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Abstract

In this paper, we prove an optimal three-ball inequality for y satisfying an equation
of the form

∆2y = V0y + V1 · ∇y + V2∆y + V3 · ∇∆y

in some open, connected set Ω of lRn with V0, V2 ∈ L∞(Ω; lC) and V1, V3 ∈ L∞(Ω; lCn).
The derivation of such estimate relies on a delicate Carleman estimate for the bi-Laplace
equation and some Caccioppoli inequalities to estimate the lower-terms. Based on

three-ball inequality, we then derive the vanishing order of y is less than C
(
|V0|

1
3∞ +

|V1|
1
2∞+ |V2|

2
3∞+ |V3|2∞

)
, where | · |∞ means the L∞ norm, which is a quantitative version

of the strong unique continuation property for y. Furthermore, under some priori
assumptions on Vj and y, we prove that the nontrivial solution y satisfies the decay

property e−CR
2 logR around the point at infinity. In particular, if V1 = V3 = (0, · · · , 0),

this decaying rate can be improved to e−CR
4/3 logR.
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1 Introduction

Let Ω be a connected open subset of lRn (n ≥ 2). Without loss of generality, we assume

that 0 ∈ Ω and denote Br
4
= {x ∈ lRn| |x| < r}. For any complex number c, we denote by c̄

and Re c, its complex conjugate and real part, respectively.
In this paper we are interested in y satisfying the following equation:

∆2y = V0y + V1 · ∇y + V2∆y + V3 · ∇∆y, (1.1)
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where V0, V2 ∈ L∞(Ω; lC) and V1, V3 ∈ L∞(Ω; lCn).
The main purpose of this paper is to investigate optimal three-ball inequality of equation

(1.1) and its applications. In the literature, such kind of inequality may date back to the
following classic Hadamard three-circle theorem (e.g. [12] ):

Let f(z) be a complex-valued analytic function defined on the closed annulus {z ∈ lC :
r1 ≤ |z| ≤ r2}. Denote ||f ||2r =

∫
|z|=r |f(z)|2dz. Then,

||f ||r ≤ ||f ||αr1||f ||
1−α
r2

,

where r1 < r < r2 and α = log(r2/r)/ log(r2/r1), i.e. r = rα1 r
1−α
2 .

This theorem has many generalizations, numerous results of this type inequality have
been proved for solutions of second order partial differential equations (see [10, 27, 19] and
the rich references cited therein). Now, the three-ball inequality is well known to imply that
nonconstant solutions of elliptic equations cannot have a zero of infinite order at interior
points and have applications to inverse problems (e.g. [1]), i.e. once we established a
three-ball inequality for the partial differential operator we considered, then strong unique
continuation property (SUCP for short) follows immediately.

The SUCP is well understood for second order elliptic operators. The classical paper
by Carleman [3] established the SUCP for second order elliptic operators which need not
to have analytic coefficients. The powerful technique he used, the so called “Carleman
weighted inequality” has become one of the major tools in the study of SUCP, uniqueness
and stability of Cauchy problems (see [13, 14, 16, 25, 26, 27, 28, 29] and the rich references
therein). Besides Carleman estimate method, frequency function method is another one of
the powerful tools to obtain sucp results for solutions of partial differential equations (see
[10, 21] and the rich references therein).

In connection with the SUCP, a natural question is: How fast is a solution y allowed
to vanish, before it mush vanish identically? We refer this type of question as “quantita-
tive unique continuation”, or simply the quantitative uniqueness. Meanwhile, we say the
vanishing order of solution at x0 is k, if k is the largest integer such that Dαy(x0) = 0 for
all |α| ≤ k, we call the fastest rate the maximal order of vanishing. To see the maximal
order of vanishing clearly, we first recall the following known result for the second order
elliptic equation. Suppose that for some K,M >> 1, |W |L∞(B10) ≤ K and |V |L∞(B10) ≤ M ,
if y : B10 → lC is a solution to

