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Abstract

Metagenomics and metatranscriptomics are powerful tools to uncover key microbes

and  processes  driving  biogeochemical  cycling  in  natural  ecosystems.  Currently

available  databases  depicting  metabolic  functions  from

metagenomic/metatranscriptomic  data  are  not  dedicated  to  biogeochemical  cycles.
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There  are  no  databases  encompass  genes  involved  in  the  cycling  of

dimethylsulfoniopropionate  (DMSP),  an  abundant  organosulfur  compound.

Additionally, a recognized normalization mode to  estimate and compare the relative

abundance  and  environmental  importance  of  pathways  from  metagenomic  and

metatranscriptomic data has not been available. These limitations impact the ability to

accurately  relate  key  microbial  driven  biogeochemical  processes  to  differences  in

environmental  conditions.  Thus,  an  easy  to  use  specialized  tool  that  infers  and

visually  compares  the  potential  for  biogeochemical  processes,  including  DMSP

cycling,  is  urgently  required.  To solve  these  issues,  we developed  DiTing,  a  tool

wrapper  to  infer  and  compare  biogeochemical  pathways  among  a  set  of  given

metagenomic or metatranscriptomic reads in one step, based on the KEGG (Kyoto

Encyclopedia of Genes and Genomes) and a manually created DMSP cycling gene

database. Accurate and specific formulas for over 100 pathways were developed to

calculate  their  relative  abundance.  Output  reports  detail  the  relative  abundance  of

biogeochemically-relevant pathways in both text and graphical format. We applied

DiTing to metagenomes from simulated data, hydrothermal vents and the Tara Ocean

project. The DiTing outputs were consistent with genetic feature of genomes used in

simulated  benchmark  data,  and  also  demonstrated  that  the  predicted  functional

profiles  correlated  strongly with changes  in  environmental  conditions.  DiTing can

now be confidently applied to wider metagenomic and metatranscriptomic datasets.

Availability and implementation: https://github.com/xuechunxu/DiTing

Contact: xhzhang@ouc.edu.cn

Supplementary  information: Supplementary  data  are  available  at  Molecular

Ecology Resources online.
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Introduction

Microbial  communities  play  integral  and  unique roles  in  mediating  global

biogeochemical  cycles.  Sequencing  techniques,  such  as  amplicon  sequencing

(Bokulich  et  al.,  2013),  whole-genome  sequencing  (Jones  et  al.,  2016),  genome-

resolved  metagenomics  (Parks  et  al.,  2017;  Xue  et  al.,  2020b)  and  shotgun

metagenomic sequencing (Sharpton et al., 2014; Xue et al., 2020a), are widely used to

characterize  the  genetic  potential  of  microbial  communities.  Metagenomics  is  an

important tool to unravel the diversity, function and ecology of complex microbial

ecosystems  via  quantification  of  the  genetic  potential  for  various  biogeochemical

pathways within  microbial  communities  (Riesenfeld  et  al.,  2004).  Moreover,

metatranscriptomic  data  present  a  more  accurate  scenario  of  processes  occurring

within  ecosystems  because  these  methodologies  move  past  genetic  potential  and

report on the transcription of biogeochemical pathways (Aguiar-Pulido et al., 2016;

Shakya et al., 2019). Previous studies have predicted community functions according

to gene annotation against several established databases, e.g., KEGG  (Ogata et al.,

2000), COG (Tatusov et al., 2000), MetaCyc (Caspi et al., 2006), Pfam (Finn et al.,

2014),  TIGRfam  (Selengut  et  al.,  2007),  SEED  (Ross  et  al.,  2014),  and eggNOG

(Huertacepas et al., 2016). However, these functional annotations are not dedicated to

biogeochemical cycling and lack comprehensive lists of annotated genes for important

cycles. FOAM (Functional Ontology Assignments for Metagenomes; Prestat  et al.,

2014)  is  a  functional  gene  database  for  environmental  datasets  that  includes

biogeochemical cycles, however, this database lacks  visualization, and annotates all

protein  sequences  with a  universal  threshold  value,  which  may lead  to  prediction

biases. Furthermore,  some  metabolic  pathways,  e.g.  the  cycling  of

dimethylsulfoniopropionate (DMSP), a key marine osmolyte, nutrient, and signaling

molecule, with important roles in sulfur cycling (Curson  et al., 2011; Zhang  et al.,

2019), lack an accurate and reviewed database for annotating the key metabolic genes.

These  limitations  force  researchers  to  undertake  often  tricky  and  time-consuming

gathering of gene sequences from primary research and collate them into robust local
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databases (Acinas et al., 2019; Dombrowski et al., 2018; Llorens-Marès et al., 2015;

Zhang et al., 2018). This can also lead to challenges for downstream interpretation,

organization and visualization.

Additionally,  there  is  no  recognized  and  prepared  normalization  method  to

estimate  and  compare the  relative  abundance  of  a  pathway  in  metagenomic  and

metatranscriptomic data. In some studies, the relative abundance of every gene in a

biogeochemical pathway was added together to estimate the relative abundance of the

pathway  (Ganesh et  al.,  2014;  Petter  et  al.,  2013;  Smedile  et  al.,  2013),  which is

unsuitable to infer and compare pathways. For example, thiosulfate disproportionation

(thiosulfate  ->  sulfide  &  sulfite) is  catalyzed  by  thiosulfate  reductase,  which  is

encoded  by  three  genes  (phsABC).  Thus,  the  relative  abundance  of  thiosulfate

disproportionation pathway  should  be  equal  to  the  mean  relative  abundance  of

phsABC  instead  of  the  sum  of  phsABC relative  abundance  together.  This

normalization mode was applied in somerecent studies (Llorens-Marès et al., 2015,

Graham et  al.,  2018),  but no simple tool to achieve this  is  currently available.  In

addition,  there  are  few  easy  methods  for  high  throughput  comparison  and

visualization of samples. Therefore, new automated tools to identify, quantify, and

compare  the  abundance  and/or  transcription  of  genes  and  pathways  for

biogeochemical cycles, including the DMSP cycle, are needed.

