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Abstract

This article investigates a family of approximate solutions for the frac-
tional isothermal chemical (FIC) equation based on mass action kinetics
for autocatalytic feedback, involving the conversion of a reactant in the
Liouville-Caputo sense. We apply two methods to construct numerical
solutions of the FIC equation. By the first method, the spectral colloca-
tion method (SCM), we reduce the FIC equation to a system of algebraic
equations using Chebyshev polynomials of the third kind (CPTK). We
then use the Newton-Raphson method (NRM) to solve the system of al-
gebraic equations. By the second method, using properties of Lagrange
polynomial interpolation (LPI) after applying the fundamental theorem
of fractional calculus, we evaluate numerical solutions of the FIC equa-
tion. We compare these numerical solutions and compute the absolute
error for varying parameter values. The results confirm the efficiency of
the methods and their computationally favorable use for the numerical
treatment of the model equations.
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1. Introduction, Definitions and Preliminaries

Many real world problems cannot be modeled using equations with standard deriva-
tives. So many researchers have then been attracted to problems governed by fractional
derivatives. Fractional differential equations can be used and applied to model many
applications, as they have proven to be effective for theoretical work and in simulations.
Fractional-order equations govern systems arising in electrical, electronic, mechanical,
biological and other application areas and are represented either through transfer func-
tions or state space. Fractional equations are based on the use of fractional calculus
to describe and model such systems, as well as in a range of control and physical ap-
plications. The use of fractional calculus can improve and generalize well established
control methods and strategies, for more details see [1, 2]. Unfortunately, for most of
these models it is difficult to find an exact solution. Therefore, many researchers have
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been interested in deriving approximate and numerical methods to find approximate
and numerical solutions of these models, which allows the study of the dynamics and
behavior of the systems governed by these models. There are many such methods,
including homotopy analysis [3, 4], He’s variational iteration method [5, 6], Adomian’s
decomposition method [7, 8], Fourier spectral methods [9], finite difference schemes [10]
and collocation methods [11]. Recently, numerical and approximate methods have been
used to find numerical solutions and study the dynamical behavior of many fractional
systems. Devendr et al [15] studied exothermic reactions with a constant heat source
in a porous medium with strong memory effects. They used the fractional Laplace
decomposition technique to find numerical solutions. Devendr et al [13] investigated
the fractional extension of the vibration equation for very large membranes, which has
several distinct special cases in the Atangana-Baleanu sense. Dumitru et al [14] inves-
tigated a harmonic oscillator with a position dependent mass. They found numerical
results based on Caputo and Atangana-Baleanu-Caputo fractional derivatives. Amin
et al [18] investigated a fractional SIRS model for the disease HRSV using the Mittag-
Leffler kernel. Amin et al [19] introduced a general form of a fractional optimal control
model with singular or non-singular kernels. They compared their results found us-
ing the Mittag-Leffler kernel with those found using other fractional- and integer-order
derivatives [19]. They examined the effect of treatment of HRSV based on an optimal
control strategy of the evolution of susceptible, infectious and recovered individuals.
Devendra et al [15] proposed an exothermic reaction model with a constant heat source
in porous media with strong memory effects. They utilized the fractional Laplace de-
composition technique based on the Caputo, Caputo-Fabrizio and Atangana-Baleanu
fractional operators to find numerical solutions of this model based on a fractional en-
ergy balance equation. Also, Devendra et al [16] proposed and studied the behavior of
SIRS-SI malaria transmission using a fractional SIRS-SI malaria model and examined a
number of cures, such as the utilization of vaccines, antimalarial medicines and spray-
ing. They used HATM and Padé approximation to perform numerical simulations.
Devendra et al. [17] Devendra investigated a fractional extension of the vibration equa-
tion for very large membranes with distinct special cases in the Atangana-Baleanu
sense and calculated numerical solutions using a homotopic technique. These recent
advancements in numerical methods for fractional order models have shown that they
can be used as very accurate tools to model the real world problems. In this direction,
several recent procedures have been suggested, see [20, 21, 22].