∆y +W · ∇y + V y = 0

in B10 with |u|L∞(B1) ≥ 1 and |u|L∞(B1) ≤ C0, then a quantitative form of strong unique
continuation asserts that

|u|L∞(Br) ≥ crC(K2+M2/3) as r → 0,

which implies that the maximal order of vanishing for y at origin is less than C(K2 +M2/3).
In case of W = 0, this kind of maximal order of vanishing estimate was proved by Bourgain
and Kenig in [2]. They used this result to establish estimates at infinity that were relevant
to their work on Anderson localization. Meshkov’s examples in [23] imply that the power of
2/3 is optimal for complex-valued functions. In case of W 6= 0, we refer to [5] for the second
order Laplace operator and [20] for variable coefficient elliptic operator.
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Higher order elliptic equation is an important model in the study of partial differential
equations. It appeared in the study of continuum mechanics, in the related field of elasticity
, and applications in engineering design as well (see [22] for example). In case of SUCP
of higher order elliptic equations, we refer to [4, 18] and the related references therein for
the strong unique continuation results of higher order elliptic equations by using Carleman
estimates. In case of three-ball inequality and quantitative uniqueness of higher order elliptic
equations, there are few references addressing these kind of problems (see [11, 24, 30, 31]).

In [11], the authors considered the unique continuation property of the following per-
turbed fourth order elliptic operator LA,qu = 0, where

LA,q(x,D) =
n∑
j=1

D4
xj

+
n∑
j=1

AjDxj + q, (A, q) ∈ W 1,∞(Ω, lCn)× L∞(Ω, lC).

Meanwhile, the authors also proved the SUCP holds in 2-dimension in the sense of H1-norm,
while in three and higher dimensions, the SUCP does not holds.

In [24], the authors proved a three sphere inequality for solutions to the equation

Lu 4= P4(u) +Q(u),

where n ≥ 2, Q is a third order operator with bounded coefficients and P4 is a fourth order
elliptic operator such that P4 = L2L1, where L1 and L2 are two second order uniformly
elliptic operator with real and C1,1(Ω) coefficients. In this situation, the authors obtained
a three-ball inequality in the sense of H3-norm (see [24, Theorem 5.3]). Based on this
inequality, the authors further established three sphere inequalities for the plate equation

Lu 4= ∂2
ij(Cijkl∂

2
klu) = 0, in BR

in lR2. The first version of the three sphere inequality given in [24, Theorem 6.2] in the sense
of H3 norm, the second version of the three sphere inequality given in [24, Theorem 6.5]
in the sense of H2 norm, and the third version of the three sphere inequality given in [24,
Theorem 6.6] has the following form∫

Bρ
|u|2dx ≤ C

(∫
Br
|u|2dx

)θ( 4∑
k=0

ρ2k
1

∫
Br1
|∇ku|2dx

)1−θ

for some 0 < s < 1, ρ1 ∈ (0, sR) and r < ρ < ρ1.
In [30], the author considered the quantitative uniqueness of higher order elliptic equation

(−∆)mu(x) = V (x)u(x), in B10.

Under some assumptions on the potential V and the solution u, based on a variant of
frequency function, the author proved that for n ≥ 4m, the vanishing order of u is less than
C||V0||L∞(Ω). In [31], the author considered the quantitative uniqueness of general higher
order elliptic equation with singular coefficients

(−∆)mu(x) +

α0∑
|α|=1

Vα(x) ·Dαu+ V0(x)u(x) = 0, in B10.
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It should be point out that in [31] if m is a positive even integer, the value α0 ≤ [3m/2]−1,
i.e., in case of m = 2, α0 ≤ 2. As far as we know, three-ball inequality for bi-Laplace equa-
tions (1.1) in the sense of L2-norm with third order terms and quantitative uniqueness havn’t
been discussed yet. In this paper, based on the Carleman estimate, we will establish a three-
ball inequality for system (1.1). As its applications, we will investigate some quantitative
uniqueness problems of solutions to bi-Laplace equations with lower order terms. We con-
sider two kinds of quantitative uniqueness problems. First, we quantify the strong unique
continuation property by estimating the vanishing order of solutions to (1.1). Second, we
derive a minimal decaying rate around the point at infinity for solutions of the bi-Laplace
equations in lRn.

