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Abstract. The paper formulates the nonlinear problem of steady-state heat conduction at 

the constant electric potential difference on the surfaces of a plane dielectric layer with the 

temperature-dependent heat conduction coefficient and electrical resistivity. A fixed temperature 

value is set on one of the layer surfaces, and the convective heat exchange with the ambient 

medium occurs on the opposite surface. The formulation of the problem is transformed to 

integral ratios, which allows the calculation of the temperature distribution over the layer 

thickness, governed both by the monotonic and nonmonotonic function. The quantitative assay 

of the temperature state of a layer of a polymer dielectric made of amorphous polycarbonate is 

given as an example, as well as the analysis of nonuniformity of the absolute value of electric 

field intensity over the thickness of this layer. 

Keywords: nonlinear mathematical model, polymer dielectric, one-dimensional 

temperature distribution. 

 

INTRODUCTION 

Materials, including polymers, used in various electrical and radio engineering devices as 

dielectrics have very high electrical resistivity, which at the temperature of about 300 K has the 

values of 14 1810 ...10  Ohm [1-5]. With a large electric potential difference on the surfaces of the 

dielectric layer, even at such values of electrical resistivity, the current passing through the layer 

causes the release of Joule heat and the dielectric temperature increase, which, as a consequence, 

reduces the level of electrical resistivity. This, in turn, leads to a further increase in electric 

current intensity and volumetric energy release. The comparatively low heat conduction 
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coefficient of the materials used and the insufficient intensity of heat removal of the released 

energy into the ambient medium predetermine a positive feedback, due to which there is a rapid 

temperature increase, which results in thermal destruction of the dielectric material, i.e. melting, 

carburization. Such a process has been called the thermal breakdown of a dielectric, in contrast 

to the electric breakdown [6, 7].  

The reliable functioning of a dielectric with a high electrical potential difference is 

facilitated by the intensificating of the removal of the Joule heat released in it and the choice of 

the material with the highest possible value of heat conduction. It is desirable to increase the 

value with the increasing temperature, which is characteristic for some polymer materials. One 

of the areas of application of polymer dielectrics is associated with making high-voltage cables, 

in which such a dielectric is the electrical insulation of the conducting cores [8, 9]. The available 

polymeric materials allow for the increase in the cable operating voltage, including the cables 

used in direct current lines, which have a number of advantages in comparison with AC voltage 

cable lines [10].  

The quantitative assay of the dielectric temperature state necessary for the evaluation of 

its performance requires modern methods of mathematical modeling [11, 12] and is related to the 

solution of a rather sophisticated nonlinear problem that takes into account the interrelationship 

of the temperature dependences of the dielectric electrical resistivity and its heat conduction 

coefficient. This paper states a nonlinear problem of steady-state heat conduction for the constant 

electric potential difference on the surfaces of a plane dielectric layer with a fixed temperature on 

one of these surfaces and given conditions of the convective heat transfer on the opposite 

surface. The problem forms the basis of the differential form of the mathematical model. This 

model describes the temperature distribution over the thickness of the layer, which also 

determines the degree of uneven distribution of the absolute value of the electric field intensity in 

the dielectric affecting the dielectric strength [6, 13, 14]. 

For the quantitative assay of the mathematical model, the resulting differential form is 

transformed to integral relations, which, using experimental data on the temperature dependence 

of the electrical resistivity and the heat conduction coefficient  of amorphous polycarbonate [1], 

as a possible dielectric material, allowed us to calculate the temperature distributions and the 

absolute value of electric field intensity in the dielectric layer. Such information can form the 

basis for the rational choice of a dielectric material in relation to operating conditions of high-

voltage equipment. 
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1. RESEARCH OBJECTIVE 

One of the surfaces of a plane dielectric layer of the fixed thickness h  has a fixed 

temperature 0T , and on the opposite surface there occurs the convective heat exchange with the 

ambient medium having a temperature *T , whose intensity determines the heat transfer 

coefficient  . On the surfaces of the layer a constant electric potential difference * > 0U  is 

defined. The heat conduction coefficient ( )T  and the electrical resistivity ( )T  of the dielectric 

depend on temperature T . The computing origin of the dimensionless coordinate [0;1]  is 

chosen on the surface of the layer with a given temperature 0T . 