Scott et al. studied an extension of the model of Scott [23] to model three species
isothermal chemical reactions to include aperiodic responses and an isothermal response
capable of supporting complex periodic reactions. This model includes three intermedi-
ate chemical species, A , B and C, for a chemical reaction which converts the relatively
stable precursor reactant P to a final product D. These chemical reactions are

P → U, rate = k0p, (1)

P +W → U +W, rate = kwpw, (2)

U → V, rate = kau, (3)

U + 2V → 3V, rate = k1uv
2, (4)

V →W, rate = k2V, (5)

W → D, rate = k3w, (6)



Fractional Isothermal Chemical Model 3

By applying a mass action analysis to (1)–(6), the governing rate equations based on
these reactions are

dp

dτ
= −k0p− kwpw, (7)

du

dτ
= k0p+ kwpw − kau− k1uv

2, (8)

dv

dτ
= kau+ k1uv

2 − k2v, (9)

dw

dτ
= kau+ k1uv

2 − k2v, (10)

In dimensionless form, these equations are

dα1

dt
= −ρα1(κ+ α4), (11)

dα2

dt
= α1(κ+ α4)− α2α

2
3 − α2, (12)

σ
dα3

dt
= α2α

2
3 + α2 − α3, (13)

δ
dα4

dt
= α3 − α4, (14)

where

α1 =
kcP

k3
, α2 =

(k1ku
k21

) 1
2
a, α3 =

(k1
k4

) 1
2
, α4 =

(k1k23
k4k22

) 1
2

are the dimensionless concentrations of the four chemical species and t = kaτ is the
dimensionless time. In addition, the dimensionaless reaction rates are

κ =
(k0k3
k2kc

)(k1
ka

) 1
2
, δ =

(k4
k3

)
, σ =

(ka
k2

)
, ρ =

kwk2

k3

(
k1ka

) 1
2

.

The importance and novelty of the results of the present work are, first of all, the
study and determination of numerical solutions for the important chemical system of
this paper and, secondly, the accuracy and efficiency of the results of this paper shown
by comparing results obtained using two methods. Furthermore, the results obtained
using these two methods are compared with those based on a third method proposed
in [24]. Accordingly, these results could be useful to many chemical and physical
researchers in order to relate these mathematical results with experimental results. As
a result, as many fractional differential systems do not have exact solutions, there is
a very strong motivation to try to study the behavior and accuracy of solutions of
fractional equations governing chemical reactions. Hence, the present work focuses
on first establishing schemes and iterative solutions for fractional equations governing
chemical reactions and then detailing their accuracy.

In this section, we give some basic definitions from fractional calculus theory and
properties of fractional derivatives, see, for example, [25, 26].
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Definition 1. For ν > 0, and α(t) ∈ L1(a, b), with L1(a, b) the space of all integrable
functions on (a, b), then the Riemann-Liouville fractional integral of order ν, denoted
by Jν

0 , is given by

Jν
0α(t) =

1

Γ(ν)

∫ t

0
(t− η)α−1α(η)dη. (15)

Definition 2. For ν > 0, the Liouville-Caputo fractional derivative of order ν, denoted
by LCDν

0 , is defined by

LC
0Dν

ξα(t) =
1

Γ(n− ν)

∫ t

0
(t− η)n−ν−1Dnα(η)dη (16)

(n− 1 < ν < n; n ∈ N = {1, 2, 3, · · · }),

The fractional isothermal chemical model in the Liouville-Caputo sense is obtained
by replacing the derivatives d

dt by the fractional derivatives 0D
ν
t , 0 < ν ≤ 1, t > 0, in

the dimensionless chemical reaction equations (11)–(14), resulting in

0D
ν
t α1(t) = −ρα1(κ+ α4), (17)

0D
ν
t α2(t) = α1(κ+ α4)− α2α

2
3 − α2, (18)

σ0D
ν
t α3(t) = α2α

2
3 + α2 − α3, (19)

δ0D
ν
t α4(t) = α3 − α4. (20)

The main structure of the paper is as follows. In the second and third sections,
the numerical scheme and solutions for the fractional isothermal chemical model in the
Liouville-Caputo sense are constructed. In Section 4, the numerical results presented
and investigated. Finally, in Section 5, conclusions and future research directions are
presented.

2. Chebyshev spectral collocation method

Chebyshev polynomials have many applications in engineering and science. These
polynomials were developed by the Russian mathematician Pafnuty Lvovich Chebyshev
in 1857 [34, 35]. The main aim of this study is to implement the Chebyshev spectral
collocation method (CSCM) in order to solve the FIC model given by (11)–(14) and
to show that CSCM greatly simplifies this model to a non-linear system of algebraic
equations which is solvable using many available numerical methods and techniques. By
using well-known mathematical software, such as Mathematica or Matlab, we can easily
find the Chebyshev coefficients, thereby creating numerical solutions of the fractional
model presented in this paper. This is one of the advantages of CSCM, which is the
ease of rapidly finding numerical solutions. This method is faster and more efficient
than other methods. Among the advantages of this method are that it can be applied
on finite and infinite domains and that it provides an accurate numerical technique
with high efficiency and exponential rates of convergence, see [36, 40].
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2.1. Numerical Scheme and Its Convergence Analysis. The classical orthogonal
CPTK of degree n, which are orthogonal on [−1, 1], can be derived from the following
formula (see, for example, [39] and [41])

P (3)
n (ζ) =

cos
((
n+ 1

2

)
ψ
)

cos
(
1
2ψ
) (

ζ = cos(ψ); 0 5 ψ 5 π
)
.