The rest of this paper is organized as follows. In Section 2, we state our main results. In
Section 3 we give the proof of three-ball inequality for system (1.1), which is useful in the
proof of quantitative uniqueness results (see Theorems 2.2 and 2.3) in Section 4.

2 Main results

To obtain the three-ball inequality of (1.1), here we adopt the Carleman weighted esti-
mate. To this aim, we first give our choice of the weight functions.

We define

ϕ(r) = r exp
(∫ r

0

e−t − 1

t
dt
)
, r > 0. (2.1)

For λ > 0, put
σ(x) = |x|, w(x) = ϕ(σ(x)), `(x) = −λ lnw(x). (2.2)

Let R∗ > 0 be such that BR∗ ⊂ Ω. Throughout of this paper, we will use C = C(n,Ω)
to denote a generic positive constant which may vary from line to line. And for the sake of
simplicity, we denote the L∞-norm of y in Ω by |y|∞.

We have the following three-ball inequality.

Theorem 2.1 Let r0 ∈ (0, R∗] and BR∗ ⊂ Ω. Assume that y ∈ H4(Br0) be a solution to
(1.1) with max

0≤j≤3
|Vj|∞ ≤ M for some constant M � 1. Then there exists a constant C > 0

such that for all 0 < r2 < r1 < 2r1 < r0, it holds that

|y|L2(Br1 ) ≤ CM4r−10
1 |y|ε0L2(Br2 )|y|

1−ε0
L2(Br0 ) + eC(V0,V1,V2,V3) ln(ϕ(2r0/3)/ϕ(r2/2))|y|L2(Br2 ), (2.3)

where ϕ is given by (2.1),

C(V0, V1, V2, V3) = C
(
|V0|

1
3∞ + |V1|

1
2∞ + |V2|

2
3∞ + |V3|2∞

)
(2.4)

and

ε0 =
lnϕ(2r0/3)− lnϕ(r1)

lnϕ(2r0/3)− ln(r2/2)
. (2.5)

Remark 2.1 Three-ball inequality (2.3) is optimal in the sense explained in [6].
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Remark 2.2 By Theorem 2.1, one can obtain the following strong unique continuation prop-
erty of (1.1):

Let y ∈ H4
loc(Ω) be a solution of (1.1). If y satisfies

|y|L2(Br) = O(rν) as r → 0, for every ν ∈ lN, (2.6)

then y ≡ 0 in Ω.

Based on Theorem 2.1, we have the following two quantitative unique continuation result.

Theorem 2.2 Let y be a solution to (1.1) with |Vj|∞ ≤ Mj and 1 ≤ |y|∞ ≤ C0 for some
constants Mj >> 1 for 0 ≤ j ≤ 3 and C0 ≥ 1. Then there exist positive constants C1 =
C1(n,Ω, C0) and C2 = C2(n,Ω, C0) such that

m(r) = sup
|x|≤r
|y(x)| ≥ C1r

C2

(
M

1
3
0 +M

1
2
1 +M

2
3
2 +M2

3

)
, ∀r ∈ (0, 1]. (2.7)

As an application of Theorem 2.2, we have the following decay rate for nontrivial solution
of (1.1).

Theorem 2.3 Suppose that y ∈ L∞(lRn) is a solution of (1.1) with max0≤j≤3 |Vj|∞ ≤ 1,
|y|L∞(lRn) ≤ C0 for a given constant C0 > 0 and y(0) = 1. Then there exist a constant C > 0
such that

M(R) ≡ inf
|x0|=R

sup
x∈B(x0,1)

|y(x)| ≥ Ce−CR
2 logR, ∀ R > 0, (2.8)

where
B(x0, 1) = {x ∈ lRn||x− x0| < 1}. (2.9)

In particular, if V1 = V3 = (0, · · · , 0), (2.8) can be improved to the following form:

M(R) ≡ inf
|x0|=R

sup
x∈B(x0,1)

|y(x)| ≥ Ce−CR
4/3 logR, ∀ R > 0. (2.10)

3 Proof of three-ball inequality

In this section, we will give the proof of Theorem 2.1. To this aim, we first establish
Carleman estimate for the bi-Laplace operator, which can be obtained by virtue of an alter-
native way for the second order Laplace operator. Further, we establish Some Caccioppoli
inequalities which is a key to yield our three-ball inequality.

