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Abstract 16 

River stream estimation is a subject matter that needs constant research and development since 17 

it is all-important in the management of water resources, meeting the water demand, irrigation 18 

and agricultural activities, and providing distant signal in unwanted situations such as floods. 19 

Unfortunately, a universal technique has not been found yet although many techniques have 20 

been used for estimation and modelling. This has made it necessary to develop different 21 

techniques and/ or to make comparisons between techniques and to determine the most accurate 22 

method for the parameters used. In this study, using the 1981-2010 flow data of 14 stations 23 

located across Euphrates-Tigris basin, evaluations have been made through Adaptive-Network 24 

Based Fuzzy Inference Systems (ANFIS), Support Vector Regression (SVR-SVMR) 25 

techniques, and the newly used Gauss Process Regression (GPR), Extreme Learning Machine 26 

(ELM) and Emotional Neural Network (ENN) artificial intelligence techniques, and through 27 

rank analysis, it is aimed to find out which technique gives better results and to overcome some 28 

problems in traditional methods. Although all models work well, the sequence with regards to 29 

the comparison outcomes of the techniques obtained from rank analysis  was observed to be 30 

ELM, GPR, ENN, SVM, ANFIS respectively. In addition, stream values were used in the whole 31 
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study, these values were examined within 3 different combinations and it was observed that the 32 

best result was found in the combination of [input]Q(t-3),Q(t-2),Q(t-1)/[output]Q(t).  33 

Keywords:  River Flow Modelling; ANFIS; SVM; GPR; ELM; ENN 34 
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1.INTRODUCTION 35 

1.1 River Flow Modelling Background 36 

Water, the main component of life, is an indispensable resource used to provide the energy 37 

required for living things to survive. For this reason, it is of great importance for living 38 

creatures. Stream modelling and estimation are required in cases such as efficient use of existing 39 

water resources, development of water structures, and the examination of the water source 40 

before the construction of water structures planned for different purposes. At the same time, the 41 

fact that there are many unknown factors in the occurrence of hydrological events, instabilities 42 

in the work field, irregularities in river systems and flow data have made it necessary for 43 

researchers to create models and make estimations for future. These estimations, which can be 44 

made through some mathematical methods, provide more successful results through artificial 45 

intelligence techniques and fuzzy logic methods, and thus, can be modelled within a shorter 46 

time. However, it was not possible to reduce these methods to a single one or to create a 47 

universal one that is superior to the others (Yaseen et al. 2019). Although a universal method 48 

does not exist for now, it is of great importance to create a method that can be used by 49 

hydrologists in a sound and reliable way and that will ensure the sustainable use of water 50 

resources. For this reason, most of the studies are aimed at making comparisons between 51 

methods and finding the best resul (Farmer et al. 2018). 52 

 53 

1.1 Soft Computing Techniques Employment in The Field of Water Resources 54 

Engineering 55 

The uses of artificial intelligence techniques are not limited to river stream modelling. Although 56 

ELM, ENN and GPR methods are newly used, there are many studies that have applied artificial 57 

intelligence techniques. For example, the methods used in many subjects and studies such as 58 

precipitation forecast (Akrami et al. 2014; Choubin et al. 2018; Li et al. 2018; Mokhtarzad et 59 

al. 2017),  evapotranspiration forecast (Ferreira et al. 2019; Han et al. 2019; Tao et al. 2018), 60 

drought (Khan et al. 2020; Mokhtarzad et al. 2017; Zhang et al. 2020), air quality (Bhardwaj 61 

and Pruthi 2020; Ghasemi and Amanollah, 2019) soil moisture (Ji et al. 2019; Li et al. 2019), 62 

water level estimation (Deo and Şahin 2016; Hipni et al. 2013; Khan and Coulibaly 2006), 63 

water quality (Azad et al. 2019), evaporation (Mohamadi et al. 2020) have been developed or 64 

compared with different methods.   65 

At the same time, these methods, used in different processes such as sediment transportation in 66 

open channels (Safari et al. 2019), and discharge coefficient in open channels (Azimi et al. 67 
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2017) which are of great importance for the development of hydraulic structures, have greatly 68 

contributed to the development of water resources engineering (see Appendix A). 69 

 70 

1.2 River Flow Modelling Using Soft Computing Techniques 71 

Although there are many methods that can be used for stream modelling, no universally used 72 

method considered to be superior to others has been found. This made it necessary to check 73 

those methods against each other, to compare them statistically and even to create new methods. 74 

In this context, there are many studies conducted using the ANFIS (He et al. 2014; 75 

Rezaeianzadeh et al. 2014; Zhou et al. 2019), ELM (Yaseen et al. 2016; Yaseen et al., 2019), 76 

ENN (Yaseen et al. 2020), SVM (He et al. 2014; Yaseen et al. 2016; Yaseen et al. 2019) and 77 

GPR (Sun et al. 2014)  methods. Considering these studies and developments in model 78 

structures;  ANFIS, a mixed learning model created by (Jang 1993), has been developed over 79 

time and has been used with new ANFIS methods such as ANFIS with grid partition (ANFIS-80 

GP) and ANFIS with sub clustering (ANFIS-SC) (Sanikhani and Kisi 2012). (Khadangi et al. 81 

2009) applied ANFIS and radial base function (RBF) methods for daily river stream modelling 82 

in their study and found that ANFIS provided a much better performance. The ELM structure, 83 

which was created to eliminate the need for iterative adjustment of latent neuron parameters in 84 

traditional models, was proposed by (Huang et al.  2006) and it was first used for river stream 85 

modelling by (Siqueira et al. 2014) for hydraulic power plants in Brazil, and they observed that 86 

the model was suitable for river stream studies. At the same time, the ELM structure was 87 

developed within time and different ELM structures were created for different studies.  (Yaseen 88 

et al. 2019) used ELM and ANFIS to estimate river stream in their studies and observed that 89 

the improved ELM gave better results when compared to these techniques. In addition, in a 90 

study conducted in Iran, a semi-arid region, Generalized Regression Neural Network (GNRR), 91 

SVM, and ELM were compared and it was concluded that ELM gave better results  (Yaseen et 92 

al. 2016). In another study (Adnan et al. 2019), in which ELM was used as Optimally Pruned 93 

ELM, ANFIS-PSO (particle swarm optimization), Multivariate Adaptive Regression Splines 94 

(MARS), and M5 model tree (M5Tree) techniques were compared by cross-validation and it 95 

was concluded that OP-ELM method could be used successfully in daily stream flow 96 

estimation. The ENN structure, which takes emotional parameters into account in addition to 97 

other models that simulate the brain structure in modelling studies, was developed by 98 

(Rumelhart 1986) , and was used in river stream modelling for the first time by (Yaseen et al. 99 

2020) ENN was used in the study to create an hourly river stream model, it was compared with 100 

other well-structured machine learning methods, and it was found that ENN performed better. 101 
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In a study in which SVM, developed by (Rumelhart 1986), was used for river stream modelling, 102 