In this section, we will use these functions on [0, ~], so we construct the so-called shifted
CPTK using the linear transform ζ = (2/~)t−1. These shifted Chebyshev polynomials
are then given by

C̄n(t) = P (3)
n

(
(2/~)t− 1

)
,

where
C̄0(t) = 1 and C̄1(t) = (4/~)t− 3.

One of the most useful formulas involving C̄n(t) is the analytic form given by [28, 29]

C̄n(t) =
n∑

k=0

(−1)k22n−2k (2n+ 1)Γ(2n− k + 1)

~n−kΓ(k + 1)Γ(2n− 2k + 2)
tn−k, (n = 2, 3, 4, · · · ).

The function α(t) ∈ L2[0, ~] can be approximated as a finite sum of {C̄0(t), C̄1(t), · · · }
as

αm(t) =
m∑
ℓ=0

aℓ C̄ℓ(t). (21)

Theorem 1. Suppose that the function α(t) satisfies α′′(t) ∈ L2[0, ~] and |α′′
(t)| 5 ξ,

where ξ is a constant. Then the expansion (21) of the shifted Chebyshev polynomials is
uniformly convergent and

|aℓ| <
ξ

ℓ2
, (ℓ ∈ 1, 2, ...), (22)

see [38].

Theorem 2. Suppose that α(t) ∈ Cm[0, 1]. The bound of the error on approximating
the function α(t) by the Chebyshev polynomial expansion (21) is

∥α(t)− αm(t)∥ 5 ς∆m+1

(m+ 1)!

√
π

2
and ς = maxt∈[0,1]α

(m+1)(t) (23)

(∆ = max{t0, t− t0}),
see [38].

In this section, we also give an approximate formula for Dναm(t) through the fol-
lowing theorem.

Theorem 3. Suppose that the function α(t) is approximated in the form (21). Then
Dν
(
αm(t)

)
can be defined by

Dν
(
αm(t)

)
=

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

ai Ξ
(ν)
i, k t

i−k−ν and

Ξ
(ν)
i, k =

(−1)k22i−2k(2n+ 1) (2i− k)!(i− k)!

~n−k(k!) Γ(2i− 2k + 2)Γ(i− k + 1− ν)
, (24)

see [27, 43].
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2.2. Construction the SCM. We will now implement the Chebyshev spectral collo-
cation method to solve numerically the FIC model given by (11)–(14) as follows [42, ?]

α1,m(t) =

m∑
k=0

α1,k C̄k(t), α2,m(t) =

m∑
k=0

α2,k C̄k(t),

α3,m(t) =

m∑
k=0

α3,k C̄k(t) and α4,m(t) =

m∑
k=0

α4,k C̄k(t). (25)

Substituting these expanions into the FIC Eqs. (11)–(14) and using, we obtain

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α1,i Ξ
(ν)
i, k t

i−k−ν = −ρ

(
m∑
k=0

α1,i C̄k(t)

)(
κ+

m∑
k=0

α4,i C̄k(t)

)
, (26)

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α2,i Ξ
(ν)
i, k t

i−k−ν =

(
m∑
k=0

α1,i C̄k(t)

)(
κ+

m∑
k=0

α4,i C̄k(t)

)

−

(
m∑
k=0

α2,i C̄k(t)

)(
m∑
k=0

α3,i C̄k(t)

)2

−

(
m∑
k=0

α2,i C̄k(t)

)
, (27)

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α3,i Ξ
(ν)
i, k t

i−k−ν =

(
m∑
k=0

α2,i C̄k(t)

)(
m∑
k=0

α3,i C̄k(t)

)2

+

(
m∑
k=0

α2,k C̄k(t)

)
−

(
m∑
k=0

α3,i C̄k(t)

)
, (28)

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α4,i Ξ
(ν)
i, k t

i−k−ν =

(
m∑
k=0

α3,k C̄k(t)