3.1 Carleman estimate for bi-Laplace operator

We have the following Carleman estimate for the bi-Laplace operator.
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Theorem 3.1 Let w be given in (2.2). one can find a constant λ0 > 0 so that for all
y ∈ C4

0

(
Ω \ {0}; lC) and λ ≥ λ0, it holds that

λ

∫
Ω

w1−2λ|∇∆y|2dx+ λ3

∫
Ω

w−1−2λ|∆y|2dx

+λ4

∫
Ω

(
w−2−2λ|∇y|2 + λ2w−4−2λ|y|2

)
dx ≤ C

∫
Ω

w2−2λ|∆2y|2dx.
(3.1)

Remark 3.1 The reason for the above choice of ` is two folds. First, it is strongly pseudo-
convex in Ω \ {0} (in the sense of [13]). Second, w(x) = O(|x|) (as |x| → 0), which is a key
point in deriving the three-ball inequality for solutions of elliptic equations.

Before giving the proof of Theorem 3.1, we first recall the following known result.

Lemma 3.1 ([7, 8]) Let w be given in (2.2). one can find a constant λ∗ > 0 so that for all
z ∈ C2

0(Ω \ {0}; lC) and λ ≥ λ∗, it holds that

λ

∫
Ω

(
w1−2λ|∇z|2 + λ2w−1−2λ|z|2

)
dx ≤ C

∫
Ω

w2−2λ|∆z|2dx. (3.2)

Remark 3.2 To obtain Carleman estimate for the elliptic operator with variable coefficients
in the principal part, in [8, Theorem 2.2], the function ϕ has the following more general form:

ϕ(r) = r exp
(∫ r

0

e−µt − 1

t

)
with µ > 0. In case of Laplace operator, µ = 1 is enough to give the desired Carleman
estimate.

Proof of Theorem 3.1. Put u = ∆y. Then, it is easy to see that

∆u = ∆2y. (3.3)

In Lemma 3.1, by taking u = z, one can find a constant λ∗ > 0 so that for all u ∈ C2
0(Ω\{0})

and λ ≥ λ0, it holds that

λ

∫
Ω

(
w1−2λ|∇u|2 + λ2w−1−2λ|u|2

)
dx ≤ C

∫
Ω

w2−2λ|∆u|2dx. (3.4)

Next, noting that u = ∆y, it is easy to see that∫
Ω

w−1−2λ|u|2dx =

∫
Ω

w−1−2λ|∆y|2dx =

∫
Ω

w2−2(λ+3/2)|∆y|2dx. (3.5)

Then, by taking z = y in Lemma 3.1, one can find a constant λ∗ > 0 so that for all
y ∈ C2

0(Ω \ {0}) and λ ≥ λ∗, it holds that

λ

∫
Ω

(
w1−2(λ+3/2)|∇y|2 + λ2w−1−2(λ+3/2)|y|2

)
dx ≤ C

∫
Ω

w2−2(λ+3/2)|∆y|2dx. (3.6)
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By (3.4)–(3.6), we conclude that there exists a constant λ0 = max{λ∗, λ∗} and R∗ > 0 so
that for all y ∈ C2

0(Ω \ {0}) and λ ≥ λ0, it holds that

λ

∫
Ω

(
w1−2λ|∇u|2 + λ2w−1−2λ|u|2

)
dx

+λ4

∫
Ω

(
w−2−2λ|∇y|2 + λ2w−4−2λ|y|2

)
dx ≤ C

∫
Ω

w2−2λ|∆u|2dx.
(3.7)

By (3.7) and noting that u = ∆y, one can get the desired result immediately.

3.2 Proof of Theorem 2.1

Based on Theorem 3.1, in this subsection, we will give the proof of Theorem 2.1.
Proof of Theorem 2.1. The proof is divided into several steps.