ELM was compared with Artificial Intelligence (AI), Genetic Programming (GP) and Support 103 

Vector Machine (SVM), and it was observed that ELM method gave faster and better results in 104 

river stream estimation than the other methods (Atiquzzaman and Kandasamy 2018).  (Sun et 105 

al.  2014) studied the monthly estimation of GPR, compared GPR with autoregressive moving 106 

average with exogenous variables (ARMAX) and multilayer perceptron (MLP), used for more 107 

than four hundred stations in the USA, and concluded that GPR performed better.  108 

 109 

1.3 Research Objectives 110 

In this study, conducted for river stream estimation and modelling which is of great importance 111 

for water resources engineering, it is aimed to find the best results in the shortest time in river 112 

stream modelling by comparing widely used methods such as ANFIS and SVM with the rarely 113 

used ones such as ELM, GPR and ENN methods, to find the membership functions in traditional 114 

methods by trial and error, and to eliminate undesirable conditions such as the uncertainties in 115 

the interpretation of parameters, intense human intervention necessity in modelling, and 116 

slowspeed of learning. Rank analysis was performed in order to make an accurate evaluation 117 

between methods and to decide on the best model by taking all evaluation parameters into 118 

consideration, and it was aimed to find a reliable method for hydrology studies and river stream 119 

modelling by determining the best result with the aid of correlation coefficient (R), Root Mean 120 

Squared Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE) performance 121 

indexes. At the same time, a comprehensive review of the artificial intelligence techniques used 122 

in this study is presented (See Appendix A).  123 

 124 

2.METHODOLOGY 125 

2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 126 

ANFIS, based on Takagi-SugenoKang inference system, was developed by (Jang 1993) to 127 

model nonlinear functions, determine nonlinear components in the control system, and predict 128 

the chaotic time series. The fuzzy logic inference system evaluated in ANFIS is transformed 129 

into adaptive networks and the most suitable condition is created through a learning algorithm. 130 

Neural adaptive learning techniques develop a model that “learns” the related system by using 131 

the data set selected for the fuzzy modelling. In other words, ANFIS uses the input/output data 132 

set and the backpropagation algorithm used in artificial neural networks alone or together with 133 

the least-squares method, and thus, by regulating the membership functions parameters, creates 134 

a fuzzy inference system (FIS). This regulation allows the fuzzy system to learn the relevant 135 
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system with the help of the data that it has modelled. Namely, it customizes/adapts itself to the 136 

data will be modelled.  The ANFIS structure, which has got the ability to update itself by using 137 

both the environmental information and the input and output data of the system, is as shown in 138 

Figure 1 (Jang and R. 1991). 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

FIGURE 1 ANFIS Structure (Demuth 2000) 147 

Information of the layers shown in Figure 1; 148 

• The 1st layer is called the input layer. Input signals from each node in this layer are 149 

transferred to other layers. Output values for each i node are expressed as follows: 150 

𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥)     𝑖 = 1,2 ….         (1) 151 

𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑥)     𝑖 = 1,2 ….        (2) 152 

• The 2nd layer is called the blur layer. The output of each node here consists of 153 

membership degrees depending on the input values and the membership function used. 154 

The membership degrees obtained from the 2nd layer are shown as µAi (x) and µBi (y). 155 

 156 

• The 3rd layer is the rule layer. Nodes are used to express the number and rules created 157 

according to Sugeno's fuzzy logic inference system. Output µi of each rule node is the 158 

product of membership degrees from layer 2. 159 

 160 

• The 4th layer is the normalization layer. 161 

 162 

• In layer 5, the weighted result values of a given rule in each node are calculated. The 163 

output value of the i. node in the 5th layer is as follows; 164 

𝑦𝑖
5 = 𝜇𝑖̅[𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖]     𝑖 = (1, 𝑛)                   (3) 165 

(pi, qi, ri) variables here are the result parameters set of the i. rule. 166 

• The 6th layer is the sum layer. This layer has only one node and is labelled as ∑. It is the 167 

output layer of the system (Demuth 2000).  168 
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While the biggest advantages of the ANFIS model can be regarded as its efficiency in 169 

mathematical analysis, success in adaptation and successful conclusion in numerical data, too 170 

much human intervention can be supposed as a disadvantage since training of ANFIS 171 

parameters takes quite a long time and the model has a structure with many rules.   172 

 173 

2.2 Extreme Learning Machine (ELM) 174 

 175 

ELM is a fully connected artificial neural network model developed by (Huanget al. 2006) and 176 

consists of an input layer, a hidden layer and an output layer. Unlike the commonly used 177 

gradient-based network structures, ELM, whose input weights and threshold values are 178 

randomly generated but output weights are analytically generated, creates an analytical equation 179 

of the model beyond finding the model weights, and thus, it prevents error clogging at a local 180 

point and removes the problem of learning process that takes a long time as in the other 181 

methods. In this way, it provides better performance compared to other methods and speeds up 182 

the model production process. At the same time, other learning algorithms sometimes have to 183 

apply procedures such as stopping the training process of the model earlier, adding regulation 184 

parameters, breaking weights or using validity sets as they may encounter undesirable situations 185 

such as improper learning rate, excessive learning and memorization, and stuck in local 186 

minimums, whereas ELM reaches the solution directly without any intermediate processing. In 187 

addition to all these advantages, the structure of the ELM method, which offers the possibility 188 

to use many activation functions which can be derivative, underivative or discrete, consists of 189 

the input layer where the data is read, the output layer where the classes are determined and the 190 

hidden layer where the intermediate operations are conducted, as shown in Figure 2. 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

FIGURE  2 Algorithm of Extreme Learning Machine (Jin et al. 2020) 199 

The ELM structure can calculate the output weight with the Moore-Penrose generalized 200 

inverse latent matrix without any need for iterative optimization. If L stands for the hidden 201 
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node,   symbolizes the output neurons, and jth is symbolized as the weight value connecting 202 

the hidden neurons, then the ELM structure can be expressed as; 203 

∑ 𝛽𝑗ℎ𝑗(𝑥𝑖) = 𝑦𝑖 ,                𝑖 = 1, . . . , 𝑁,𝐿
𝑗=1            (4) 204 

Mapping the properties for Jth hidden node output  ; is  205 

ℎ𝑗(𝑥𝑖) =
1

1+𝑒𝑥𝑝(−(𝑤𝑗
𝑇𝑥𝑖+𝑏𝑗))

             (5) 206 

wj  refers to the weight vector connecting input neurons used in this equation, 207 

  and Jht hidden neuron, and bj is expressed as expressed as trend 208 

(deviation) term. If equation 1 is to be expressed more simply; 209 

𝐻𝛽=y, 𝛽 = [𝛽1, . . . , 𝛽𝐿]𝑇   ∈ ℝ𝐿 ,   𝑦 = [𝑦1, . . . , 𝑦𝑁]𝑇   ∈ ℝ𝑁             (6) 210 