The one-dimensional steady-state temperature ( )T   distribution over the thickness of the 

dielectric layer is governed by a nonlinear differential equation [15]  

  2( )
( ) = 0, (0;1).V

d dT
T q h

d d

 
     

 (1) 

Here Vq  is the the volume power of energy release in the layer, caused by the conversion of 

some electric energy into Joule heat when passing through the electric current layer. The solution 

of the equation (1) must meet the boundary conditions  

  *
0 1

=1

( )
(0) , ( ) ( ) ,

dT
T T T T T h

d 


    


  (2) 

where 1 = (1)T T . 

The volume power of energy release in the dielectric layer can be represented in the form 

  2 ,Vq j jE     (3) 

where j  and = | |E d d h   are the modules of the electric current density and electric field 

intensity vectors directed perpendicular to the layer surfaces, and   is the potential of this field 

(the choice of reference zero   does not affect the value E ). From the condition of mobile 

electric charges conservation in the dielectric layer follows the equality = / = constj E  , or, 

according to the equality (3), it follows that 

  
1

= 0.
d d

d d

 
    

  (4) 

 

2. THE FIRST STAGE OF THE PROBLEM SOLUTION 

Taking into account the equality (3), we represent the equation (1) in the form 

   2( )
( ) ( ) = 0, (0;1).

d dT
T jh T

d d

 
      

  (5) 
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Using the well-known procedure for reducing the derivative order in (5), similar applied at 

integration of the movement equation in analytic mechanics [16], we write 

   
1/2

1
2* 2

1( ) = ( ) 2 ( ) .
T

T

dT
T h T T j F T dT

d

 
      

   
   (6) 

The relation (6) is a differential equation with separable variables, but the choice of the sign on 

its right side is not unique and depends on heat exchange conditions on the layer surface at = 1 . 

Moreover, the derivative dT d  under certain conditions can change the sign within the interval 

(0;1) . It follows from the equation (5) that the left side of the equality (6) decreases 

monotonically in this interval, but the function ( )T   can not only decrease or increase 

monotonically, but also reach  maximum within this interval at the point *=   when a positive 

value of the derivative dT d  in the neighborhood of this point changesinto the negative one. 

It is possible to clarify the further solution of the problem by substituting the second 

boundary condition (2) for the condition of an ideal thermal insulation of the layer surface at 

= 1 . In this case, the derivative dT d  in the interval [0;1]  will decrease from a certain 

positive value at = 0  to zero at = 1 , and the constant in the first integral of the equation (5) 

will be 

 
1

2
1

0

= ( ) ( ) .
T

T

C jh F T dT   

Then, instead of the equation (6), we obtain 

  

1/2

1

( ) = 2 ( ) ,
T

T

dT
T jh F T dT

d

 
  
 
 



  (7) 

where 1T   is the temperature on the ideally insulated surface. From the equality of the heat flow 

density  

 

1/2

1

0

=0 0

( ) ( )
= = 2 ( ) ,

T

T

T dT
q j F T dT

h d 

      
 
 



 

removed through the surface of the layer at = 0  and the total energy release capacity  *jU , 

necessary per unit area of this surface, we find the relation 

  

1/2

1

*

0

= 2 ( ) ,
T

T

U F T dT
 
 
 
 



  (8) 
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characteristic for a dielectric plane layer with one ideally insulated surface [13] and in this case 

the determining value 1T   is one-valued. 

If *
1>T T  , the heat flow from the ambient medium will enter the dielectric layer, i.e. 

*
1>T T  and 

=1
0dT d


  , which under the condition * = constU  will lead to a certain increase 

in the positive derivative 
=0

dT d


 . Conversely, if *
1<T T   , the ambient medium will cool the 

dielectric layer, i.e. *
1<T T  and 

=1
0dT d


  . Hence, the conventional value *

1=pT T   of the 

ambient medium temperature determines the level, the excess of which at * *> pT T  ensures that 

the left side of the equation (6) is positive in the whole interval of the coordinate variation  . 

The value of the ambient medium temperature *
mT , which, when the condition * *< mT T  is 

satisfied provides a monotone decrease of the function ( )T   in the interval (0;1) , can be found, 

by setting * *= mT T , 0=T T  and 
=0

0dT d


   in the eqaution (6). The latter equality in the 

monotone decrease of the derivative dT d  in this interval ensures its negative value within the 

whole interval. Then from the equation (6) we obtain  

  
1/2

0
* *

1
*
1

= 2 ( ) ,
T

m

T

T T j F T dT
 
  
 
 
  

where *
1T  is the temperature of the layer surface at = 1  and the temperature of the ambient 

medium *
mT . 