Here  we  developed  the  software  DiTing,  a  pipeline  to  infer  and  compare

biogeochemical  pathways  in  metagenomic  and metatranscriptomic  data.  DiTing is

named after a Chinese mythical creature who knows everything when he puts his ears

on the Earth's surface. Similarly, scientists can gain robust knowledge on microbial

driven  biogeochemical  cycles  from  environmental  ‘omic  data  after  analysis  with

DiTing. DiTing annotates protein sequences based on the KEGG database (Ogata et

al.,  2000)  for  most  microbial-mediated  biogeochemical  cycles,  and  an  in-house

database specifically for cycling of DMSP, and then estimates the relative abundance

of corresponding functional genes. More accurate specific formula for each pathway

were developed to calculate the relative abundance of multiple pathways. The output
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results  consist  of  user-friendly  tables  containing  a  summary  of  over  100

biogeochemically-relevant  pathways  and  corresponding  genes,  and  their  relative

abundances  in  individual  metagenomic/metatranscriptomic  samples,  alongside

graphical  outputs  consisting  of  heatmaps  and  multiple  sketch  plots  for  easier

visualization.

2 Methods

The main procedure of DiTing

DiTing was written in Python 3 and runs on Linux/Unix platforms. The pre-requisites

required  for  running  the  software  are  described  on  the  DiTing  GitHub  page

(https://github.com/xuechunxu/DiTing). The input source was a set of metagenomic

and/or metatranscriptomic clean reads where low-quality reads, primer and adaptor

sequences  had been trimmed beforehand (Fig.  1),  which  were  then  assembled by

Megahit  v1.1.2  (Li et  al.,  2016) (with default  parameters) or metaSPAdes v3.12.0

(Nurk et  al.,  2017)  (with  default  parameters).  Users  can  set  distinct  parameter  to

choose  which  software  for  reads  assembly.  Compared  to  Megahit,  MetaSPAdes

performs better in recovering long contigs, it has a higher assembly quality index and

is the recommended assembler for high-complex metagenomes (Forouzan et al., 2018,

Pasolli  et  al.,  2019).  However,  Megahit  has  a  low error  rate,  is  highly  memory-

efficient and is ideal for large datasets (Forouzan eta al., 2018). Genes were predicted

and  translated  from the  assembled  contigs  by  Prodigal  v2.6.3 with  the  ‘-p  meta’

option (Hyatt  et  al.,  2010). To determine the relative abundance of each gene, the

input metagenomic reads were mapped against predicted genes (nucleotide) by BWA-

MEM (Li, 2013) (bwa v0.7.15, default settings) to generate sequence alignment map

(SAM) files. We used the unsorted SAM files as input for pileup.sh (bbmap v38.22)

(Bushnell, 2014) (with default parameters) to calculate the average coverage of each

gene or transcript. The TPM methodology was used to indicate the relative abundance

of a gene by the following formula.
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TPM i=
bi

∑
j

b j
·106=

X i
Li

∑
j

X j

L j

·106

Where TPMi is the relative abundance of gene i, bi is the copy number of gene i, Li is

the length of gene i, Xi is the number of times that gene i is detected in a sample (that

is, the number of reads in alignment), and j is the number of genes in a sample. The

translated protein sequences were queried against KOfam database (HMM database of

KEGG Orthologs; KOs) (Aramaki et al., 2019) using hmmsearch implemented within

HMMER (Finn et al., 2011) (parameter: hmmsearch -T <threshold> --tblout <output>

<hmm database> <input protein sequence> when score type is full;  hmmsearch --

domT <threshold> --domtblout <output> <hmm database> <input protein sequence>

when  score  type  is  domain),  which  employs  methods  detecting  remote  homologs

sensitively  and  efficiently.  Kofam  suggested  values

(ftp://ftp.genome.jp/pub/db/kofam/)  were  used  as  the  cutoff  threshold  values  for

hmmsearch,  in  which  each  KEGG  Orthology  (KO)  entry  had  its  unique  cutoff

threshold values  (Aramaki et al., 2019). To test the accuracy of the gene annotation

from DiTing, we also submitted translated protein sequences to the KofamKOALA

web server (https://www.genome.jp/tools/kofamkoala/). KofamKOALA assigns KOs

numbers to protein sequences with its accuracy being comparable to the best existing

KO assignment tools  (Aramaki et al., 2019). For genes assigned into multiple KOs

numbers, all the corresponding functions were associated to the genes. To specifically

probe DMSP catabolism, 20 verified gene sequences (DMSP lyase genes dddD, dddK,

dddL, dddP, dddQ, dddY, dddW, Alma1; DMSP synthesis genes dsyB, DSYB, mmtN;

DMSP demethylation  pathway  genes  dmdA,  dmdB,  dmdC,  dmdD;  acryloyl-CoA

hydratase  acuH,  methanethiol  S-methylase  mddA,  DMS  monooxygenase  dmoA,

methanethiol oxidase MTO, and DMSO reductase  dorA) were collected manually to

create the profile HMM (Song et al., 2020). A table with the relative abundance and

annotation of genes is used to estimate the relative abundance of approximately one
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hundred biogeochemical pathways in each sample. 

The formula for each pathway is specifically designed to estimate the relative

abundance of the pathway according to the definitions (https://github.com/xuechunxu/

DiTing/blob/master/Pathway_formulas.txt).  For  example,  assimilatory  sulfite

reduction (ASR) that converts sulfite to sulfide has two known possible pathways: (1)

Sir protein (K00392) mediated pathway (Gisselmann et al., 1993; Bork et al., 1998),

and (2) CysJI protein (K00380 + K00381) mediated pathway (Ostrowski et al., 1989a,

b; Zeghouf et al., 2000). Thus, the relative abundance of assimilatory sulfite reduction

pathway is estimated by the following formula:

AASR=aK 00392+
aK 00380+aK 00381

2

Where  AASR is  the  relative  abundance  of  the  ASR  pathway,  aKO is  the  relative

abundance of  KO in each sample. Dissimilatory nitrite  reduction  (DNRA),  which

converts  nitrite  to  ammonia, can  occur  via  two different  enzymatic  reactions:  (1)

NirBD proteins  (K00362 + K00363) to  convert  nitrite  to  ammonia,  or  (2)  NrfAH

protein  (K03385  +  K15876)  to  convert  nitrite  to  ammonia.  Thus,  the  relative

abundance of dissimilatory nitrite reduction to ammonia is estimated by the following

formula:

ADNRA=
aK 00362+aK 00363

2
+
aK 03385+aK 15876

2

Where  ADNRA is  the  relative  abundance  of  DNRA pathway,  aKO is  the  relative

abundance of KO in each sample. For other pathways, a customized formula for each

pathway was utilized (see Supplemental Table S1).