)
−

(
m∑
k=0

α4,i C̄k(t)

)
. (29)

These last equations (26)–(29) will be collocated at m nodes tp, p = 0, 1, . . . ,m− 1, as
follows

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α1,i Ξ
(ν)
i, k t

i−k−ν
p = −ρ

(
m∑
k=0

α1,i C̄k(tp)

)(
κ+

m∑
k=0

α4,i C̄k(tp)

)
, (30)
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m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α2,i Ξ
(ν)
i, k t

i−k−ν
p =

(
m∑
k=0

α1,i C̄k(tp)

)(
κ+

m∑
k=0

α4,i C̄k(tp)

)

−

(
m∑
k=0

α2,i C̄k(tp)

)(
m∑
k=0

α3,i C̄k(tp)

)2

−

(
m∑
k=0

α2,i C̄k(tp)

)
, (31)

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α3,i Ξ
(ν)
i, k t

i−k−ν
p =

(
m∑
k=0

α2,i C̄k(tp)

)(
m∑
k=0

α3,i C̄k(tp)

)2

+

(
m∑
k=0

α2,k C̄k(tp)

)
−

(
m∑
k=0

α3,i C̄k(tp)

)
, (32)

m∑
i=⌈ν⌉

i−⌈ν⌉∑
k=0

α4,i Ξ
(ν)
i, k t

i−k−ν
p =

(
m∑
k=0

α3,k C̄k(tp)

)
−

(
m∑
k=0

α4,i C̄k(tp)

)
. (33)

In addition, the associated initial conditions can be obtained by using the expansions
Eqs. (25). We thus have

m∑
i=0

(−1)i(2i+ 1)α1,i = α1,0, (34)

m∑
i=0

(−1)i(2i+ 1)α2,i = α2,0, (35)

m∑
i=0

(−1)i(2i+ 1)α3,i = α3,0, (36)

m∑
i=0

(−1)i(2i+ 1)α4,i = α4,0. (37)

Finally, Eqs. (30)–(33), together with the initial conditions (34)–(37), give rise to a
non-linear system of 4(m+ 1) algebraic equations. This system of algebraic equations
will be solved for the following unknowns α1,i, α2,i, α3,i, α4,i, i = 0, 1, · · · ,m, by using
the Newton-Raphson iteration method.

3. Lagrange polynomial interpolation

In this section we construct the iteration formula for the solution of the fractional
model using the method of [44]. This method is based on the fundamental theorem of
fractional calculus and Lagrange polynomial interpolation. For this iterative formula
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we apply the fundamental theorem of fractional calculus on (17)–(20) and obtain

α1(t)− α1(0) =
1

Γ(ν)

∫ t

0

(
− ρα1(η)(κ+ α4(η))

)
(t− η)ν−1dη, (38)

α2(t)− α2(0) =
1

Γ(ν)

∫ t

0

(
α1(η)(κ+ α4(η))− α2(η)α

2
3(η)− α2(η)

)
(t− η)ν−1dη, (39)

α3(t)− α3(0) =
1

Γ(ν)

∫ t

0

(
α2(η)α

2
3(η) + α2(η)− α3(η)

)
(t− η)ν−1dη, (40)

α4(t)− α4(0) =
1

Γ(ν)

∫ t

0

(
α3(η)− α4(η)

)
(t− η)ν−1dη. (41)

These equations (38)–(41) can be reformulated as

α1(tn+1)− α1(0) =
1

Γ(ν)

∞∑
m=0

∫ tm+1

tm

(
− ρα1(η)(κ+ α4(η))

)
(tm+1 − η)ν−1dη, (42)

α2(tn+1)− α2(0) =
1

Γ(ν)

∞∑
m=0

∫ tm+1

tm

(
α1(η)(κ+ α4(η))− α2(η)α

2
3(η)− α2(η)

)
× (tm+1 − η)ν−1dη, (43)

α3(tn+1)− α3(0) =
1

Γ(ν)

∞∑
m=0

∫ tm+1

tm

(
α2(η)α

2
3(η) + α2(η)− α3(η)

)
(tm+1 − η)ν−1dη,

(44)

α4(tn+1)− α4(0) =
1

Γ(ν)

∞∑
m=0

∫ tm+1

tm

(
α3(η)− α4(η)

)
(tm+1 − η)ν−1dη. (45)

Using two step Lagrange polynomial interpolation we obtain

α1(tn+1) = α1(0) +
1

hΓ(ν)

n∑
m=0

((
− ρα1(tm)(κ+ α4(tm)