 𝐻(𝑤1, . . . , 𝑤𝐿 , 𝑏1, . . . , 𝑏𝐿 , 𝑥1, . . . , 𝑥𝑁) = [
ℎ1(𝑥1) . . . ℎ𝐿(𝑥1)

⋮ ⋱ ⋮
ℎ1(𝑥𝑁) . . . ℎ𝐿(𝑥𝑁)

]  ∈  ℝ𝑁∗𝐿       (7) 211 

H used in these equations denotes the hidden layer output matrix. ELM chooses the case 212 

with the minimum error and the lowest output weight among different traditional learning 213 

algorithms. Randomly initialized wj hidden node parameters and bj is (j = 1; . . .; L) and the 214 

least squares solution of equation 3 is as follows; 215 

𝛽 = 𝐻ϯ               (8) 216 

 Here ϯ Moore-Penrose denotes the generalized opposite. Decision function to be created 217 

to write , which is the new test example of ELM structure, can be expressed as (Jin et al. 2020); 218 

𝑦̂ = 𝑠𝑖𝑔𝑛 (ℎ(𝑥̂)𝛽)              (9) 219 

 220 

2.3 Emotional Neural Network Algorithm (EmNN) 221 

This section describes the emotional neural network algorithm (EmNN). EmNN is based on the 222 

emotional back-propagation algorithm (EmBP- emotional back propagation), which is a 223 

modified version of the traditional back-propagation algorithm (BP-back propagation). As 224 

stated by (David and James 1987), the BP method is often preferred because of its simplicity 225 

of application and its rapid operation, especially when it has sufficient database. EmBP is 226 

described according to the information flow layers of the three-layer EmNN algorithm.  Layers 227 

of the EmNN algorithm are called as follows: 228 

𝑖: input layer with neurons 229 

ℎ: hidden layer with neurons  230 

𝑗: output layer with neurons 231 

(Fig. 3) shows the process for EmNN feed forward calculation (Khashman 2009); 232 
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 233 

 234 

 235 

 236 

 237 

 238 

FIGURE 3  Process for EmNN feed forward calculation (Khashman 2009) 239 

 240 

2.3.1 Feed forward calculations  241 

Data processing from the input layer to the output layer in the neural network is as follows. 242 

Feed forward calculations are performed during the operation of a network. 243 

Input layer with neurons (𝑖); 244 

Input layer neurons are unprocessed neurons.  Thus, if 𝑋𝑙𝑖 is defined as the input value 245 

of the input layer, and 𝑌𝑙𝑖   as the output value of the input layer, the input values are equal to 246 

the output values. 247 

𝑋𝑙𝑖 = 𝑌𝑙𝑖                                                 (10) 248 

Hidden layer with neurons (ℎ); 249 

Each neuron in the input layer is activated in the hidden layer. 𝑋𝐻ℎ is defined as the 250 

input data of the hidden layer while 𝑌𝐻ℎ is defined as its output data. 251 

𝑌𝐻𝐻 = {
1

1+𝑒𝑥𝑝(−𝑋𝐻ℎ)
}             (11) 252 

On the other hand, in order to calculate the𝑋𝐻ℎ  data, total potential output values 𝑇𝑃ℎ 253 

of that neuron should be used. Since there are three different input groups, there are three 254 

different total potential values. The potential values are: 255 

𝑇𝑃ℎ𝑐  : conventional total potential value obtained by using the output values of the input layer 256 

and the conventional weight matrix 257 

𝑇𝑃ℎ𝑏
: hidden layer neurons and related weight 258 

𝑇𝑃ℎ𝑚
: hidden layer emotional neurons and related weights 259 

𝑇𝑃ℎ𝑐 = ∑ 𝑊ℎ𝑖 . 𝑌𝑙𝑖
𝑟
𝑖=1                         (12) 260 

𝑇𝑃ℎ𝑏 = 𝑊ℎ𝑏 . 𝑋𝑏    , 𝑋𝑏 = 1                                                                                          (13)261 

                                         (14) 262 

 263 

.hm hm mTP W X=
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The 𝑊ℎ𝑖  stands for the weight transferred byℎ layer to 𝑖 layer, 𝑊ℎ𝑏  stands for the weight 264 

provided by the ℎ layer,  𝑊ℎ𝑚  stands for the weight transferred by ℎ layer to the hidden layer 265 

emotional neuron 𝑚, 𝑋𝑚 stands for the input values of the emotional neuron and,𝑋𝑚 value 266 

stands for the mean value.  𝑥𝑚𝑎𝑥 and 𝑦𝑚𝑎𝑥 are the maximum pixel numbers of the P (x, y) image 267 

in the directions of 𝑥 and 𝑦 (Khashman 2009) Thus; 268 

max, max,

1, 1 max max

( , )

.

x y

m PAT

x y

P x y
X Y

x y= =

= = 
           (15) 269 

𝑋𝐻ℎ = 𝑇𝑃ℎ𝑐 + 𝑇𝑃ℎ𝑏 + 𝑇𝑃ℎ𝑚            (16) 270 

Output layer with neurons (𝑗); 271 

As in the hidden layer, each neuron needs to be activated in the output layer as well. If 272 

𝑋𝐽𝑖 and 𝑌𝐽𝑖 are respectively defined as the input and output values of the neuron output layer   273 

 (𝑗), then; 274 

𝑋𝐽𝑖 = 𝑇𝑃𝑗𝑐 + 𝑇𝑃𝑗𝑏 + 𝑇𝑃𝑗𝑚                      (17)             275 

𝑌𝐽𝑖 = {
1

1+𝑒𝑥𝑝(−𝑋𝐽𝑖)
}                                                                                                    (18) 276 

Provided that 𝑊𝑗ℎ  is the weight transferred from the hidden layer to the output layer, 277 

𝑌𝐻ℎ  is the output value of the hidden layer, 𝑊𝑗𝑏  is the weight transferred from the hidden layer 278 

to 𝐵𝑗 and 𝑋𝑏 is the input value of the inclined neurons, 𝑊𝑗𝑚  is the emotional weight transferred 279 

from the hidden layer to 𝑀𝑗, and 𝑋𝑚 is the input value of the emotional neuron, then; 280 

𝑇𝑃𝑗𝑐 = ∑ 𝑊𝑗ℎ . 𝑌𝐻ℎ
1
ℎ=1                              (19) 281 

𝑇𝑃𝑗𝑏 = 𝑊𝑗𝑏 . 𝑋𝑏               (20) 282 

𝑇𝑃𝑗𝑚 = 𝑊ℎ𝑚 . 𝑋𝑚                         (21) 283 

𝑋𝐽𝑗 = 𝑇𝑃𝑗𝑐 + 𝑇𝑃𝑗𝑏 + 𝑇𝑃𝑗𝑚           (22) 284 

Emotional parameters;               285 

Emotional parameters are used in conjunction with the current learning coefficient (η) 286 

and α momentum ratio. (μ) is defined as the anxiety coefficient and k is defined as the 287 

confidence coefficient, and it is observed how these two parameters act when learning each new 288 

task. Anxiety level decreases as confidence level increases. Both coefficients have normalized 289 

values between 0 and 1. 290 

The level of anxiety depends on the mean value of the input pattern and the error 291 

indicator for each period. The average input value used here must always be positive because 292 

the pixel values are normalized to values between 0-1. At the same time, the error indication 293 

may provide negative feedback if an unstable condition exists there. In this case, the heuristic 294 
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network will be unreliable and unstable, similar to traditional networks. Therefore, three 295 

imgateant parameters are arranged until a stable learning is found. These three parameters stand 296 

for the learning rate, momentum ratio and the count of hidden neurons. Therefore, as learning 297 

progresses, the anxiety rate decreases and the value of the confidence coefficient increases 298 