DiTing produces a table in  the specified output  directory.  This table  contains

approximately 100 biogeochemical  pathways and their  relative abundance in  each

input sample. Another table of the relative abundances of corresponding KO/genes

within these pathways in each sample is also generated (like Supplemental Table S2).

Researchers can evaluate the completeness of pathways from this table. For improved
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visualization,  heatmaps and sketch plots  for comparing the  relative abundances of

biogeochemical pathways in different samples are drawn by a Python script. DiTing

can be installed via Conda (https://docs.conda.io).

Construction of the DMSP database and other selected genes

DMSP is a marine organosulfur compound with important roles in global sulfur cycle

and may affect climate (Zhang et al., 2019), yet genes involved in the cycling of this

compound are missing in currently available databases. Profile HMM were manually

generated for eight  pathways related to the cycling of DMSP (Song et  al.,  2020),

including DMSP biosynthesis (methionine -> DMSP), DMSP demethylation (DMSP -

> MMPA),  DMSP demethylation  (MMPA -> MeSH),  DMSP cleavage (DMSP ->

DMS), DMS oxidation (DMS -> MeSH), DMS oxidation (DMS -> DMSO), DMSO

reduction  (DMSO  ->  DMS),  MddA pathway  (MeSH  ->  DMS),  MeSH  oxidation

(MeSH -> Formaldehyde). 20 verified gene sequences encoding key enzymes of these

pathways were used to create the profile HMM (Song et al., 2020). 

(i) DMSP biosynthesis (methionine -> DMSP). Three gene families participating

in DMSP biosynthesis from methionine (Met), including DSYB, DsyB and MmtN are

included  in  DiTing.  DSYB  and  DsyB  are  methylthiohydroxbutryrate  S-

methyltransferase enzymes found in marine eukaryotes and prokaryotes, respectively

(Curson et  al.,  2018;  Curson et  al.,  2017).  The MmtN Met  S-methyltransferase is

found in some Gram-positive bacteria, alpha- and gamma-proteobacteria (Liao et al.,

2019; Williams et al., 2019). The cut-off E-values of DSYB, DsyB and MmtN are 1 ×

10-30, 1 × 10-67 and 1 × 10-98, respectively.

(ii)  DMSP  demethylation  (DMSP  ->  MMPA).  The  first  step  of  DMSP

demethylation pathway that results in the production of methylmercaptopropionate

(MMPA) is initiated by the DmdA enzyme (Reisch et al., 2011). The cut-off E-values

of the DmdA is 1 × 10-130.

(iii)  DMSP demethylation  (MMPA -> MeSH).  Further  degradation  of  MMPA

generating gaseous methanethiol (MeSH) catalyzed by the DmdBCD/AcuH enzymes
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(Reisch et al., 2011; Shao et al., 2019). The cut-off E-values of DmdB, DmdC, DmdD

and AcuH are 1 × 10-75, 1 × 10-100, 1 × 10-30 and 1 × 10-56, respectively.

(iv)  DMSP cleavage  (DMSP ->  DMS).  Eight  distinct  DMSP lyase  enzymes

(DddD, DddK, DddL, DddP, DddQ, DddW, DddY and Alma1) can cleave DMSP to

generate  dimethylsulfide  (DMS)  (Curson  et  al.,  2011;  Alcolombri  et  al.,  2015;

Johnston et al., 2016; Sun et al., 2016). The cut-off E-values of DddD, DddK, DddL,

DddP, DddQ, DddW, DddY and Alma1 are 1 × 10-97, 1 × 10-35, 1 × 10-33, 1 × 10-83, 1 ×

10-20, 1 × 10-49, 1 × 10-64 and 1 × 10-26, respectively.

(v) DMS oxidation (DMS -> MeSH). DMS can be oxidized to generate MeSH

via the DMS monooxygenase enzyme DmoA (Boden et  al.,  2011).  The cut-off  E-

values of the DmoA is 1 × 10-34.

(vi)  DMS  oxidation  (DMS  ->  DMSO). DMS  can  be  oxidized  to  generate

dimethylsulfoxide  (DMSO)  by  the  DMS  dehydrogenase  complex  (DdhABC)

(McDevitt et al.,  2002) or trimethylamine monooxygenase (Tmm); (Lidbury et al.,

2016). The cut-off E-values of both DdhABC, DdhB and Tmm are 1 × 10-30.

(vii) MddA pathway (MeSH -> DMS). MeSH can be  S-methylated to generate

DMS by the MddA enzyme (Carrión et al., 2017). The cut-off E-values of MddA is 1

× 10-30.

(viii) MeSH oxidation (MeSH -> Formaldehyde). MeSH can also be modified

through another pathway catalyzed by the MeSH oxidase MTO (Eyice et al., 2018).

The cut-off E-values of MTO is 1 × 10-20.

The  sugar  6-deoxy-6-sulfoglucose  (sulfoquinovose,  SQ)  produced  by  plants,

algae,  and  cyanobacteria,  is  an  important  component  of  carbon  and  sulfur  cycles

(Frommeyer  et  al.,  2020).  Microbial  community  can  completely  degrade  SQ into

inorganic  sulfate  or  hydrogen sulfide  through  three  pathways,  i.e.,  sulfo-Embden-

Meyerhof-Parnas (sulfo-EMP ) (Denger et al., 2014), sulfo-Entner-Doudoroff (sulfo-

ED) (Felux et al., 2015), and 6-deoxy-6-sulfofructose-transaldolase (SFT) pathways
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(Frommeyer et al., 2020).

(i) sulfo-EMP pathway. SQ is converted to 6-deoxy-6-sulfofructose (SF) through

an  aldose/ketose  isomerase  YihS.  The  SF  is  phosphorylated  to  6-deoxy6-

sulfofructosephosphate (SFP) by an ATP-dependent SF kinase YihV. The SFP is then

cleaved into 3-sulfolactaldehyde (SLA) and dihydroxyacetone phosphate (DHAP) by

an SFP aldolase YihT. Finally,  the SLA is reduced via an NADH-dependent SLA

reductase (YihU) to DHPS, which is excreted from microorganisms. These four genes

YihSVTU were annotated through K18479, K18478, K01671 and K08318 Orthology

in KEGG, respectively.