)∫ tm+1

tm

(η − tm−1)

(tm+1 − η)1−α
dη

−
(
− ρα1(tm−1)(κ+ α4(tm−1)

)∫ tm+1

tm

(η − tm)

(tm+1 − η)1−ν
dη

)

α2(tn+1) = α2(0) +
1

hΓ(ν)

n∑
m=0

((
α1(tm)(κ+ α4(tm))− α2(tm)α2

3(tm)− α2(tm)
)

×
∫ tm+1

tm

(η − tm−1)

(tm+1 − η)1−ν
dη −

(
α1(tm−1)(κ+ α4(tm−1))

− α2(tm−1)α
2
3(tm−1)− α2(tm−1)

)∫ tm+1

tm

(η − tm)

(tm+1 − η)1−ν
dη

)
, (46)
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α3(tn+1) = α3(0) +
1

hΓ(ν)

n∑
m=0

((
α2(tm)α2

3(tm) + α2(tm)− α3(tm)
)

×
∫ tm+1

tm

(η − tm−1)

(tm+1 − η)1−ν
dη −

(
α2(tm−1)α

2
3(tm−1) + α2(tm−1)

− α3(tm−1)
)∫ tm+1

tm

(η − tm)

(tm+1 − η)1−ν
dη

)
, (47)

α4(tn+1) = α4(0) +
1

hΓ(ν)

n∑
m=0

((
α3(tm)− α4(tm)

)∫ tm+1

tm

(η − tm−1)

(tm+1 − η)1−ν
dη

−
(
α3(tm−1)− α4(tm−1)

)∫ tm+1

tm

(η − tm)

(tm+1 − η)1−ν
dη

)
. (48)

The integrals in these Lagrange interpolation formulae are evaluated directly. The
numerical solution of (17)–(20) involving the LC derivative is then given by

α1(tn+1) = α1(0) +
hν

ν(1 + ν)Γ(ν)

n∑
m=0

((
− ρα1(tm)(κ+ α4(tm)

)
Θ1(n,m)

−
(
− ρα1(tm−1)(κ+ α4(tm−1)

)
Θ2(n,m)

)
, (49)

α2(tn+1) = α2(0) +
hν

ν(1 + ν)Γ(ν)

n∑
m=0

((
α1(tm)(κ+ α4(tm))− α2(tm)α2

3(tm)

− α2(tm)
)
×Θ1(n,m)−

(
α1(tm−1)(κ+ α4(tm−1))

− α2(tm−1)α
2
3(tm−1)− α2(tm−1)

)
Θ2(n,m)

)
, (50)

α3(tn+1) = α3(0) +
hν

ν(1 + ν)Γ(ν)

n∑
m=0

((
α2(tm)α2

3(tm) + α2(tm)− α3(tm)
)

× Θ1(n,m)−
(
α2(tm−1)α

2
3(tm−1) + α2(tm−1)

− α3(tm−1)
)
Θ2(n,m)

)
, (51)

α4(tn+1) = α4(0) +
hν

ν(1 + ν)Γ(ν)

n∑
m=0

((
α3(tm)− α4(tm)

)
Θ1(n,m)

−
(
α3(tm−1)− α4(tm−1)

)
Θ2(n,m)

)
. (52)

Θ(n,m) =
(
(n+ 1−m)ν(n−m+ 2 + ν)− (n−m)ν × (n−m+ 2 + 2ν)

)
, (53)
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Θ2(n,m) =
(
(n+ 1−m)ν+1 − (n−m)ν(n−m+ 1 + ν)

)
. (54)