(Adnan et al. 2019).  299 

The anxiety coefficient can be defined as follows: 300 

𝜇 = 𝑌𝐴𝑣𝑃𝐴𝑇 + 𝐸            (23) 301 

𝑌𝐴𝑣𝑃𝐴𝑇  is defined as the mean value of the patterns presented in the EmNN algorithm. 302 

If 𝑝 represents the pattern index, 𝑁 is the total number of patterns presented in a period, 303 

and 𝐸 is the feedback error, then; 304 

𝑌𝐴𝑣𝑃𝐴𝑇=

∑ 𝑌𝑃𝐴𝑇
𝑁𝑃
𝑝=1

𝑁
                                         (24) 305 

𝐸 =
∑ (𝑇𝑗−𝑌𝐽𝑗

𝑁𝑗
𝑗=1

)2

𝑁𝑝 .𝑁𝑗
                         (25) 306 

𝑘 confidence coefficient; 307 

𝑘 = 𝜇0 − 𝜇𝑖                (26) 308 

𝜇0: value of anxiety coefficient at the end of the first iteration 309 

𝜇𝑖 : coefficient of anxiety at the end of subsequent iterations 310 

 311 

2.4 Support Vector Machine (SVM) 312 

SVM, an algorithm based on optimization, was designed by (Vapnik 1998) as a classification 313 

algorithm that minimizes the error. Later, the algorithm started to be used for regression 314 

purposes with the name of SVR. Since SVM depends on core functions, it is considered a 315 

nonparametric technique. SVM, created by including the maximum value in the structure, has 316 

become more efficient than other regression models. When the weight vector in the structure is 317 

expressed as w and the error value as ε, the minimization process is expressed based on the 318 

following equations;  319 

min 1/2‖𝑤‖2      denklemi  𝑦𝑖 − (𝑤, 𝑥𝑖 + 𝑏) ≤ 𝜀 ve (𝑤, 𝑥𝑖 + 𝑏) −  𝑦𝑖 ≤ 𝜀               (27) 320 

When x is a point on the hyperplane and b is called a bias, then the constraint equation is as 321 

follows; 322 

𝑓(𝑥) =  𝑦𝑖(𝑤, 𝑥𝑖 + 𝑏)      (28) 323 

If the model margin value is wanted to be calculated so as to keep all data in it, minimization is 324 

used. However, it is not possible to use all values in this way. In this case, slack variables are 325 

used (𝜉𝑖, 𝜉𝑖*). 326 
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min 1/2‖𝑤‖2 + 𝐶 ∑ (ξi + ξi∗𝑁
İ=1 )          (29) 327 

 328 

Equation is formed depending on the   ve 329 

equations. C>0 constant is used and values where equation f is greater than ± ε are tolerated as 330 

shown in Figure 4 (Burges 1998). 331 

 332 

 333 

 334 

 335 

 336 

 337 

FIGURE 4 An example for SVM model structure (Chanklan 2018) 338 

 339 

SVM, which is widely preferred due to its ease of application and compatibility with 340 

both linear and nonlinear data, also has disadvantages such as difficulties in interpreting model 341 

parameters and long duration of model training. 342 

 343 

2.5 Gauss Process Regressıon (GPR) 344 

GPR, a non-parametric model suitable for use in solving nonlinear regression problems, is 345 

based on the conversion of prior functions to posterior functions in Gaussian distribution 346 

(McDuff  2019). GP describes the probability distribution on functions and when M (x) refers 347 

to mean, 348 

K(x,x’) refers to covariance function, then the  349 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝐾(𝑥, 𝑥′))       (30) 350 

equation is formed. In this equation m(x) and K(x,x’) are expressed as follows; 351 

𝑚(𝑥) = 𝔼[𝑓(𝑥)]      (31) 352 

𝐾(𝑥, 𝑥′) = 𝔼[(𝑓(𝑥) − 𝑚(𝑥))((𝑓(𝑥′) − 𝑚(𝑥′))𝑇]      (32) 353 

 If  indicates x- scaling (amplitude) and  indicates y- scaling (length), then the 354 

covariance function is expressed with the equation below (Murphy 2012; Richardson 2017); 355 

𝐾 =. 𝜃𝑓
2exp (−

1

𝜃𝑡
2 ‖𝑥 − 𝑥′‖2)      (33)  356 

The covariance matrix is as follows; 357 
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𝐾 = Ӄ((𝑥1, … , 𝑥𝑛), (𝑥1, … , 𝑥𝑛)) = [

Ӄ (𝑥1, 𝑥1)    Ӄ (𝑥1, 𝑥2) …   Ӄ (𝑥1, 𝑥𝑛)   

Ӄ (𝑥2, 𝑥1)    Ӄ (𝑥2, 𝑥2) …   Ӄ (𝑥2, 𝑥𝑛)  
          ⋮                             ⋮            ⋱           ⋮                  

Ӄ (𝑥𝑛 , 𝑥1)    Ӄ (𝑥𝑛, 𝑥2) …   Ӄ (𝑥𝑛 , 𝑥𝑛)  

]          (34) 358 

2.6  Model Development-Evaluation Criteria and Rank Analysis 359 

Four different performance indices were used to evaluate the performance of the developed 360 

models. These indices, called R, RMSE, MSE and MAE, can be obtained with the help of the 361 

following equations; 362 

𝑅 = √1 −
∑ (𝑦𝑖−𝑓𝑖)2

𝑖

∑ (𝑦𝑖−𝑦̅)2
𝑖

            (35) 363 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1            (36) 364 

𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸2 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1           (37) 365 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑗|𝑁

𝑗=1            (38) 366 

 y refers to the measured value,  refers to the average of measured values, and N refers 367 

to the total number of data. R value may have the best value of 1 and RMSE, MAE and MSE 368 

may have the best value of 0. Rank analysis is a method applied to determine the best 369 

performing model among the models by considering all evaluation criteria. This method, aiming 370 

to determine the performance evaluation score of the models and to find the model that gives 371 

the best result, is performed by assigning a rank to the models according to their proximity to 372 

the best value for each data set, and collecting and comparing the scores for all data sets. If  373 

is represented as the rank value in the selected model of each data set and n is the number of 374 

models, the total rank value is determined by the equation that follows (Zhang et al. 2020). 375 