(ii)  sulfo-ED  pathway.  This  pathway  starts  with  an  NAD+-dependent  SQ

dehydrogenase  (EC:1.1.1.390)  oxidizing  SQ  to  6-sulfogluconolactone  (SGL).  The

SGL  is  hydrolyzed  to  6-deoxy-6-sulfogluconate  (SG)  by  an  SGL  lactonase

(EC:3.1.1.99). The SG is then converted by an SG dehydratase (EC:4.2.1.162) to 2-

keto-3,6-deoxy-6-sulfo-gluconate  (KDSG).  The  KDSG  is  cleaved  by  a  KDSG

aldolase (EC:4.1.2.58) into pyruvate and 3-sulfolactaldehyde (SLA). The SLA can be

oxidized  by  a  NAD+-dependent  SLA  dehydrogenase  (EC:1.2.1.97)  to  SL.  The

reference sequences of these enzymes were collected manually from Uniprot database

(https://www.uniprot.org/).

(iii)  SFT pathway.  Three  key  enzymes  take  part  in  this  pathway.  The  SQ is

converted to SF by an aldose/ketose isomerase, which is the same enzyme as the first

step  of  sulfo-EMP pathway.  SF  is  cleaved  to  3-sulfolactaldehyde  (SLA)  by  SF

transaldolase  enzyme.  Finally,  The  SLA is  oxidized  by  a  NAD+-dependent  SLA

dehydrogenase to SL. The SLA dehydrogenase is same enzyme as the last step of

sulfo-ED pathway. The reference sequence of SF transaldolase enzyme was collected

from IMG (https://img.jgi.doe.gov/) according to Frommeyer et al., 2020.

Isoprene (2-methyl-1, 3-butadiene) is an important volatile organic compound

emitted to the atmosphere, and has significant effect on the climate (Carrión et al.,

2018).  Isoprene  can  be  degraded  by  microbial  communities  with  the  isoprene
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monooxygenase  (IsoMO).  The  gene  isoA encoding  the  α-subunit  of  IsoMO  was

selected  as  marker  gene  for  distribution,  diversity  and  abundance  of  isoprene-

degrading pathway in environment (Carrión et al., 2018; Carrión et al., 2020). The

reference sequences of IsoA enzyme were collected manually from NCBI according

to Carrión et al., 2018. 

3 Results and discussion

General information of DiTing

We developed a new metagenomics/metatranscriptomic analysis pipeline, DiTing, to

infer  and  compare  the  prevalence  of  genes  and  pathways  of  key  biogeochemical

cycles.  DiTing  consists  of  four  main  features: (i)  automated  assembly,  CDS

prediction,  mapping  and  annotation  from  reads;  (ii)  a  manually  created

dimethylsulfoniopropionate (DMSP) cycling related gene database; (iii) accurate and

specific  formula  for  DMSP and  other  biogeochemical  pathway  to  calculate  the

relative  abundance  of  biogeochemically-relevant  pathways  and  genes;  (iv)

visualization of results comparing biogeochemical cycling potential between different

input samples. These features make DiTing a flexible and versatile tool wrapper for

studying biogeochemical cycles, or just as a platform to tackle metagenomic shotgun

sequencing  data.  The  speed  of  DiTing  is  relatively  fast.  Five  samples  (from the

hydrothermal  vent case study below) that  are about 500 Gb in total  were used to

evaluate the speed. The total run time for all analyses from reads to visualization was

~  33  hours  using  60  CPU  threads  on  a  Linux  version  4.15.0-20-generic  server

(Ubuntu 18.04; CPU, Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz; RAM, 256 GB).

Accuracy testing of DiTing using simulated benchmark datasets

To verify  the  accuracy of  DiTing in  evaluating  the  abundance  of  biogeochemical

pathways,  CAMISIM  (Fritz  et  al.,  2019)  was  used  to  simulate  three  group  of

metagenomic  shotgun  sequenced  samples  (photoautotrophs,  chemoautotrophs  and

heterotrophs group). Metagenomes from the photoautotrophic group were simulated

by ten Cyanobacteria genomes. Metagenomes from the chemoautotrophic group were
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simulated by 10 ammonia-oxidasing archaea (AOA) genomes. Metagenomes from the

heterotrophic group were simulated by 10 SAR11 genomes. Each group comprised

five metagenomic samples sequenced by Illumina 2 × 150 bp paired-end reads, and

each generated sample had a size of 5 Gb. These 15 simulated samples were fed into

DiTing.  The  overall  relative  abundance  of  biogeochemical  pathways  in  simulated

samples was consistent with features of genomes used in each group (Fig. 2). For

example,  metagenomes  in  the  photoautotroph  group  possessed  a  high  relative

abundance  of  photosynthesis  related  pathway  genes  (photosystem  I,  II  and

cytochrome b6/f complex), which were absent in other two groups (Fig. 2). AOA are

the  typical  known  bacterial  ammonia  oxidisers,  which  possesses  amoABC genes

encoding  the  ammonia  monooxygenase  complex.  Correspondingly,  in  the

chemoautotroph group simulated by AOA, the ammonia oxidation pathway was found

but was absent in other two groups analysed by DiTing (Fig. 2). In other nitrogen

cycle pathways, nirKS encoding nitrite reductase and hzs encoding hydrazine synthase

were only seen the chemoautotroph group of the DiTing results. Consistently, these

genes  were  annotated  in  ammonia-oxidasing  archaea  genomes  through  RAST

annotation manually. Additionally, bacteria and archaea use F-type ATPase and V/A-

type ATPases, respectively, to hydrolyze ATP to ADP, respectively (Pisa et al., 2007;

Fillingame et al., 1997). Thus, F-type ATPase was detected in groups simulated by

Cyanobacteria and SAR11 genomes, and V/A-type ATPase was only detected in the

chemoautotroph  group  simulated  by  ammonia-oxidasing  archaea  genomes.  The

translated gene sequences (amino acid) from simulated metagenomes were submitted

to the KofamKOALA web server for annotation. The gene annotation results derived

from DiTing were the same as those from KofamKOALA web server, verifying the

accuracy of gene annotation.