Since the surface of the layer with the given temperature 0T  is simultaneously and ideally 

thermally insulated, the following equality is correct   

  

1/2
0

*
*
1

= 2 ( ) .
T

T

U F T dT
 
 
 
 
   (9) 

It is analogous to the equality (8) and uniquely determines the temperature *
1T . From the two 

latter formulae we find * *
1 *= ( )mj T T U  . To calculate the value *

mT , we need one more 

condition, which follows from the solution of the equation (6), applied to the considered 

situation,  and takes the following form  

  
1/2

* *
1 2

**
1

2
( ) = 1 ( ) .

T

m

T

dT
T T T h F T dT

d U

 
     
 
 

  
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After integrating and determining the constant from the condition 0(0) =T T  we obtain 

   
1/2

0
* *

1 1 2
*0 *( )

1

2
ln = 1 ( ) ( ) .

T T

m

T r T

r
T T r F T dT T dT

r U


 
     
 
 

    (10) 

Hence, after setting = 1  and *
1(1) =T T , for the known value *

1T  we find the temperature *
mT . 

At * *
mT T  the left side of the equation (6) will be negative in the whole interval (0;1) , 

and when  * * *< <m pT T T  the sign of the derivative dT d  changes, i.e. 
= *

= 0dT d
 

  at some 

point * (0;1)  , in which the function ( )T   takes up the maximum value * *( )T  . This property 

to a large extend complicates the subsequent solution of the problem.  

 

3. THE SECOND STAGE OF THE SOLUTION OF THE PROBLEM  

The subsequent procedure for solving the problem depends on the result of comparing the 

fixed value *T  of the temperature of the ambient medium with the previously calculated values 

*
1=pT T  and *

mT . If * *
pT T , on the right side of the relation (6) we should choose the plus sign 

and after integrating and determining the constant from the condition 0(0) =T T  write  

   
1/2

( ) 1
2* 2

1 0

0

= ( ) 2 ( ) ( ) ,
TT

T T

h T T j F T dT T dT


  

      
 
 

    (11) 

and in the particular case * *= pT T  in this formula it is necessary to set *
1 pT T  and  

  

1/2* *

0

1
= 2 ( ) ( ) .

T Tp p

T T

j F T dT T dT
h


 
     
 
    (12) 

With the strict inequality * *> pT T , equating the product *jU  of the difference of heat flows 

removed through the surface at = 0  and supplied through the surface at = 1 , we obtain 

  
1/2

1
2* 2 *

* 1 1

0

= ( ) 2 ( ) ( ).
T

T

jU T T j F T dT T T
 
     
 
 

  

This implies   

  

1
1

* 2
* 1 *

0

= 2 ( ) 2 ( ) ,
T

T

j U T T F T dT U


 
   
 
 
   (13) 

which allows us to exclude j  from the formula (11) and write  
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1/22
( ) 1 1

* 2 2
1 * *

0 0

( ) = 1 8 2 ( ) ( ) ( ) .
T TT

T T T

T T h U F T dT U F T dT T dT


   
              

     (14) 

This relation makes it possible to first calculate the value 1T , if we set = 1  and 1( ) =T T , and 

then calculate the temperature distribution ( )T   over the thickness of the dielectric layer. 

If * *
mT T , the function ( )T   monotonically decreases in the interval (0;1) . In the 

particular case * *= mT T  after calculating the value 1T  this function from the equlity (9) is 

uniquely determined by the relation (10). With the strict inequality * *> mT T  after choosing the 

minus sign in the equation, integrating and determining the constant from the condition 

0(0) =T T  nstead of the formula (10), we obtain 

   
1/2

0
2* 2

1

( ) 1

= ( ) 2 ( ) ( ) .
T T

T T

h T T j F T dT T dT





 
      
 
 

    (15) 

To find the temperature ( )T   distribution in the dielectric layer, it is necessary to apply the 

relation (15), which requires preliminary calculation of the values 1T  and j  from two 

independent equations. The first such equality follows from this relation when 1( ) =T T  and 