 376 

𝑀𝑜𝑑𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑅𝑎𝑛𝑘 =  ∑ 𝑅𝑖
𝑛
𝑖=1           (39) 377 

 378 

3.STUDY AREA AND DATA 379 

 380 

 Euphrates-Tigris basin, growing out of Euphrates and Tigris rivers which break through the 381 

mountains in the east of Turkey and flow into the Persian Gulf, has 184,914 km2 of 382 

precipitation, including 127,300 km2 Euphrates Basin and 57,614 km2 Tigris Basin. (Fig. 5). 383 

Examination of this basin, having the largest drainage area in Turkey and being consisted of 384 

the Euphrates River, the longest river in Western Asia, and the Tigris River, the second largest 385 

river in Western Asia, is of great importance since its average annual flow value is 52.94 km3, 386 
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its average annual output is 21.4 l  sec / km2 and its annual average energy generation potential 387 

is 54.7 GWh. At the same time, the Euphrates-Tigris basin is also all-important for the riparian 388 

countries.  389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

FIGURE 5 Euphrates-Tigris River Basin bordering on Turkey and riparian countries and the 403 

part of the basin in Turkey (examined in this study) (Chen 2011) 404 

 Euphrates-Tigris Basin, in addition to these important features, has the most complete 405 

daily stream data of all the basins in Turkey.  Among the many stations 14 were selected to 406 

standardize global assessment and climate monitoring studies, and the stream data averages, 407 

standard deviation values, minimum and maximum values of those stations between 1981-2010 408 

are shown in a table (DSI 2020) (Table 1) (Fig. 6). 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

FIGURE 6 Selected stream observation stations in the Euphrates-Tigris Basin 420 
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TABLE 1 Selected stream stations in the Euphrates-Tigris Basin. 421 

Station 

number 

Name Longitute-

latitute 

Mean 

(flow) 

(m3/sn) 

Max 

(flow) 

(m3/s) 

Min 

(flow) 

(m3/s) 

Standart 

deviation 

(flow) 

2102 Murat Rıver - Palu (39° 56' 22'' E - 

38° 41' 49'' N)  

179,23 997 12,1 207,606 

2122 Murat Rıver- Tutak (42° 46' 49'' E - 

39° 32' 19'' N) 

47,48 821 1,97 73,041 

2124 Tohma Bourn - 

Yazıkoy 

(37° 26' 33'' E - 

38° 40' 21'' N) 

6,605 59,8 0,425 3,855 

2131 Bey Stream - 

Kılayık 

(38° 12' 36'' E - 

38° 19' 21'' N) 

1,343 38,8 0,11 1,894 

2135 Bulam Stream - 

Fatopasa 

(38° 14' 13'' E - 

37° 59' 38'' N) 

3,624 27,3 0,844 2,438 

2145 Tohma Bourn - 

Hısarcık 

(37° 41' 08'' E - 

38° 28' 32'' N) 

20,019 251 5,53 13,285 

2149 Munzur Bourn - 

Mıskısag 

(39° 32' 35'' E - 

39° 06' 29'' N) 

24,714 274 5,53 23,045 

2151 Fırat Rıver - 

Demirkapı (Sansa ) 

(40° 10' 05'' E - 

39° 34' 41'' N) 

58,863 712 4,07 74,378 

2156 Karasu - 

Asagıkagdarıc 

(38° 26' 55'' E - 

39° 25' 57'' N) 

150,9272 980 54,8 116,844 

2158 Bingöl Stream - 

Abdurrahman paşa 

Brıdge 

(41° 29' 14'' E - 

39° 06' 30'' N) 

18,4965 338 1,3 29,181 

2164 Goynuk Stream - 

Çayagzı 

(40° 33' 17'' E - 

38° 48' 06'' N) 

32,497 630 0,45 56,143 

2166 Perı Bourn - 

Logmar 

(39° 48' 50'' E - 

38° 51' 31'' N) 

76,742 967 0,55 96,458 

2610 Bıtlıs Stream - 

Baykan 

(41° 46' 57'' E - 

38° 09' 41'' N) 

17,969 420 1,95 24,602 

2612 Batman stream - 

Malabadı Brıdge 

(41° 12' 16'' E - 

38° 09' 16'' N) 

112,848 990 0,015 150,300 
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3.FINDINGS 422 

In this study conducted with the data of 14 stations in the Euphrates-Tigris Basin, daily stream 423 

data were divided into two as 70% train and 30% test. At the same time, it was aimed to find 424 

the best result in the shortest time by examining the stream data in 3 different input 425 

combinations. The first of these input combinations uses the stream data from a month ago  426 

(Q(t-1)) as input, and includes the current stream data as output (Q(t)), the second combination 427 

comprises Q(t-2)+Q(t-1) input data and Q(t) output data, and the third combination contains 428 

Q(t-3),Q(t-2), Q(t-1) input data and Q(t) output data. Modelling results of station 2102 made 429 

through these combinations are given in Table 2. As can be seen in the table, according to the 430 

results of R, RMSE, MSE and MAE, rank analysis was performed both between models and 431 

between data set combinations, and it was observed that ELM model gave the best results for 432 

station 2102, while the best result among data set combinations was found to be input  Q(t-433 

2)+Q(t-1)/ output Q(t) combination. At the same time, the outputs of ELM, ANFIS, ENN, SVM 434 

and GPR techniques are given in Figure 7.  435 

TABLE 2 Model Results of Murat River- Palu (2102) station 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

TRIAL NO RMSE RANK MSE RANK R RANK MAE RANK RMSE RANK MSE RANK R RANK MAE RANK

Q(t-1)-Q(t) 62,03     4         3.847,50     4        0,9873      4           0,12    5           53,09  3        2.819,06   3        0,9815  4        0,70    4 31

Q(t-2)+Q(t-1)-Q(t) 56,36     4         3.176,19     4        0,9898      4           0,23    5           46,02  4        2.118,20   4        0,9847  4        1,56    3 32

Q(t-3),Q(t-2), Q(t-1)-Q(t) 67,35     2         4.535,52     2        0,9884      2           0,28    5           49,82  4        2.481,69   4        0,9820  3        2,17    4 26

Q(t-1)-Q(t) 63,02     3         3.970,92     3        0,9873      3           0,94    3           53,07  4        2.816,83   4        0,9814  3        0,27    5 28

Q(t-2)+Q(t-1)-Q(t) 76,59     1         5.866,19     1        0,9822      1           3,27    3           60,50  1        3.660,17   1        0,9741  1        5,29    2 11

Q(t-3),Q(t-2), Q(t-1)-Q(t) 100,60  1         10.120,12   1        0,9746      1           3,31    3           75,10  1        5.639,93   1        0,9629  1        6,89    3 12

Q(t-1)-Q(t) 66,04     1         4.361,10     1        0,9798      1           22,75  2           50,58  5        2.558,79   5        0,9814  2        2,16    2 19