Application of DiTing on five real hydrothermal vent datasets and 15 Tara Ocean

project datasets

DiTing was used to analyze the biogeochemical potential of five marine metagenomic

samples (Table 1; NCBI accession number: ERR1679394-1679398) generated from
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hydrothermal vent samples taken at PACManus and North Su fields in the  Manus

Basin (Meier et al., 2017; Table 1). The metagenomic clean reads ranged in size from

81  to  112  Gbp  from  each  sample.  The  reads  were  assembled  into  799,269  to

1,182,847 contigs with the total assembly sizes ranging from 0.58 to 1.00 Gbp. A total

of 5,639,558 Open Reading Frames (ORFs) within these contigs were then predicted.

~18.9% (1,065,097) ORFs were annotated against KEGG databases and affiliated to

8128  KO  entries.  The  relative  abundances  of  ~100  biogeochemically-relevant

pathways were calculated according to our new formulas (Supplementary Table S1).

The relative abundance of genes within these pathways was also prepared for further

analyses  at  the  gene  level  (Supplementary  Table  S2).  The  summary  sketch  and

heatmap plots for visualization of these pathways were generated, and these reflect

the different patterns of community function within metagenomic samples (Fig. 3, 4).

Of the five metagenomes collected in diffuse hydrothermal vent fluids, NSu-F2b

and NSu-F5 originated from acidic samples with sulfide (1.6 mmol l −1 and 0.7 mmol l

−1 H2S, respectively) and methane (0.2 mmol l −1 and 0.01 mmol l −1 CH4, respectively)

levels detected. The Fw-F1b, Fw-F3 and RR-F1b metagenomes originated from sites

with no detectable H2S and CH4. Reassuringly, the NSu-F2b and NSu-F5 samples,

with similar environmental parameters, showed the most similar distribution patterns

for genes and pathways involved in the cycling of nitrogen, carbon and sulfur (Fig. 3,

4). Indeed, hierarchical clustering of samples according to their microbial function

composition showed NSu-F2b and NSu-F5 fall into one cluster and the other three

samples into another cluster (Supplementary Fig. S1). 

At hydrothermal vents, chemolithoautotrophic microorganisms carry out carbon

fixation coupled with oxidation of reduced sulfur compounds (Meier et al., 2017). In

accordance,  we  found  the  relative  abundance  of  thiosulfate  oxidation,  sulfite

oxidation,  and  first  step  of  dissimilatory  sulfate  reduction  pathways  (reversible

conversion  of  sulfate  to  sulfite)  to  be more highly  represented  compared to  other

sulfur cycle pathways in all five samples (Fig. 3, 4), indicating sulfate reduction and

sulfur  oxidation  as  major  processes  in  microbial  sulfur  cycling.  This  finding  is
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supported  by  the  presence  of  sulfate-reducing  Nitrospirae and  sulfur-oxidizing

Gammaproteobacteria dominating  microbial  communities  at  these  hydrothermal

vents  (Meier et  al.,  2017,  2019).  In  addition,  assimilatory  sulfate  reduction  and

thiosulfate disproportionation pathways were almost only found in NSu-F2b and NSu-

F5 (Fig. 3), the only samples with detectable sulfide levels, indicating microbes in

these samples may incorporate sulfide into the amino acids cysteine (Cys) or homo-

Cys. Here, the relative abundance of thiosulfate disproportionation was estimated by

dividing the sum of relative abundance of phsABC by the number (n = 3) of essential

subunits. The relative abundances of each subunit of thiosulfate reductase were often

not equal to each other in the metagenomes (Supplementary Table S2). For example,

phsA (encoding thiosulfate reductase subunit A) was always far more abundant than

phsC (thiosulfate reductase cytochrome B subunit)  and  phsB (thiosulfate reductase

electron  transport  protein)  was  not  detected  in  any  sample.  This  may  be  due  to

insufficient  sequencing  depth  and/or  protein  redundancy.  Whatever  the  reason for

these discrepancies it cannot be easily solved by bioinformatics alone and culture-

dependent  work  is  necessary.  This  phenomenon  highlighted  for  the  thiosulfate

disproportionation genes may also occur in other pathways, thus further analyses at

the  gene  level,  not  only  at  the  pathway  level,  are  essential  in  predicting  the

biogeochemical potential of microbial communities after DiTing analysis.

In  previously  tested  seawater  and sediment  samples,  known DMSP synthesis

genes are always much less abundant than those for its catabolism (Curson et al 2017,

Curson et al 2018, Williams et al., 2019). This was not the case in previously studied

hydrothermal samples (Song et al., 2020), with the DMSP lyase gene dddP being the

only  detected  DMSP catabolic  gene.  In  three  out  of  five  hydrothermal  samples

interrogated here, the genetic potential to synthesize DMSP, through prokaryotic dsyB

and mmtN genes, is far less than that for DMSP catabolism (DMSP synthesis:DMSP

catabolism = 1:16.9 ) and not so dissimilar to ratios seen in seawater samples (Curson

et al 2017, Curson et al., 2018, Williams et al., 2019). Reasons for this discrepancy

between the distinct samples are unknown. The DsyB sequences retrieved from this
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data were clustered with ratified DsyB proteins, not with DSYB and non-functional

DsyB-like proteins from  Streptomyces varsoviensis, which support their function in

DMSP synthesis (Supplementary Fig. S2). Interestingly, sample NSu-F2b has higher

DMSP synthesis  potential  than any other  samples  due to relatively high levels  of

bacteria with mmtN. As in Song et al 2020, the potential for DMSP cleavage was more

prominent  than  for  DMSP  demethylation  (dmdA)  in  all  hydrothermal  samples,

although catabolism of MMPA, the initial product of DMSP demethylation by DmdA

(Howard et al 2006), was very abundant. This data supports DMSP cleavage being the

dominant DMSP catabolic pathway in hydrothermal sediments, as proposed in Song

et al., 2020. Alternatively, there could be novel DMSP demethylase enzymes. This

would explain why there were such low dmdA levels in hydrothermal sediment, yet

very high MMPA degradation potential. The potential for oxidation and reduction of

DMSP catabolites, DMS and methanethiol, was similar to that described in Song et

al.,  2020,  with sites  NSU-F2b and F5 showing the greatest  potential.  Thus,  some

interesting  predictions  of  DMSP cycling  were  enabled  by  DiTing analysis  on  the

metagenomes analyzed here. Note any predictions made from genetic potential alone

require  further  investigation  regarding  function  and  expression  and,  importantly,

substantiation for synthesis and turnover rate analysis.