4. Numerical Results and Discussion

In this section we discuss numerical results obtained using methods presented in
the previous sections. We plot the numerical solutions for both methods for different
values of ν. In Figure 1, the two numerical solutions are shown for ν = 1, m = 21,
h = 0.003, L = 10, ρ = 0.5, κ = 0.1, σ = 0.05 and δ = 2. From this figure it is
clear that the two solutions are in agreement, both in terms of the overall behavior
and the detailed agreement. In Figure 2, the absolute errors between the two solutions
for the same parameter values as Figure 1 are shown. It is clear that from this figure
that the error is very small and that the error between the two solutions decreases as
more terms are used in the SCM and more iterates are used in the LP method. In
Figure 3, the two numerical solutions for SCM and LPI are also compared, but in this
case for non-integer ν and the parameter values ν = 0.7, m = 21, h = 0.003, L = 30,
ρ = 0.05, κ = 2, σ = 0.05 and δ = 0.2. This comparison is key, as most previous
work has not considered non-integer ν. It is also clear from this figure that there is
good agreement between the two solutions. In Figure 4, the absolute error between
the two numerical solutions is shown. It is clear that the error is small and decreases
as the number of terms in the SCM increases and as the number of iterations in the
LPI increases. Through these figures and the associated results we see the accuracy
and effectiveness of the two methods. We can then conclude that these methods can
be used to solve fractional models for which exact solutions are difficult, or impossible,
to obtain. To verify the accuracy of the methods of this paper in the non-integer case
we shall now compare results obtained using them with solutions obtained using the
four stage fractional Runge-Kutta method (FSFRK). These comparisons are shown
in Tables 1 to 4. From these tables, we note that the absolute error between with
the two methods of this paper is very small and is of the order 10−4–10−6, while the
absolute error between the two methods separately with the FSFRK is of the order
10−1–10−2. We note that there is no exact solution in the fractional case to compare
with. However, we can conclude that the FSFRK is better than the two methods of
this paper in the integer case, while in the non-integer case, the two methods of this
work are better. Finally, as a general conclusion from the figures of this paper, we can
confirm the efficiency of the present algorithm and its computationally favorable use
for the numerical treatment of the chemical reaction model.
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n |α1,SCM (t)− α1,LPI(t)| |α1,SCM (t)− α1(t)|[24] |α1,LPI(t)− α1(t)|[24]
0 2.60208× 10−18 0. 2.60209× 10−18

200 6.02204× 10−5 2.99953× 10−2 2.99351× 10−2

400 1.16289× 10−5 3.24614× 10−2 3.24497× 10−2

600 1.45956× 10−5 3.00798× 10−2 3.00652× 10−2

800 1.07694× 10−5 2.72211× 10−2 2.72103× 10−2

1000 4.71929× 10−6 2.48346× 10−2 2.48298× 10−2

1200 4.47128× 10−6 2.30074× 10−2 2.30029× 10−2

1400 3.86194× 10−6 2.16387× 10−2 2.16348× 10−2

1600 2.04109× 10−7 2.06152× 10−2 2.06149× 10−2

1800 3.65703× 10−6 1.98468× 10−2 1.98431× 10−2

2000 1.31879× 10−6 1.9268× 10−2 1.92693× 10−2

2200 2.43018× 10−6 1.88317× 10−2 1.88292× 10−2

2400 8.42236× 10−7 1.85039× 10−2 1.85048× 10−2

2600 1.14618× 10−7 1.82601× 10−2 1.826× 10−2

2800 8.56490× 10−7 1.8082× 10−2 1.80829× 10−2

3000 8.07654× 10−6 1.79559× 10−2 1.7964× 10−2

Table 1. Absolute error between the numerical solutions α1(t)
via different methods with the parameters ν = 0.8,m = 21, h =
0.003, L = 10, ρ = 0.5, κ = 0.001, σ = 0.05, δ = 1.

n |α1,SCM (t)− α2,LPI(t)| |α2,SCM (t)− α2(t)|[24] |α2,LPI(t)− α2(t)|[24]
0 6.07153× 10−18 0. 6.07153× 10−18

200 4.92884× 10−5 4.08968× 10−2 4.08475× 10−2

400 5.69901× 10−5 5.43755× 10−2 5.43185× 10−2

600 4.03982× 10−5 5.00733× 10−2 5.00329× 10−2

800 2.19229× 10−5 4.28086× 10−2 4.27867× 10−2

1000 2.42961× 10−5 3.61967× 10−2 3.61724× 10−2

1200 1.26664× 10−5 3.08192× 10−2 3.08065× 10−2

1400 1.2939× 10−5 2.6552× 10−2 2.65391× 10−2

1600 1.00215× 10−5 2.31606× 10−2 2.31505× 10−2

1800 5.99963× 10−6 2.04379× 10−2 2.04319× 10−2

2000 8.28771× 10−6 1.82249× 10−2 1.82166× 10−2

2200 3.28531× 10−6 1.64038× 10−2 1.64005× 10−2

2400 5.35059× 10−6 1.48873× 10−2 1.4882× 10−2

2600 3.93416× 10−6 1.36108× 10−2 1.36069× 10−2

2800 4.77267× 10−6 1.25254× 10−2 1.25206× 10−2

3000 1.19682× 10−5 1.15941× 10−2 1.15821× 10−2

Table 2. Absolute error between the numerical solutions α2(t)
via different methods with the parameters ν = 0.8,m = 21, h =
0.003, L = 10, ρ = 0.5, κ = 0.001, σ = 0.05, δ = 1.
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n |α3,SCM (t)− α3,LPI(t)| |α3,SCM (t)− α3(t)|[24] |α3,LPI(t)− α3(t)|[24]
0 1.04083× 10−17 0. 1.04083× 10−17