= 1 , and the second one — from the equality of the product *jU  of the difference of heat 

flows, removed through the surface when = 1  and supplied through the surface when = 0 :  

  
1/2

0
2* * 2

* 1 1

1

= ( ) ( ) 2 ( ) .
T

T

jU T T T T j F T dT
 
      
 
 

  

From here it follows that  

  

1
0

* 2
* 1 *

1

= 2 ( ) 2 ( ) ,
T

T

j U T T U F T dT


 
   
 
 

   (16) 

and after plugging j  in the relation (15) we obtain 

 

1/22
0 0

* 2 2
1 * *

( ) 1 1

( ) = 1 8 2 ( ) ( ) ( ) .
T T T

T T T

T T h U U F T dT F T dT T dT





  
              

     (17) 

The relation (17) allows us first to determine the value 1T , if we set 1( ) =T T  and = 1 , and 

after that find the temperature ( )T   distribution  over the thickness of the dielectric layer. 
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When the inequality * * *< <m pT T T  is satisfied, the calculation of the nonmonotone 

temperature ( )T   distribution  in the dielectric layer is the most complicated. First, owing to the 

condition 
= *

= 0dT d
 

  at *(0; )   by integrating the equation analogous to the equation (7)   

  

1/2
*

( ) = 2 ( ) ,
T

T

dT
T jh F T dT

d

 
  

   
   (18) 

and defining the constant from the condition 0(0) =T T , we obtain 

  

1/2)( *
2

*

0

= 2 ( ) ( ) , [0; ].

T T

T T

h j F T dT T dT

  
     

 
 
    (19) 

When *>   it is necessary to choose the minus sign in the equation (6) and after integrating and 

finding the constant from the condition 1(1) =T T  to write 

  
1/2)(

2* 2
1 *

1 1

(1 ) = ( ) 2 ( ) ( ) , [ ;1].

T T

T T

h T T j F T dT T dT

  
         
 
 
    (20) 

After setting in the formulas (19) and (20) *( ) =T T  and *=  , and termwise adding these 

formulas, we obtain  

  
1/21/2

* * *
22 * 2

1

0 1 1

= 2 ( ) ( ) ( ) 2 ( ) ( ) .
T T T T

T T T T

h j F T dT T dT T T j F T dT T dT

   
           

      
      (21) 

By analogy with the formulas (8) and (16), we can write  

  

1/2 1/2
* *

* 1 * 1

0 1

2 ( ) 2 ( ) = ( , ) = 0.
T T

T T

F T dT F T dT U f T T
   
    

  
  

    (22) 

Moreover, from the equality of the product *jU  to the sum of the heat flows removed through 

both surfaces of the dielectric layer, follows the relation 

 

1/2
*

2 *
* 1

0

= 2 ( ) ( ).
T

T

jU j F T dT T T
 
    
 
 

  

From this and from the formula (22) we find 

  

1/2
*

*
1

1

= ( ) 2 ( )
T

T

j T T F T dT


 
  
 
 
   (23) 

and plugging it the relation (21), we write 
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1/2 1/2 1/2
* * * * *

1 0 1

*
1 2 * 1

( ) ( ) ( ) ( ) ( )

( ) = ( , ) = 0.

T T T T T

T T T T T

F T dT F T dT T dT F T dT T dT

T T h f T T

       
            
            

 

       (24) 

The relations (22) and (24) make it possible to calculate the values of 1T  and *T  and then, using 

formulae (19) and (20), as well as the equation (23), to find the temperature ( )T   distribution in 

the dielectric layer.  

 

4. THE CALCULATION EXAMPLE 

Let us do the quantitative assay of the obtained options for solving the problem through 

the example of a plane dielectric layer  made of polymeric material – amorphous polycarbonate, 

for which the experimentally obtained temperature dependences of the heat conduction 

coefficient and electric conductivity are known [1]. Fig. 1 shows the function graph ( )T , and 

fig. 2 in semilogarithmic coordinates gives the function graph ( )T , where 14
0 = 3,16 10   Ohm. 

As initial data, we take = 0,01h  m, 0 = 300T  К, = 10  W/(m 2 К) and * = 40U  mV. 