The samples NSu-F2b and NSu-F5 had lower oxygen concentration than Fw-

F1b, Fw-F3 and RR-F1b samples, especially NSu-F2b (0.07 and 0.14 mmol l  −1 for

NSu-F2b and NSu-F5, respectively;  0.17 -  0.2 mmol l  −1 for other  three).  Indeed,

compared to the other three samples, NSu-F2b and NSu-F5 had significantly more

genes encoding bd ubiquinol cytochrome oxidases (p < 0.01) that are associated with

low  oxygen  concentrations  (Fig.  4).  It  is  worth  noting  that  the  bd oxidase  was

enriched most in NSu-F2b under the highest sulfide concentration (1.6 mmol l −1) and

lowest oxygen concentration. A previous study found that bd oxidase could promote

sulfide-resistant O2 consumption and growth in E. coli (Forte et al., 2016), implying

the important role of bd oxidases in the low oxygen NSu-F2b environment.

The  NSu-F2b  and  NSu-F5  samples  showed  enrichment  for  denitrification,
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nitrification and nitrogen fixation potential, which may be due to the lower oxygen

levels of these samples or is possibly reflecting the nitrogen availability at  higher

temperatures.  Notably,  in  NSu-F5,  genes  encoding for  the denitrification  enzymes

responsible for reduction of the cytotoxic gaseous intermediates, nitric oxide (NO),

norBC,  and  nitrous  oxide  (N2O),  nosZ,  are  significantly  enriched,  alongside  the

nitrifying genes responsible for aerobic conversion of nitrite to nitrate (nxrAB). The

importance  of  nitrification  and denitrification  to  nitrogen cycling  of  hydrothermal

vents has previously been reported (Bourbonnais et al., 2012), but not at the resolution

allowed by DiTing. The transcriptional and enzymatic activity of these systems at

these pH levels would certainly need experimental validation.  These metagenomes

highlight metabolic importance of nitrogen cycling with the potential  for all  other

pathways being at similarly high levels (Supplementary Table S2) in all samples, with

the exception of nitrite assimilation (nitrite to ammonia) and hydroxylamine oxidation

to nitrite (hao) was not detected. Again, this may reflect nitrogen availability but is

also indicative of nitrogen source preference of the microbiomes under the highly

reactive physicochemical constraints of the vent environment. This study illustrates

the  need  for  comprehensive  measurements  of  nitrogen  flux,  metatranscriptional

analyses  to  ascertain the  most  active  pathways and identification  of  the dominant

organisms responsible for nitrogen cycling in these ecosystems. Overall, these results

highlight  potential  microbial  metabolic  differences  in  communities  from different

hydrothermal samples that likely reflect changes in environmental conditions. 

DiTing was also applied to analyze 15 metagenomic samples from chlorophyll a

(Chla)  maximum  layer  in  Mediterranean  Sea  from  Tara Ocean  project.  The

metagenomic clean reads ranged in size from 1.24 to 52.53 Gbp from each sample.

The reads were assembled into 71,183 to 1,601,956 contigs with the total assembly

sizes  ranging  from 0.045 to  1.38  Gbp.  A total  of  18,431,131  ORFs within  these

contigs were then predicted. ~24% (1,065,097) ORFs were annotated against KEGG

databases and affiliated to 8759 KO entries. The 74 pathways related biogeochemical

cycles  were  found  (Supplementary  Table  S3).  Compared  to  the  sample  derived
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hydrothermal  vents,  the  Chla maximum  layer  contains  remarkable  high  relative

abundance of photosystem pathway as expected (Supplementary Table S3 and S4).

Additionally, eukaryotic DMSP synthesis gene,  DSYB was detected in 10 out of 15

Chla maximum samples, which were absent in the hydrothermal vent samples. The

relative abundance of  DSYB was comparable to that of prokaryotic DMSP synthesis

gene  dsyB in Chla maximum layers (Supplementary S4), indicating that the DMSP

was produced by both prokaryotes and eukaryotes in these environments. For DMSP

degradation, in six out of 15 samples, the genetic potential to DMSP demethylation,

through the  dmdA gene, was higher than that for  DMSP cleavage (ddds and  alma1)

(DMSP  demethylation:DMSP  cleavage  =  1.69:1).  This  is  contrasted  with  the

hydrothermal  vent  samples.  In  other  nine  samples,  the  potential  for  DMSP

demethylation  was  comparable  to  that  for  DMSP  cleavage  (DMSP

demethylation:DMSP  cleavage  =  0.82:1).  These  data  support  both  DMSP

demethylation  and cleavage being the  dominant  DMSP catabolic  pathways  in  the

Chla maximum layer.

Conclusion

In  summary,  this  study  developed a  pipeline  (DiTing)  to  infer  and  compare

biogeochemical pathways from metagenomic and metatranscriptomic data. DiTing is

a  portable  tool  for  metagenomic  and  metatranscriptomic  datasets,  providing

automatic, multi-threaded bioinformatic workflows for data handling, including read

assembly,  ORF  prediction,  annotation,  and  more  accurate  specific  formulas  for

calculating  the  relative  abundance  of  biogeochemical  pathways.  The  visualization

module is designed to more easily compare functions between samples via graphical

outputs.  In  addition,  a  verified  database  was built  manually  for  the  annotation  of

genes involved in the production and cycling of DMSP. As validation of the outputs

produced  by  DiTing,  comparisons  of  the  relative  abundance  of  biogeochemical

pathways in published metagenomes and  metatranscriptomes to those calculated by

DiTing were consistent. By applying DiTing to analyze five hydrothermal shotgun

metagenomes, we showed that the functional profile could accurately reflect changes
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in  environmental  conditions  (H2S  and  O2 concentrations).  DiTing  can  be  readily

applied  to  metagenomic  and/or  metatranscriptomic  studies,  with  relatively

straightforward user intervention.  This bioinformatics framework will facilitate our

understanding  of  spatial  and  temporal  changes  in  microbiome-mediated

biogeochemical cycles.
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Fig. 1. A flowchart of the major steps involved in running DiTing. First (A), clean

reads of metagenomes or/metatranscriptomes are assembled, annotated and mapped.