Step 1. For all 0 < r2 < r1 < 2r1 < r0. Let ξ ∈ C4
0([0, r0]; [0, 1]) be a cut-off function

satisfying

ξ(r) =


0, if r ∈ [0,

r2

2
] ∪ [

3r0

4
, r0],

1, if r ∈ [
3r2

4
,
2r0

3
],

(3.8)

and that 
∣∣∣djξ
drj

∣∣∣ ≤ Cξ/r
j
2, j = 1, 2, 3, 4, in

[r2

2
,
3r2

4

]
,∣∣∣djξ

drj

∣∣∣ ≤ Cξ/r
j
0, j = 1, 2, 3, 4, in

[2r0

3
,
3r0

4

]
,

(3.9)

where Cξ is a constant.
Let {yn}∞n=1 be a sequence in C∞0 (Br0), which converges to y in H4(Br0). By applying

the inequality (3.1) to ynζ where ζ(x) = ξ(|x|) and passing to the limit, for all λ ≥ λ0, we
obtain that

λ

∫
Br0

w1−2λ|∇∆(ζy)|2dx+ λ3

∫
Br0

w−1−2λ|∆(ζy)|2dx

+λ4

∫
Br0

(
w−2−2λ|∇(ζy)|2 + λ2w−4−2λ|ζy|2

)
dx ≤ C

∫
Br0

w2−2λ|∆2(ζy)|2dx.
(3.10)

Step 2. To estimate the terms in both side of (3.10), let us divide Br0 into several parts
according to the weight function. Put

K1 =
{
x ∈ lRn :

3r2

4
≤ |x| ≤ 2r0

3

}
,

K2 =
{
x ∈ lRn :

2r0

3
≤ |x| ≤ 3r0

4

}
,

K3 =
{

(t, x) ∈ lR1+n :
r2

2
≤ |x| ≤ 3r2

4

}
,

K4 = Br0 \
3⋃
j=1

Kj.
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Clearly, it holds that Br0 =
4⋃
j=1

Kj and Kj ∩ Kk = ∅ for j 6= k, j, k = 1, 2, 3, 4.

From (3.10) and (1.1), noting that ζ = 1 in K1 and r0 ∈ (0, R∗], we obtain that for every
λ ≥ λ∗,

λ

∫
K1

w1−2λ|∇∆y|2dx+ λ3

∫
K1

w−1−2λ|∆y|2dx

+λ4

∫
K1

(
w−2−2λ|∇y|2 + λ2w−4−2λ|y|2

)
dx

≤ C

∫
Br0

w2−2λ|∆2ζy + 4∇∆ζ · ∇y + 4∇ζ · ∇∆y

+2∆ζ∆y + 4
n∑

j,k=1

ζxjxkyxjxk + ζ∆2y|2dx

≤ C

∫
⋃3
j=2Kj

w2−2λJ dx+ C

∫
⋃3
j=1Kj

w2−2λ
[
|V3|2L∞|∇∆y|2

+|V2|2L∞|∆y|2 + |V1|2L∞|∇y|2 + |V0|2L∞|y|2
]
dx,

(3.11)

where

J = |∆2ζy|2 + |∇∆ζ · ∇y|2 + |∆ζ∆y|2 + |∇ζ · ∇∆y|2 +
∣∣∣ n∑
j,k=1

ζxjxkyxjxk

∣∣∣2. (3.12)

Noting that w(x) = ϕ(|x|) and ϕ is an increasing function, it is easy to see that

w2−2λ(x) = w6(x)w−4−2λ(x) ≤ ϕ6
(3r0

4

)
w−4−2λ(x) ≤ ϕ6(R∗)w

−4−2λ(x), x ∈ K2 ∪ K3.

Similarly, for x ∈ K2 ∪ K3, 
w2−2λ(x) ≤ ϕ(R∗)w

1−2λ,

w2−2λ(x) ≤ ϕ3(R∗)w
−1−2λ,

w2−2λ(x) ≤ ϕ4(R∗)w
−2−2λ.