200 2.45785× 10−5 3.06282× 10−2 3.06036× 10−2

400 5.30771× 10−5 5.85204× 10−2 5.84673× 10−2

600 3.66593× 10−5 5.87576× 10−2 5.87209× 10−2

800 3.11229× 10−5 5.18448× 10−2 5.18136× 10−2

1000 2.33345× 10−5 4.4461× 10−2 4.44376× 10−2

1200 1.98171× 10−5 3.81169× 10−2 3.80971× 10−2

1400 1.31221× 10−5 3.29483× 10−2 3.29352× 10−2

1600 1.37472× 10−5 2.87791× 10−2 2.87654× 10−2

1800 7.69093× 10−6 2.54017× 10−2 2.53941× 10−2

2000 9.47462× 10−6 2.26409× 10−2 2.26315× 10−2

2200 5.19805× 10−6 2.03606× 10−2 2.03554× 10−2

2400 6.45289× 10−6 1.84576× 10−2 1.84511× 10−2

2600 3.96895× 10−6 1.68534× 10−2 1.68494× 10−2

2800 3.41791× 10−6 1.54886× 10−2 1.54852× 10−2

3000 5.51117× 10−6 1.43173× 10−2 1.43118× 10−2

Table 3. Absolute error between the numerical solutions α3(t)
via different methods with the parameters ν = 0.8,m = 21, h =
0.003, L = 10, ρ = 0.5, κ = 0.001, σ = 0.05, δ = 1.

n |α4,SCM (t)− α4,LPI(t)| |α4,SCM (t)− α4(t)|[24] |α4,LPI(t)− α4(t)|[24]
0 2.77556× 10−17 0. 2.77556× 10−17

200 5.32337× 10−4 1.8888× 10−1 1.88348× 10−1

400 1.20797× 10−4 2.00223× 10−1 2.00102× 10−1

600 1.32488× 10−4 1.78051× 10−1 1.77919× 10−1

800 1.15042× 10−4 1.5151× 10−1 1.51395× 10−1

1000 5.08749× 10−5 1.28395× 10−1 1.28344× 10−1

1200 5.98567× 10−5 1.09807× 10−1 1.09747× 10−1

1400 4.45511× 10−5 9.50965× 10−2 9.50519× 10−2

1600 1.92651× 10−5 8.3395× 10−2 8.33758× 10−2

1800 4.46373× 10−5 7.39762× 10−2 7.39316× 10−2

2000 2.07441× 10−6 6.62934× 10−2 6.62914× 10−2

2200 3.44291× 10−5 5.99455× 10−2 5.9911× 10−2

2400 4.81463× 10−6 5.46374× 10−2 5.46326× 10−2

2600 1.39483× 10−5 5.01503× 10−2 5.01364× 10−2

2800 3.34797× 10−6 4.63193× 10−2 4.63159× 10−2

3000 5.81874× 10−5 4.30186× 10−2 0.04308× 10−2

Table 4. Absolute error between the numerical solutions α4(t)
via different methods with the parameters ν = 0.8,m = 21, h =
0.003, L = 10, ρ = 0.5, κ = 0.001, σ = 0.05, δ = 1.
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Figure 1. Comparison between the numerical solutions for ν =
1,m = 21, h = 0.003, L = 10, ρ = 0.5, κ = 0.1, σ = 0.05, δ = 2. (Red
solid color: SCM; Blue dashed color: LPI)