Second (B), a table for relative abundances of KO number in KEGG among samples

is  constructed  and  relative  abundances  of  biogeochemical  pathways  are  estimated

according to  unbiased specific  formulas.  Third  (C),  heatmap and sketch plots  are

drawn to aid visualization.

Fig. 2. Bubble plots depicting the DiTing result of the relative abundance of pathways

in simulated metagenomes. Photoautotroph group contains sample1-5 that simulated

by  Cyanobacteria  genomes.  Chemoautotroph  group  contains  sample6-10  that

simulated  by  ammonia-oxidasing  archaea  genomes.  Heterotroph  group  contains

sample11-15 that simulated by SAR11 genomes.

Fig. 3. Pie charts  representing the relative abundance of carbon (A),  nitrogen (B),

sulfur (C) and DMSP (D) cycle related pathways for five metagenomic samples from

the Manus Basin. Normalized relative abundance was calculated through dividing the

relative abundance of a pathway in an individual sample by the sum of this pathway’s

relative abundance in all samples. Pie chart area reflects the relative abundance of the

682
683
684

685
686

687
688
689

690
691
692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711



process according to the scale shown in pink. The dashed line in panel D means the

data was not shown. (A) CBB, Calvin-Benson-Bassham cycle; rTCA, reductive citric

acid cycle; WL, Wood-Ljungdahl pathway; 3HB, 3-hydroxypropionate bicycle. (B)

ANRA,  assimilatory  nitrate  reduction  to  ammonia;  DNRA,  Dissimilatory  nitrate

reduction  to  ammonia;  Anammox,  anaerobic  ammonia  oxidation.  (C)  ASR,

assimilatory  sulfate  reduction;  DSR,  dissimilatory  sulfate  reduction.  (D)  DMSP,

dimethylsulfoniopropionate;  MMPA,  methylmecaptopropionate;  MeSH,

methanethiol; DMSO, dimethylsulfoxide; L-Met, L-methionine.

Fig. 4. Bubble plots depicting the relative abundance of pathways for carbon (A),

sulfur (B), nitrogen (C) and other selected (D) processes. The key marker genes used

to  report  on  the  genetic  potential  for  pathways  (as  the  relative  abundances)  are

indicated in brackets. ASR, assimilatory sulfate reduction; DSR, dissimilatory sulfate

reduction. The full name of these key marker genes can be found in Supplementary

Table S1. For better visualization,  we multiply the relative abundance by 10 -3 and

transformed by log(10).

Table 1: A summary of sampling sites and environmental parameters for collected

samples

Sample

name

Sample

type
Latitude Longitude

Depth

[m]

T

[ ]℃
pH

H2S

[mM]

CH4

[mM]

DIC

[mM]

O2

[mM]

NSu-F2b water/fluid S 03°47.995' E 152°06.052' 1155 51.7 4.3 1.61 0.2 3.07 0.07

NSu-F5 water/fluid S 03°47.955' E 152°06.080' 1199 31.4 5.1 0.7 0.01 0.18 0.14

Fw-F1b water/fluid S 03°43.700' E 151°40.344' 1709 3.7 6.5 0 0 0.24 0.17

Fw-F3 water/fluid S 03°43.698' E 151°40.350' 1705 3.2 7.2 ND ND ND ND

RR-F1b water/fluid S 03°43.238' E 151°40.519' 1685 6.6 7.5 0 0 2.34 0.2

ND – ‘not determined’. 0 – below detection limit
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Table 2 The relative abundance of biogeochemical pathways in metagenomes from the Manus Basin

Pathway NSu-F2b NSu-F5 Fw-F1b Fw-F3 RR-F1b

Photosystem II (psbABCDEF) 0.0687 2.83 0.0315 0 0.264

Photosystem I (psaABCDEF) 0 0.105 0 0 0

Cytochrome b6/f complex (petABCDGLMN) 0.95 0.728 0.448 0.456 1.15

Anoxygenic photosystem II (pufML) 0 0 0 0 0

Anoxygenic photosystem I (pscABCD) 0 0 0 0 0

RuBisCo 13 34.1 31.3 40.9 57.9

CBB cycle (prkB) 12.6 74.8 45.7 55 55.9

rTCA cycle (aclAB, ccsAB, ccl) 74.4 53.7 4.2 2.09 0.871

Wood-Ljungdahl pathway (acsABCDE) 15.5 2.32 0 0 0

3-Hydroxypropionate Bicycle 2.02 2 0.39 0.335 0.661

Glycolysis (glk, pfk, pyk) 123 158 49.8 64.2 94.7

Entner-Doudoroff pathway, glucose-6P -> glyceraldehyde-3P + pyruvate 19.6 31.4 3.39 3.92 8.68

Gluconeogenesis (fbp, pck) 383 281 66.4 75 103

TCA cycle 178 184 38.5 45 76.5

Methanogenesis (mcrABG) 0 0 0 0 0

Methanogenesis, methanol -> methane (mtaABC) 0 0 0 0 0

Methanogenesis, amines -> methane (mtbA, mtmC, mtbC, mttC) 0 0 0 0 0

Methanogenesis, acetate -> methane (cdhCDE) 2.63 0.565 0 0 0

Methanogenesis, CO2 -> methane 4.49 1.74 0.438 0.646 2.65

Methane oxidation, methane -> methanol (mmoBCDXYZ, amoABC) 22 6.15 7.86 6.53 5.7

Methane oxidation, methanol -> formaldehyde (mxaFI, xoxF) 0.101 0 0 0 0

Fermentation to lactate, pyruvate -> lactate (LDH) 4.96 0.19 0 0 0

Fermentation to formate, pyruvate -> formate (pf1D) 0.563 3.88 0 0 0

Fermentation to formate -> CO2 & H2 (fdh) 14.7 14.4 2.88 2.87 4.64

Fermentation to acetate, pyruvate -> acetate (poxB, poxL, acyP) 76.8 40.7 10.2 13.5 21.1

Fermentation to acetate, acetyl-CoA -> acetate (ach1, eutD, pta, acyP) 83.5 80.5 11.3 13.9 21.4