(3.13)

Next, taking λj (j=1, 2, 3, 4) as following

λ6
1

2
= C|V0|2∞ϕ6(R∗),

λ2

2
= C|V3|2∞ϕ(R∗),

λ3
3

2
= C|V2|2∞ϕ3(R∗),

λ4
4

2
= C|V1|2∞ϕ4(R∗).

(3.14)
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Then, choosing λ large enough such that λ ≥ max
0≤j≤4

λj. It follows from (3.11) that

λ6

∫
K1

w−4−2λ|y|2dx ≤ CM2

∫
K2∪K3

w2−2λ
[
J + |∇∆y|2 + |∆y|2 + |∇y|2 + |y|2

]
dx. (3.15)

By (3.9), we have that∫
3r2
4
≤|x|≤r1

w−4−2λ|y|2dx

≤ CM2
[
r−8

0

∫
2r0
3
≤|x|≤ 3r0

4

w2−2λHdx+ r−8
2

∫
r2
2
≤|x|≤ 3r2

4

w2−2λHdx
]
,

(3.16)

where

H = |y|2 + |∇y|2 + |∆y|2 + |∇∆y|2 +
∣∣∣ n∑
j,k=1

yxjxk

∣∣∣2. (3.17)

Again, recalling (2.2) for the definition of w, by (3.16), we have that

ϕ−4−2λ(r1)

∫
3r2
4
≤|x|≤r1

|y|2dx

≤ CM2
[
r−8

0 ϕ2−2λ(2r0/3)

∫
2r0
3
≤|x|≤ 3r0

4

Hdx+ r−8
2 ϕ2−2λ(r2/2)

∫
r2
2
≤|x|≤ 3r2

4

Hdx
]
.

(3.18)

Step 3. In this step, we will prove some Caccioppoli-type inequalities to estimate

“

∫
2r0
3
≤|x|≤ 3r0

4

Hdx” and “

∫
r2
2
≤|x|≤ 3r2

4

Hdx”.

Let η ∈ C4
0(Ω; [0, 1]) be a cut-off function satisfying

η(x) = 0, if |x| ∈ [0, 5r0/8] ∪ [5r0/6, r0],

η(x) = 1, if |x| ∈ [2r0/3, 3r0/4],

|∇η| ≤ Cη/r0.

(3.19)

Multiplying (1.1) by η8∆ȳ, we have

η8Re
(

∆ȳ(∆2y)
)

= η8Re
(

∆ȳ(V0y + V1 · ∇y + V2∆y + V3 · ∇∆y)
)

= ∇ · Re
(
η8∆ȳ∇∆y

)
− η8|∇∆y|2 − 8η7Re (∇η · ∇∆ȳ∆y).

(3.20)

Now, integrating (3.20) on Ω and notice that η ≤ 1, we have∫
Ω

η8|∇∆y|2dx ≤ C1M
2r−2

0

∫
Ω

η6(|∆y|2 + η2|∇y|2 + η2|y|2)dx. (3.21)

Next, multiplying (1.1) by η6ȳ, we have that

η6Re (ȳ∆2y) = η6Re
(
ȳ(V0y + V1 · ∇y + V2∆y + V3 · ∇∆y)

)
= ∇ · Re (η6ȳ∇∆y − η6∇ȳ∆y) + η6|∆y|2 + 6η5Re (∇η · ∇ȳ∆y)

−6η5Re (ȳ∇η · ∇∆y).

(3.22)
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Integrating (3.22) on Ω and using integration by parts, for any ε1 > 0, we have∫
Ω

η6|∆y|2dx ≤ Cε1M
2r−4

0

(∫
Ω

η2|y|2 + η4|∇y|2
)
dx+ ε1r

2
0

∫
Ω

η8|∇∆y|2dx. (3.23)

Hence, for sufficiently small ε1, by (3.21), we have∫
Ω

η6|∆y|2dx ≤ CM2r−4
0

∫
Ω

η2
(
y2 + η2|∇y|2

)
dx. (3.24)

On the other hand, noting that

η6Re (∇ȳ · ∇∆y)

=
n∑

j,k=1

Re
(

(η6ȳxjyxjxk)xk

)
− η6

n∑
j,k=1

|yxjxk |2 − 6η5

n∑
j,k=1

Re
(
ηxj ȳxkyxjxk

)
.