0 1 2 3 4 5 6 7 8 9 10
0.00000

0.00005

0.00010

0.00015

0.00020

t

A
bs

ol
ut

eE
rr

or

HaL

0 1 2 3 4 5 6 7 8 9 10
0.000

0.001

0.002

0.003

0.004

t

A
bs

ol
ut

eE
rr

or

HbL

0 1 2 3 4 5 6 7 8 9 10
0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030
0.00035

t

A
bs

ol
ut

eE
rr

or

HcL

0 1 2 3 4 5 6 7 8 9 10
0.0000

0.0002

0.0004

0.0006

0.0008

t

A
bs

ol
ut

eE
rr

or

HdL

Figure 2. The absolute error between the numerical solutions
for ν = 1,m = 21, h = 0.003, L = 10, ρ = 0.5, κ = 0.1, σ = 0.05, δ = 2.
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Figure 3. Comparison between the numerical solutions for ν =
0.7,m = 21, h = 0.003, L = 30, ρ = 0.05, κ = 2, σ = 0.05, δ = 0.2. (Red
solid color: SCM; Blue dashed color: LPI)
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Figure 4. The absolute error between the numerical solutions
for ν = 0.7,m = 21, h = 0.003, L = 30, ρ = 0.05, κ = 2, σ = 0.05, δ =
0.2.
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5. Conclusion

In this paper, we have presented two numerical methods for calculating numerical
solutions for the FIC model arising in chemical reaction theory. The SCM scheme
relies on the use of Chebyshev polynomials of the third kind. The LPI method was
based on iterative formulas founded on the fundamental theorem of fractional calculus.
The numerical solutions obtained using these two methods were compared, with the
absolute error between them calculated. It was found that there was good agreement,
with the absolute error decreasing as the number of terms in the SCM increases and
as the number of iterations of the LPI increases. Hence, the two methods can be used
to find numerical solutions of fractional models, which usually have no exact solutions.
As future work, we will extend the use of these numerical methods to find solutions
of models of physical processes with space-time fractional derivatives and governed by
fractional integral equations. In addition, the methods will be used to find numerical
solutions of equations with other fractional operators, an example being fractional op-
erators involving exponential and Mittag-Leffler kernels.
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[11] Y Šocel, K. Yildiray, K. Aydin: The solution of the Bagley Torvik equation with the generalized
Taylor collocation method. J. Franklin Inst. 347(2)(2010) 452–466.

[12] D. Kumar, J. Singh, K. Tanwar, D. Baleanu, A new fractional exothermic reactions model having
constant heat source in porous media with power, exponential and Mittag-Leffler laws, Interna-
tional Journal of Heat and Mass Transfer 138(2019) 1222–1227.



Fractional Isothermal Chemical Model 17

[13] Kumar D, Singh J, Baleanu D. On the analysis of vibration equation involving a fractional deriv-
ative with Mittag-Leffler law. Math Meth Appl Sci. 43(2020)443–457.

[14] D. Baleanu and A. Jajarmi, S. S. Sajjadi, J. H Asad, The fractional features of a harmonic oscillator
with position-dependent mass. Communications in Theoretical Physics 72(5)(2020) 055002.

[15] D. Kumar, J. Singh, K. Tanwar, D. Baleanu, A new fractional exothermic reactions model having
constant heat source in porous media with power, exponential and Mittag-Leffler Laws, Interna-
tional Journal of Heat and Mass Transfer 138 (2019), 1222-1227.

[16] D. Kumar, J. Singh, M. Al Qurashi et al. A new fractional SIRS-SI malaria disease model
with application of vaccines, antimalarial drugs, and spraying. Adv Differ Equ 2019(2019),
https://doi.org/10.1186/s13662-019-2199-9

[17] D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional
derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences 43(1) (2019)
443–457.

[18] A. Jajarmi, A. Yusuf, D. Baleanu, M. Inc, A new fractional HRSV model and its optimal control:
A non-singular operator approach, Physica A: Statistical Mechanics and its Applications Volume
547(1)(20200)123860.

[19] A. Jajarmi, D. Baleanu, On the fractional optimal control problems with a general derivative
operator, Asian Journal of Control, (2019), doi.org/10.1002/asjc.2282

[20] S. Bhatter, A. Mathur, D. Kumar, J. Singh, A new analysis of fractional Drinfeld-Sokolov-Wilson
model with exponential memory, Physica A 537 (2020) 122578.

[21] P. Veeresha, D. G. Prakasha, D. Kumar, D. Baleanu, J. Singh, An efficient computational technique
for fractional model of generalized Hirota-Satsuma coupled KdV and coupled mKdV equations,
Journal of Computational and Nonlinear Dynamics 15 (2020) 071003.

[22] A. Goswami, J. Singh, D. Kumar, Sushila, An efficient analytical approach for fractional equal
width equations describing hydro-magnetic waves in cold plasma, Physica A 524(2019) 563–575.

[23] S. K. Scott, Transient chaos in a closed chemical system, J. Chem. Phys. 94 (1991) 1134,
https://doi.org/10.1063/1.460019
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