 

 

Fig. 1. Temperature dependence of polycarbonate heat conduction coefficient 

 

According to the equations (8) and (9), temperatures *
1= 315,7pT T   К and *

1 286,5T   

К correspond to the given data. The first value of the temperature corresponds to the condition of 

an ideal thermal insulation on the surface of the layer at = 1 , and the second one corresponds to 

the absence of heat flow removal from the surface of the layer at = 0 , when the temperature of 

the ambient medium has the following value * 238, 4mT  , according to the equation (10). It 

should be noted that using this relation to determine the value *
mT  is formally connected with the 

calculation of the improper integral and requires the use of special algorithms, since the 
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replacement of the lower limit of the outer integral in accordance with the equation *
1(1) =T T  

leads to an unlimited increase in the subintegral function, as the upper limit of the inner integral 

tends to the value 0T . 

 

Fig. 2. Temperature dependence of  polycarbonate electrical resistivity 

 

In addition, it is well to bear in mind that the temperature *
1T  can be found only 

approximately by using the equation (9), and then it is possible to use its rounded value. Not to 

obtain the result in the form of a complex number and the unlimited subintegral function increase 

when calculating the outer integral in the relation (10), the rounding of the value *
1T  in this case 

should be ample. 

The calculated values of the temperatures 1T  and *
1T  correspond to monotone 

temperature distributions ( )T   over the thickness of the dielectric layer. The graph of such 

distribution at 1 1=T T 
 is plotted in Fig. 3 by the relation (11) with the value of the electric 

current density 614,34 10j    А/m 2 , calculated from the formula (12). In the case when *
1 1=T T  

we used the relation (10) when plotting the function graph in this figure. The electric current 

density was approximately 12 microamperes per square meter. 

For the value * = 320T  К, exceeding *
pT , after setting in the relation (14) 1( ) =T T  and 

= 1 , we obtain 1 318,4T   К. In this case from the formula (13) it follows that  614,59 10j    

А/м 2 . Fig. 3 shows the monotone temperature ( )T   distribution curve, which is built according 

to the relation (14) and located above the graph, corresponding to the ideal thermal insulation of 

the layer surface at = 1 . When * *= 230  K < mT T  the calculation of the temperature ( )T   

distribution, whose graph is shown in Fig. 3 as well, is done according to the formula (17), and 

the value 611,82 10j    А/m 2  is obtained from the eqality (16). 
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Fig. 3. Temperature ( )T   distributions over the thickness of the dielectric layer at different 

values of the ambient temperature: 1 – * = 323T  K; 2 – *
1= 315,7pT T   K; 3 – * = 293,2T  K; 4 – 

* = 268,4T  K; 5 – * 238, 4mT   K; 6 – * = 230T  K 

 

Since the relations (22) or (24) written in the form of homogeneous equations do not let 

express explicitly any of the required temperatures, to solve these  simultaneous equations, it is 

expedient to apply one of the methods of unconstrained minimization [17, 18] of the function of 

two variables 

    2 2

* 1 1 * 1 2 * 1( , ) = ( , ) ( , ) .f T T f T T f T T  

Then the desired values *T  and 1T  will correspond to the zero value of the nonnegative function. 

* 1( , )f T T . By minimizing this function at * = 293,2T  К we found the values * 308,3T   К and 

1 307,3T   К, which, according to the equation (23), correspond to the value 613,6 10j    

А/m 2 , and at * = 268,4T  К we obtained * 302,7T   К, 1 297,9T   К and 612,85 10j    А/m 2  

respectively. The temperature ( )T   distribution graphs plotted according to the formulae (19) 

and (20) and with the use of the specified parameter values, are shown in Fig. 3. 

Using the equations (3) and (4), we can write the relation  

  *
*

( )
( ) = = ( ) .

h

E h jh
E T

U U


    

It allows us to find the distribution *( )E   of the dimensionless absolute value of the electric field 

intensity over the thickness of the dielectric layer. Fig. 4 shows such distributions for all 

calculated and given in Fig. 3 options for temperature ( )T   distribution. The most nonuniform 

distribution *( )E   corresponds to the value of the temperature *T , which is the largest among 
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those taken in the calculations. Moreover, the greatest deviation from the uniform distribution 

corresponding in Fig. 4 to a horizontal straight line with an ordinate equal to one, arises on the 

surface of the layer with a given temperature  0 = 300T  К. 