(3.25)

Therefore, for any ε2 > 0, we have∫
Ω

η6

n∑
j,k=1

|yxjxk |2dx ≤ Cε2

∫
Ω

η4|∇y|2dx+ ε2

∫
Ω

η8|∇∆y|2dx. (3.26)

Combining (3.26), (3.21) and (3.24), taking ε2 small enough, we get∫
Ω

η6
∣∣∣ n∑
j,k=1

yxjxk

∣∣∣2dx ≤ CM2r−6
0

∫
Ω

η2
(
|y|2 + η2|∇y|2

)
dx. (3.27)

Further, by (3.24), it is easy to see that∫
Ω

η4|∇y|2dx = −
∫

Ω

η4Re (ȳ∆y)dx− 4

∫
Ω

η3Re (ȳ∇η · ∇y)dx

= −
∫

Ω

η4Re (ȳ∆y)dx+ 2

∫
Ω

∇ · (η3∇η)|y|2dx

≤ ε3r
−4
0

∫
Ω

η6|∆y|2dx+ Cε3r
−6
0

∫
Ω

η2|y|2dx.

(3.28)

Therefore, taking ε3 small enough, we end up with∫
Ω

η4|∇y|2dx ≤ Cr−6
0

∫
Ω

η2|y|2dx. (3.29)

Combining (3.21), (3.24), (3.27) and (3.29), we end up with∫
2r0
3
≤|x|≤ 3r0

4

Hdx ≤ CM2r−8
0

∫
5r0
8
≤|x|≤ 5r0

6

|y|2dx. (3.30)

Similarly, proceeding the same analysis as (3.30), it is easy to prove that∫
r2
2
≤|x|≤ 3r2

4

Hdx ≤ CM2r−8
0

∫
r2
3
≤|x|≤r2

|y|2dx. (3.31)
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Step 4. By (2.1) and (2.2), it follows that for a constant C1 > 0,
r

C1

≤ w(x) ≤ C1r

with r = |x|. Then, for λ ≥ max
0≤j≤4

λj, by (3.18) and (3.30)–(3.31), recall the definition of ϕ,

we have that ∫
Br1
|y|2dx

≤ CM4
( r0

ϕ(2r0/3)

)−16(ϕ(2r0/3)

ϕ(r1)

)−14−2λ

ϕ−10(r1)

∫
Br0
|y|2dx

+CM4
( r2

ϕ(r2/2)

)−16(ϕ(r2/2)

ϕ(r1)

)−14−2λ

ϕ−10(r1)

∫
Br2
|y|2dx.

(3.32)

So for λ ≥ max
0≤j≤4

λi, we have∫
Br1
|y|2dx ≤ CM4r−10

1

[(ϕ(2r0/3)

ϕ(r1)

)−2λ
∫
Br0
|y|2dx+

(ϕ(r2/2)

ϕ(r1)

)−2λ
∫
Br2
|y|2dx

]
. (3.33)

Set

λ5 =
1

2

ln

∫
Br0
|y|2dx− ln

∫
Br2
|y|2dx

lnϕ(2r0/3)− lnϕ(r2/2)
(3.34)

If λ5 ≥ max
0≤j≤4

λj, we have∫
Br1
|y|2dx ≤ CM4r−10

1

(∫
Br2
|y|2dx

)ε0(∫
Br0
|y|2dx

)1−ε0
, (3.35)

where ε0 is given by (2.5).
If λ5 < max

0≤j≤4
λj, noting that λ0 independent of Vk (k = 0, 1, 2, 3) and λj (j=1, 2, 3, 4)

satisfying (3.14), by (2.4), we have∫
Br1
|y|2dx ≤

∫
Br0
|y|2dx ≤ e2 max0≤j≤4 λj ln(ϕ(2r0/3)/ϕ(r2/2))

∫
Br2
|y|2dx

≤ eC(V0,V1,V2,V3) ln(ϕ(2r0/3)/ϕ(r2/2))

∫
Br2
|y|2dx.