Q(t-2)+Q(t-1)-Q(t) 61,65     2         3.800,50     2        0,9849      3           19,60  2           45,68  5        2.086,61   5        0,9846  3        1,00    5 27

Q(t-3),Q(t-2), Q(t-1)-Q(t) 62,90     3         3.956,00     3        0,9849      3           28,96  1           47,15  5        2.223,45   5        0,9845  4        8,44    2 26

Q(t-1)-Q(t) 50,10     5         2.509,90     5        0,9899      5           0,45    4           54,33  1        2.951,49   1        0,9804  1        0,85    3 25

Q(t-2)+Q(t-1)-Q(t) 6,93       5         1,48             5        0,9897      5           1,94    4           55,42  2        3.071,47   2        0,9831  2        1,45    4 29

Q(t-3),Q(t-2), Q(t-1)-Q(t) 1,27       5         1,60             5        0,9953      5           0,48    4           57,63  2        3.320,83   2        0,9790  2        1,22    5 30

Q(t-1)-Q(t) 65,82     2         4.332,70     2        0,9824      2           23,27  1           54,12  2        2.928,30   2        0,9840  5        21,98  1 17

Q(t-2)+Q(t-1)-Q(t) 61,14     3         3.738,20     3        0,9849      2           20,75  1           50,04  3        2.503,70   3        0,9864  5        20,31  1 21

Q(t-3),Q(t-2), Q(t-1)-Q(t) 61,02     4         3.723,00     4        0,9849      4           20,69  2           49,82  3        2.481,80   3        0,9865  5        20,10  1 26

Q(t-1)-Q(t) 62,03     2         3.847,50     2        0,9873      1           0,12    3           53,09  1        2.819,06   1        0,9815  1        0,70    3 14

Q(t-2)+Q(t-1)-Q(t) 56,36     3         3.176,19     3        0,9898      3           0,23    2           46,02  3        2.118,20   3        0,9847  3        1,56    2 22

Q(t-3),Q(t-2), Q(t-1)-Q(t) 67,35     1         4.535,52     1        0,9884      2           0,28    1           49,82  2        2.481,69   2        0,9820  2        2,17    1 12

Q(t-1)-Q(t) 63,02     3         3.970,92     3        0,9873      3           0,94    3           53,07  3        2.816,83   3        0,9814  3        0,27    3 24

Q(t-2)+Q(t-1)-Q(t) 76,59     2         5.866,19     2        0,9822      2           3,27    2           60,50  2        3.660,17   2        0,9741  2        5,29    2 16

Q(t-3),Q(t-2), Q(t-1)-Q(t) 100,60  1         10.120,12   1        0,9746      1           3,31    1           75,10  1        5.639,93   1        0,9629  1        6,89    1 8

Q(t-1)-Q(t) 66,04     1         4.361,10     1        0,9798      1           22,75  2           50,58  1        2.558,79   1        0,9814  1        2,16    2 10

Q(t-2)+Q(t-1)-Q(t) 61,65     3         3.800,50     3        0,9849      3           19,60  3           45,68  3        2.086,61   3        0,9846  3        1,00    3 24

Q(t-3),Q(t-2), Q(t-1)-Q(t) 62,90     2         3.956,00     2        0,9849      2           28,96  1           47,15  2        2.223,45   2        0,9845  2        8,44    1 14

Q(t-1)-Q(t) 50,10     1         2.509,90     1        0,9899      1           0,45    3           54,33  3        2.951,49   3        0,9804  2        0,85    3 17

Q(t-2)+Q(t-1)-Q(t) 6,93       2         1,48             3        0,9897      3           1,94    1           55,42  2        3.071,47   2        0,9831  3        1,45    1 17

Q(t-3),Q(t-2), Q(t-1)-Q(t) 1,27       3         1,60             2        0,9953      2           0,48    2           57,63  1        3.320,83   1        0,9790  1        1,22    2 14

Q(t-1)-Q(t) 65,82     1         4.332,70     1        0,9824      1           23,27  1           54,12  1        2.928,30   1        0,9840  1        21,98  1 8

Q(t-2)+Q(t-1)-Q(t) 61,14     2         3.738,20     2        0,9849      2           20,75  2           50,04  2        2.503,70   2        0,9864  2        20,31  2 16

Q(t-3),Q(t-2), Q(t-1)-Q(t) 61,02     3         3.723,00     3        0,9849      3           20,69  3           49,82  3        2.481,80   3        0,9865  3        20,10  3 24

ELM

Q(t-1)-Q(t) 73,00                          Q(t-2)+Q(t-1)-Q(t) 95,00                                     Q(t-3),Q(t-2), Q(t-1)-Q(t) 72
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ANFIS

SVM

GPR
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TRAIN TEST

ELM

89

ANFIS

51

SVM

72

GPR

84

ENN

64

Perfect coefficient of variation (R ) = 1,  perfect root‐mean‐squared error (RMSE) = 0, perfect mean absolute error (MAE) = 0, perfect MSE = 0.

TOTAL RANK
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 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

FIGURE 7 ELM, ANFIS, SVM, GPR and ENN outputs of the station 2102 468 

  The results shown in Figure 8 (a, b, c, d) were obtained when evaluations for all stations 469 

were carried in this way.  470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

FIGURE 8  Evaluation results for 14 stations (a) RMSE values (b) R2 values (c) MSE values 486 

(d) MAE values 487 

In addition, rank values of all stations are given in Table 3, out of five points for five 488 

methods and out of three points for three data combinations.  489 
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TABLE 3  Rank value table for the 14 stations 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

Taking the 14 stations selected for the Euphrates-Tigris basin into consider, it is seen that 504 

the model performance ranking appears to be ELM, GPR, ENN, SVM, ANFIS, which proves 505 

the eligibility of ELM, GPR and ENN techniques, which are rarely used for river stream. At the 506 

same time, this result shows that the problems and uncertainties in commonly used ANFIS and 507 

SVM models are solved in ELM, GPR and ENN models. Moreover, it is seen that the best data 508 

set combination is the one that takes the stream data from 1, 2 and/or 3 days ago as input and 509 

the current stream data as output.  510 

 511 

3.RESULT 512 

In this study, five different artificial intelligence techniques were used for daily river stream 513 

estimation and it was aimed to find the best technique. In this context, river stream estimations 514 

were made using ANFIS, ELM, ENN, SVM, GPR techniques and daily stream data from the 515 

climate reference periods between 1981-2010. Rank analysis was applied to decide the best 516 

model and it was observed that the method with the highest rank value was ELM. In addition, 517 

the performance ranking was observed to be ELM, GPR, ENN, SVM, and ANFIS respectively. 518 

These results show that ELM, GPR and ENN give much better results when compared with 519 

traditional artificial intelligence techniques such as ANFIS and SVM. This shows that these 520 

techniques are also reliable models for river stream modelling, and the problems seen in 521 

traditional methods can be solved, and these models can be applied more quickly. When the 522 

evaluation was made on the basis of the data combination, it was observed that the best 523 

