generated different flow fields and age patterns by using various spatially-varying flux boundary conditions with different magnitudes and wavelengths. Groundwater recharge was estimated and analyzed afterwards using the method at the spatial scale. We illustrated the main findings with a field example in the end. Our results suggest that we can estimate long-term average groundwater recharge with 10% error in many parts of an aquifer. The size of these areas decreases with the increase in both the amplitude and the wavelength. The chance of obtaining a reasonable groundwater recharge is higher if an age sample is collected from the middle of an aquifer and at downstream areas. Our study also indicates that the method can also be used to estimate local groundwater recharge if age samples are collected close to the water table. However, care must be taken to determine groundwater age regardless of conditions.