(3.36)

Combining (3.35) and (3.36), we get the desired result (2.3) immediately.

4 Proofs of Theorems 2.2 and 2.3

In the section, we will give the proof of our quantitative unique continuation results, we
borrow some ideas from [2].

Proof of Theorem 2.2. Without loss generality, we assume that B12 ⊂ Ω. Choosing
r2 = r ≤ 1, r1 = 4 and r0 = 12 in Theorem 2.1, we have that

|y|L2(B4) ≤ CM4|y|ε0L2(Br)|y|
1−ε0
L2(B12) + eC(V0,V1,V2,V3) ln(ϕ(8)/ϕ(r/2))|y|L2(Br), (4.1)
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where

ε0 =
lnϕ(8)− lnϕ(4)

lnϕ(8)− ln( r
2
)
. (4.2)

Combining (4.1) with the elliptic regularity estimate |y|L∞(B1) ≤ CnM
n/2|y|L2(B4), we

have that
|y|L∞(B1) ≤ J1 + J2, (4.3)

where
J1 = CCnM

2n+4|y|ε0L2(Br)|y|
1−ε0
L2(B12), (4.4)

and

J2 = CnM
2n
(C
r

)C(V0,V1,V2,V3)

|y|L2(Br). (4.5)

On the one hand, if J1 ≤ J2, by (4.1) and (4.3), a short calculation shows that

|y|L∞(B1) ≤ 2CnM
2n
(C
r

)C(V0,V1,V2,V3)

|y|L2(Br)

≤ 2CnM
2n
(C
r

)C(|V0| 13∞+|V1|
1
2∞+|V2|

2
3∞+|V3|2∞

)
sup
x∈Br
|y|,

(4.6)

which gives the desired lower bound.
On the other hand, if J1 ≥ J2, recalling that |y|L∞(B1) ≥ 1, it holds that

1 ≤ |y|L∞(B1) ≤ 2CCnM
2n+4|y|ε0L2(Br)|y|

1−ε0
L2(B12). (4.7)

Raising both sides to
1

ε0

and using the bound |y|L∞(B12) ≤ C0, we obtain

1 ≤
(

2CCnM
2n+4

) 1
ε0 |y|L∞(Br)C

1−ε0
ε0

0

≤
(

2CC0CnM
2n+4

) 1
ε0 |y|L∞(Br)

(4.8)

Recall the definition of ε0 and ϕ, we find that 1
ε0
≤ C ln 1

r
. Hence, the right hand side of

(4.8) is bounded by r−C ln(CC0CnM2n+4)|y|L∞(Br). The result follows.

Proof of Theorem 2.3. Fix an x0 such that |x0| = R and that

M(R) = inf
|x0|=R

sup
B(x0,1)

|y(x)| = sup
B(x0,1)

|y(x)|. (4.9)

Set
yR(x) = y(Rx+ x0) = y(R(x+ x0/R)). (4.10)

By (1.1), we have

∆2yR = R4(V0yR +R−1V1 · ∇yR +R−2V2∆yR +R−3V3 · ∇∆yR)

= R4V0yR +R3V1 · ∇yR +R2V2∆yR +RV3 · ∇∆yR.
(4.11)
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So that
|R4V0|∞ + |R3V1|∞ + |R2V2|∞ + |RV3|∞ ≤ R4. (4.12)

Let x̃0 = −x0/R, then |x̃0| = 1 and yR(x̃0) = y(0) = 1, thus |yR|L∞(B1) ≥ 1 and sup
B(x0,1)

|y(x)| =

sup
B1/R
|yR|. So that using Theorem 2.2 with M = R4, we have that

M(R) = sup
B1/R
|yR| ≥ C1

( 1

R

)C2(R2+R
4
3 +R

3
2 +R

4
3 )

= Ce−CR
2 logR. (4.13)

if V1 = V3 = (0, · · ·, 0), we have that

M(R) ≥ C1

( 1

R

)C2R
4
3

= Ce−CR
4
3 logR. (4.14)

This completes the proof of Theorem 2.3.
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