Fermentation to acetate, lactate -> acetate (EC:1.13.12.4) 0 0 0 0 0

Fermentation to ethanol, acetate to acetylaldehyde (ald) 16 39 7.52 9.45 6.19
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Fermentation to ethanol, acetyl-CoA to acetylaldehyde (reversible) 2.01 10.1 0.409 0.453 0.403

Fermentation to ethanol, acetylaldehyde to ethanol (adh, mdh) 40.1 69.4 11.8 17.2 16.5

Fermentation to succinate 245 216 32.8 38.8 62.9

Anaplerotic genes (pyruvate -> oxaloacetate) 699 627 88.6 107 137

Dissimilatory nitrate reduction, nitrate -> nitrite (narGHI or napAB) 187 160 28.1 33.4 33.3

Dissimilatory nitrate reduction, nitrite -> ammonia (nirBD or nrfAH) 19.7 86.9 31.6 36.5 65.1

Assimilatory nitrate reduction, nitrate -> nitrite (narB or NR or nasAB) 4.56 7.21 0 0 0.132

Assimilatory nitrate reduction, nitrite -> ammonia (NIT-6 or nirA) 0 0 0 0 0.911

Denitrification, nitrite -> nitric oxide (nirK or nirS) 9.05 70.9 9.87 2.98 4.02

Denitrification, nitric oxide -> nitrous oxide (norBC) 68 338 31 34.7 8.62

Denitrification, nitrous oxide -> nitrogen (nosZ) 31.4 111 11.8 9.11 1.9

Nitrogen fixation, nitrogen -> ammonia (nifKDH) 0.981 2.12 0 0 0

Nitrification, ammonia -> hydroxylamine (amoABC) 22 6.15 7.86 6.53 5.7

Nitrification, hydroxylamine -> nitrite (hao) 0 0 0 0 0

Nitrification, nitrite -> nitrate (nxrAB) 62.9 23.3 4.29 4.79 4.88

Anammox, nitric oxide + ammonia -> hydrazine (hzs) 0.976 5.89 0.286 0.131 1.35

Anammox, hydrazine -> nitrogen (hdh) 0.219 0.254 0 0 0

Assimilatory sulfate reduction, sulfate -> sulfite 89.3 91.9 12.9 15.7 23.6

Assimilatory sulfate reduction, sulfite -> sulfide (cysJI or sir) 10.2 17.5 0.353 0.187 1.81

Dissimilatory sulfate reduction, sulfate -> sulfite (reversible) (sat and aprAB) 103 134 53.7 64.8 92.8

Dissimilatory sulfate reduction, sulfite -> sulfide (reversible) (dsrAB) 6.34 82.6 73.7 83 71.7

Thiosulfate oxidation by SOX complex, thiosulfate -> sulfate 20.3 183 77.5 90.6 147

Alternative thiosulfate oxidation (doxAD) 2.5 3.8 0.871 0.784 1.49

Alternative thiosulfate oxidation (tsdA) 18.8 39.8 1.79 1.05 0.667

Sulfur reduction, sulfur -> sulfide (sreABC) 0 0 0 0 0

Thiosulfate disproportionation, thiosulfate -> sulfide & sulfite (phsABC) 31.9 16.2 1.48 0.818 0.0703

Sulfhydrogenase, (sulfide)n -> (sulfide)n-1 6.64 0.367 0 0 0

Sulfur disproportionation, sulfur -> sulfide & sulfite 0 0 0 0 0

Sulfur dioxygenase 15.9 65.7 47.1 44.3 84.6

Sulfite oxidation, sulfite -> sulfate (sorB, SUOX, soeABC) 64.9 287 56 64.9 80.9

Sulfide oxidation, sulfide -> sulfur (fccAB) 3.05 22.5 15.5 18.6 14.6



DMSP biosynthesis, Met -> DMSP (DSYB or dsyB or mmtN) 5.16 0.286 0 0 0.168

DMSP demethylation, DMSP -> MMPA (dmdA) 9.31 5.7 2.44 0.933 5.57

DMSP demethylation, MMPA -> MeSH (dmdBCD or acuH) 85.2 102 13.1 14 26.8

DMSP cleavage, DMSP -> DMS (ddds or alma1) 25.3 13.9 7.74 8.96 15

DMS oxidation, DMS -> MeSH (dmoA) 8.51 16.4 2.96 1.34 6.59

DMS oxidation, DMS -> DMSO (ddhABC or tmm) 75 53.1 8.73 10.6 13.7

DMSO reduction, DMSO -> DMS (dms or dorA) 32.8 87.4 26.1 43.6 39.2

MddA pathway, MeSH -> DMS (mddA) 1.33 31.1 0.488 0.505 0.501

MeSH oxidation, MeSH -> Formaldehyde (MTO) 0.5 2.55 0 0 0.49

F-type ATPase 232 248 59.3 72.9 113

V/A-type ATPase 23.2 11.1 5.85 5.8 7.34

NADH-quinone oxidoreductase 89.7 173 52.5 57.4 96.3

NAD(P)H-quinone oxidoreductase 0.0815 0.232 0.103 0.17 0.151

Succinate dehydrogenase (ubiquinone) 0 0 0 0 0

Cytochrome c oxidase, cbb3-type 34.8 147 34.3 40.3 74

Cytochrome bd ubiquinol oxidase 239 128 5.67 3.47 5.09

Cytochrome o ubiquinol oxidase 11.2 13.5 0.188 0.184 0.944

Cytochrome c oxidase, prokaryotes, aa3-type 39.5 106 42 54.9 104

Cytochrome aa3-600 menaquinol oxidase 0 0 0 0 0

Cytochrome bc1 complex 13.8 35.3 11.7 14.3 21.8

Type I Secretion 7.82 18.8 1.29 1.09 2.93

Type III Secretion 0.0069 0.00643 0.19 0.118 0.0265

Type II Secretion 40.3 57.8 9.38 10.3 9.41

Type IV Secretion 9.82 10.9 0.252 0.218 0.172

Type VI Secretion 3.81 23.7 1.71 1.29 1.3

Sec-SRP 196 200 50.6 56.9 90.5

Twin arginine targeting 183 199 49.7 59.7 83

Type Vabc secretion 0 0 0 0 0

Bacterial chemotaxis 119 70.5 5.09 3.93 8.31

Flagellum assembly 112 51.9 5.06 4.64 10.4

Dissimilatory arsenic reduction 105 181 24.5 26.4 37
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