ELM ANFIS SVM GPR ENN ELM ANFIS SVM GPR ENN ELM ANFIS SVM GPR ENN

2102 31 28 19 25 17 32 11 27 29 21 26 12 26 30 26

2122 27 31 16 25 21 34 14 20 27 25 34 14 20 28 24

2124 19 31 23 26 21 33 16 26 22 23 26 16 25 23 30

2131 25 30 17 28 20 26 23 22 26 23 30 15 21 26 28

2135 24 24 21 30 21 30 21 20 27 22 25 15 27 23 30

2145 28 26 18 25 23 29 12 26 28 25 27 12 26 28 27

2149 30 24 18 29 19 33 12 21 28 26 31 12 21 31 25

2151 24 31 18 25 22 34 12 22 27 25 35 13 19 30 23

2156 30 21 18 25 26 32 14 22 27 25 33 11 23 28 25

2158 26 29 20 26 19 35 20 17 26 22 34 11 21 28 26

2164 31 29 16 26 18 35 22 14 26 23 33 11 21 31 24

2166 25 29 24 26 16 36 24 18 25 17 34 15 24 26 21

2610 32 28 17 25 18 34 24 14 26 22 33 13 19 29 26

2612 24 26 23 25 22 27 24 23 24 22 26 26 22 24 22

TOTAL 376 387 268 366 283 450 249 292 368 321 427 196 315 385 357

COMBINATION TOTAL

TOTAL ELM 1253 TOTAL ANFIS 832 TOTAL SVM 875 TOTAL GPR 1119 TOTAL ENN 961

TOTAL

2102 240

2122 240

2124 240

2131 240

2135 240

2145 240

2149 240

2151 240

2156 240

2158 240

2164 240

2166 240

2610 240

2612 240

COMBINATION TOTAL 3360966 1145 1249

75

81

Q(t-3),Q(t-2), Q(t-1)-Q(t)

72

91

90

78

89

85

88

104

93

91

96

84

98

9069

95

83

86

87

79

87

89

75

81

82

72

73

72

68

63

61

66

67

72

83

67

TOTAL RANK (Evaluation According To The Method)

STATION
Q(t-1)-Q(t) Q(t-2)+Q(t-1)-Q(t) Q(t-3),Q(t-2), Q(t-1)-Q(t)

1680 1680 1680

STATION
TOTAL RANK (Evaluation by Data Combination)

Q(t-1)-Q(t) Q(t-2)+Q(t-1)-Q(t)

73

66

64

75
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combination was the one created with Q(t-3), Q(t-2), Q(T-1) inputs and Q(t) output. In this way, 524 

more than one data set type was examined and it was found that the results given by the models 525 

for different input numbers were consistent.  526 

 527 

APPENDIX A Applicability of ANFIS, ELM, ENN, SVM and GPR approaches and streamflow forecasting, and 528 

hydrologic engineering fields. 529 

Hydrological 

Processes 

Scholars & Case 

study location 
Time scale Predictive models Unique aspects or salient features 

Precipitation 

Forecast 

(Akrami et al. 

2014)/ Malaysia 
Monthly 

connecting the 

wavelet 

decomposition 

method to ANFIS, 

ANFIS, ANN 

It was recommended to make 

precipitation prediction by connecting 

the wavelet decomposition method to 

ANFIS and artificial neural networks. 

As a result of the study, it was seen 

that ANFIS based on wavelet 

decomposition performed better than 

ANN and ANFIS. 

(Mokhtarzad et al. 

2017) /Tehran 
Monthly  

YSA, SVM, 

ANFIS (ın 

addıition to SPI) 

In this study in which YSA, SVM and 

ANFIS techniques were compared for 

precipitation prediction, the input 

parameter was used as temperature, 

humidity and precipitation while the 

output parameter was SPI. In addition 

to the high accuracy of all models, 

SVM was found to provide the best 

performance. 

(Choubin et al.  

2018)/ Iran 
Time Series 

Classification and 

regression 

trees (CART), 

ARIMA, ANFIS 

 

CART, ARIMA and ANFIS were 

used for precipitation estimation and 

these methods were compared. It was 

seen that the CART method gave 

better results.     

(Li et al. 2018) / 

China 
Monthly 

variational mode 

decomposition 

(VMD), 

ELM,  back 

propagation (BP) 

and Elman  

In the study, ELM and VMD were 

used to make estimations through 

precipitation time series. Then, a 

comparison was made with the hybrid 

models BP and Elman neural network. 

It was observed that ELM gave better 

results than the others. 

Evapotranspiration 
(Ferreira et al. 2019) 

/  Brazil 
Daily 

SVM, K-means, 

Cluster 

SVM was used for evapotranspiration 

estimation. In addition, k-means and 
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clustering method were used to group 

the meteorology stations. In this way, 

the performance of the models 

increased. 

(Tao et al.  

2018)/Burkina Faso 
Daily  

ANFIS, ANFIS-

FA 

ANFIS-FA, a new hybrid intelligent 

ANFIS model, was proposed for 

evapotranspiration prediction. The 

model was created with a large 

number of meteorological inputs and 

it provided good performance .  

(Han et al. 2019)/ 

China 
Monhly 

 XGBoots, 

multivariate 

adaptive 

regression splines 

(MARS), GPR 

In this study in which 

evapotranspiration was estimated by 

comparing XGBoost, MARS and 

GPR techniques, it was concluded that 

the MARS model was superior. 

Drought 

(Khan et al.  2020)/ 

Pakistan 
Time series 

SVM,  k-Nearest 

Neighbour (KNN) 

and Standardized 

Precipitation 

Evaporation Index 

(SPEI) 

In this study, the first drought 

prediction for Pakistan, SVM and 

KNN were used, and SPEI was used 

for drought calculations. 

(Zhang et al. 2020)/ 

China 
Yearly  

autoregressive 

integrated moving 

average 

(ARIMA), 

wavelet neural 

network (WNN), 

SVM 

Drought analysis was carried using 

SPEI drought index, and drought 

prediction modelling was performed 

with ARIMA, WNN and SVM. It was 

seen that ARIMA model gave better 

results. 

(Mokhtarzad et al. 

2017)/Khorasan 
3 monthly  

artificial neural 

network (ANN), 

SVM, ANFIS, SPI 

Drought analysis was performed by 

comparing ANN, SVM and ANFIS 

models, it was observed that the SVM 

model gave better results. 

Air Quality 

(Ghasemi and 

Amanollahi 

2019)/ Kermanshah

   

Daily  
ANFIS, forward 

selection (FS) 

In this study, in which air quality was 

examined through ANFIS, FS and 

ANFIS models were developed and it 

was found to be a suitable method for 

air quality examinations. 

(Bhardwaj and 

Pruthi 2020)/ India 
Time series 

particle swarm 

optimization 

In order to analyse an air pollutant, 

PSO and GA were used together with 

the ANFIS model, and as a result of 
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(PSO) and genetic 

algorithm (GA)  

this integration, it was seen that the 

model providing the best performance 

was ANFIS-PSO. 