 

 

Fig. 4. Distributions over the thickness of the dielectric layer of the relative magnitude of 

the electric field intensity (the designations of the curves are identical to those in Fig. 3) 

 

With a decrease in the value, first there occurs the tendency for the flattening of 

distribution *( )E  . When * 268,4T   К and the temperature distribution is also the closest to the 

uniform distribution (see Figure 3), the values *E  deviate to a lesser extent from the uniform 

distribution, and the function *( )E   acquires an explicitly nonmonotone character. However, a 

further decrease in the value *T  leads to an increase in the nonuniformity of the temperature 

distribution over the thickness of the dielectric layer and, as a consequence, to an increase in the 

nonuniformity of the distribution *( )E  , but now the largest unit deviations of the values *E  

occur on the cooled surface of the layer at = 1 .  

 

CONCLUSION 

Based on the formulated nonlinear mathematical model of steady-state heat conduction in 

a plane dielectric layer at the constant electric potential difference on the surfaces of this layer, 

integral ratios are obtained that allowed us according to the temperature dependences of the 

thermal conduction coefficient and electrical resistivity of the dielectric material to estimate the 

temperature distribution and the absolute value of the electric field intensity. The obtained results 

make it possible to evaluate the feasibility of using a specific material, including polymer, as a 

dielectric in the high-voltage electrical devices being designed. A calculation example is given 

for the dielectric layer made of amorphous polycarbonate. 



13 
 

 

REFERENSES 

1. Schramm RE, Clark AF, Reed RP. A Compilation and Evaluation of Mechanical, 

Thermal and Electrical Properties of Selected Polymers. Boulder (Colorado, US): National 

Bureau of Standards; 1973. 

2. Tareev BM. Physics of dielectric materials. Moscow: Jenergoatomizdat; 1982 [in 

russian].  

3. Sazhin BI (ed.) Electrical Properties of Polymers. Leningrad: Himija; 1986 [in 

russian]. 

4. Mark JE (ed.). Physical Properties of Polymers. Handbook: Springer; 2007. 

5. Bailey J(еd.). Properties and Behavior of Polymers. 2 Volume Set. Hoboken, New 

Jersey: Wiley & Sons, Inc.; 2011. 

6. Vorob'ev GA, Poholkov JP, Korolev JD, Merkulov VI. The physics of dielectrics (the 

field of strong fields). Russia,Tomsk: Izd-vo TPU; 2003 [in russian]. 

7. Breakdown of dielectrics  

http://www.websor.ru/proboi-dielektricov (accessed 04.11.2017). 

8. Dmitrevskij VS. Calculation and design of electrical insulation. Russia, Moscow: 

Jenergoizdat; 1981 [in russian].  

9. Larina JT. Power cables and cable lines. Russia, Moscow: Jenergoatomizdat; 1984 [in 

russian].  

10.  Cable Reference 

http://proelectro.ru/spravochnik-po-kabelyu (accessed 08.12.2017). 

11. Navarro MC, Burgos J. A spectral method for numerical modeling of radial 

microwave heating in cylindrical samples with temperature dependent dielecric properties. App. 

Math. Modelling. 2017; 43: 268-278. 

12. Wang Y, Zhupanska OI. Modeling of thermal response and ablation in laminated 

glass fiber reinforced polymer matrix composites due to lightning strike. App. Math Modelling. 

2018; 53: 118-131. 

13. Skanavi GI. The physics of dielectrics (the field of strong fields). Moscow: Fizmatgiz; 

1958 [in russian]. 

14. Borisova MJ, Kojkov SN. The physics of dielectrics. Leningrad: Izd-vo Leningr. un-

ta; 1979 [in russian]. 

15. Zarubin VS. Engineering methods for solving heat conduction problems. Moscow: 

Jenergoatomizdat; 1983 [in russian].   



14 
 

16. Landau LD, Lifshitz EM. Course of Theoretical Physics. Volume 1. Mechanics. 3 

edition. Butterworth–Heinemann; 1976. 

17. Attetkov AV, Zarubin VS, Kanatnikov AN. Introduction to optimization methods. 

Russia, Moscow: INFRA-M; 2008 [in russian].   

18. Attetkov AV, Zarubin VS, Kanatnikov AN. Optimization methods. Russia, Moscow: 

Izdatel'skij centr RIOR; 2012 [in russian]. 

 