Soil Moisture 

(Li et al.  2019)/ 

China 
Time series GPR 

The results of the study, in which GPR 

was used for soil moisture and 

temperature estimation, show that 

GPR is better in predicting soil 

moisture. 

(Ji et al. 

2019)/Hulan 
Time series 

stochastic weight 

particle swarm 

optimization 

algorithm 

(RandWPSO), 

ELM 

In this study, ELM and RandWPSO 

models were used to measure soil 

moisture quality and to test the 

usability of ELM. The accuracy level 

of ELM was found quite high. 

Water Level 

Estimation 

(Hipni et al. 2013)/ 

Malaysia 
Daily  

SVM,  V-fold 

cross-validation 

and the time lag 

SVM was used to estimate the daily 

dam water level, SVM was used 

together with V-fold cross-validation 

and the time lag to find the best result. 

The best result (R; amount of 

precipitation, L; water level) was 

achieved in combination of R(t-2) L(t-

2). 

(Deo and Şahin 

2016)/ Eastern 

Queensland 

Monthly ANN, ELM  

In the study in which water level 

estimation was performed using ANN 

and ELM models, it was concluded 

that ELM was superior in water level 

prediction. 

(Khan and 

Coulibaly 2006)/ 

North America 

3-12 

monthly 

SVM, multilayer 

perceptron 

(MLP), seasonal 

autoregressive 

model (SAR) 

In the study in which long-term 

estimation of lake water levels was 

made using SVM, SVM was 

compared with common artificial 

neural networks MLP and SAR, and it 

was seen that SVM gave better results. 

Water Quality 

(Azad et al.  2019)/ 

The Zayandehrood 

Basin 

Time series  

evolutionary 

algorithm(EA), 

ANN , ANFIS, 

ANFIS-PSO 

In the study investigating the water 

quality using ANFIS, ANN and EA, 

those models were compared with 

ANFIS-PSO and it was seen that 

ANFIS-PSO gave better results. 



22 
 

Evaporation 

(Mohamadi et al. 

2020)/Mianeh and 

Yazd 

Monthly  

Shark algorithm 

(SA), d frefy 

algorithms 

(FFA),multilayer 

perceptron (MLP) 

radial basis 

function (RBF), 

ANFIS 

ANFIS, RBF, MLP, RBF-SA, MLP-

SA, RBF-FFA, MLP-FFA models 

were used for monthly evaporation 

estimation. It was observed that the 

ANFIS model gave better results 

when developed. 

Sediment 

Transportation 
(Safari et al. 2019) Time series 

Gene Expression 

Programming 

(GEP), ELM, 

Generalized 

Structure Group 

Method of Data 

Handling (GS-

GMDH) ,Fuzzy c-

means(FCM), 

FCM-ANFIS 

In the study investigating sediment 

transport in open channels through 

GEP, ELM, GS-GMDH, FCM-

ANFIS models, it was observed that 

GS-GMDH model gave better results. 

Discharge 

Coefficient 
(Azimi et al. 2017) Time series ELM 

Genetic Algorithm (GA) - Least 

Square Estimator (GL) and adaptively 

developed ANFIS were used as 

R(ANFIS) and R-ANFIS(GL) for 

river stream modelling. It was seen 

that the R-ANFIS (GL) model gave 

better results. 

River Stream 

Estimation 

(Zhou et al.  2019)/ 

China 
Time series  

R-ANFIS, R-

ANFIS(GL) 

Genetic Algorithm (GA) - Least 

Square Estimator (GL) ve 

uyarlanabilir şekilde geliştirilmiş 

ANFIS; R(ANFIS) ve R-ANFIS(GL) 

şeklinde nehir akımı modellemesi için 

kullanılmıştır. Çalışmada R-

ANFIS(GL) modelinin daha iyi sonuç 

verdiği görülmüştür.  

(He et al. 2014)/ 

China 
Monthly 

ANN, ANFIS, 

SVM 

ANN, ANFIS and SVM were used in 

the study in which three different data-

based models were used for river 

stream estimation. It was observed 

that SVM provided better 

performance than other methods and it 

was stated that these methods could be 
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used in regions with complex 

topography. 

(Rezaeianzadeh et 

al. 2014)/ Iran 
Daily 

multiple linear 

regression (MLR) 

,multiple 

nonlinear 

regression 

(MNLR), ANN, 

ANFIS 

NN, ANFIS, MLR and MNLR were 

used to estimate the maximum daily 

stream. In this study in which 

precipitation and stream data were 

used in different combinations for 

simulations, it was stated that the 

MNLR model was superior. 

(Yaseen et al. 

2019)/ Malaysia 
Daily 

EELM, ELM, 

SVM 

In the study in which the ELM model 

was developed and compared with 

SVM in the form of EELM, it was 

seen that the developed ELM model 

has much superior features. 

(Yaseen et al. 

2016)/ Malaysia 
Daily 

ELM, SVR, 

single-layer 

feedforward 

neural network 

(SLFN) 

In the study in which ELM, SVR 

(SVM) and SLFN models were used, 

ELM was suggested for river stream 

modelling and it was found that ELM 

was superior to other models. 

(Adnan et al. 2019) Daily 

ELM- 

ANFISPSO, 

multivariate 

adaptive 

regression 

splines(MARS), 

M5 model tree 

(M5Tree) 

In the study in which ELM was 

developed and used as OP-ELM, 

ANFIS PSO, MARS and M5Tree 

models were compared with OP-ELM 

and it was stated that OP-ELM was 

superior to other methods. 

(Yaseen et al.  

2020)/ Australia 
Hourly 

ENN, MARS, 

RVM, MPMR 

In the study in which ENN, 

Multivariate adaptive regression 

splines (MARS), Minimax Probability 

Machine Regression (MPMR), 

Relevance Vector Machine (RVM) 

methods were applied for hourly river 

stream modelling, ENN was proposed 

for the first time for river stream and it 

was found to be superior to other 

models. 
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(Sun et al.  2014)/ 

ABD 
Daily  GPR 

In the study in which river stream 

estimations were made by using GPR 

for MOPEX basins, it was concluded 

that GPR performed well when long-

term stream data were used. 

 530 

DATA AVAILABILITY 531 

The data used in the study Turkey's State Hydraulic Works Electrical Power Resources Survey 532 

and Development Administration current supplied by the General Directorate of the annual 533 

observations were obtained. Current observation annuals can be accessed at 534 

https://www.dsi.gov.tr/Sayfa/Detay/744. At the same time, MATLAB R2020a program was 535 

used for the techniques used. While MATLAB Toolbox is used for ANFIS, SVM, GPR 536 

techniques, MATLAB codes obtained from the web address 537 

http://www.ntu.edu.sg/home/egbhuang/ for ELM technique while developing the ENN 538 

technique at https://www.researchgate.net The code was developed with reference to the 539 

broadcast at the web address / publication / 269399412. 540 
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