References
  1. R. Wang, (2004) Signal transduction and the gasotransmitters: NO, CO, and H2S in biology and medicine, Humana, Totowa (2004).
  2. P. K.Allan and R. E. Morris, Medical Applica­tions of Solid Nitrosyl Complexes, in “Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II, D. M. P. Mingos (Ed.), 154 Structure and Bonding, Springer, Springer-Verlag Berlin Heidelberg (2014).
  3. L. J. Ignarro, Endothelium-derived nitric oxide: Pharmacology and rela­tionship to the actions of organic nitrate esters,Pharmacol. Res. , 6, 651–659, 1989.
  4. L. J. Ignarro, G. M. Buga, K.S. Wood, R. E. Byrns and G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. U.S.A. , 84, 9265–9269, 1987.
  5. D. E. Koshland, The molecule of the year, Science, 258(1992) 1861; J. S. Stamler, D. J. Singel and J. Loscalzo, Biochemistry of nitric oxide and its redox-activated forms, Science , 258(1992) 1898-1902.
  6. L. J. Ignarro, Ed., Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego (2000).
  7. A. R. Butler and R. Nicholson, Life, Death and Nitric Oxide, The Royal Society of Chemistry, Cambridge, UK (2003).
  8. S. Kalsner, Ed., Nitric Oxide and Free radicals in Peripheral Neurotransmission, Birkhauser, Boston, MA (2000).
  9. S. R. Vincent, Nitric oxide neurons and neurotransmission.Progress in Neurobiology , 90(2010) 246-255.
  10. F. C. Fang, Ed., Nitric Oxide and Infection, Kluwer Academic/Plenum Publishers: New York (1999).
  11. S. Moncada, E. A. Higgs and G. Bagetta, Eds., Nitric Oxide and Cell Proliferation, Differentiation and Death, Portland Press, London (1998).
  12. A. J. Burke, F. J. Sullivan, F. J. Giles and S. A. Glynn, The yin and yang of nitric oxide in cancer progression,Carcinogenesis , 34 (2013) 503-512.
  13. J. O. Lundberg, E. Weitzberg , J. A. Cole, N. Benjamin, Nitrate, bacteria and human health, Nat. Rev. Microbiol ­., 2 (2004) 593-602.
  14. L. A. H. Bowman, S. McLean, R. K. Poole, J. Fukuto, The diver­sity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins,Advances in Microbial Physiology , 59 (2011) 135-219.
  15. F. C. Fang, Antimicrobial reactive oxygen and nitrogen spe­cies: Concepts and controversies,Nat. Rev. Microbiol­. , 2 (2004) 820-832.
  16. G. M. King and C. F. Weber, Distribution, diversity and ecol­ogy of aerobic CO-oxidizing bacteria,Nat. Rev. Microbiol­ ., 5(2007) 107-118.
  17. R. C. Maurya and J. M. Mir, Medicinal industrial and environ­mental relevance of metal nitrosyl complexes: A review,Int. J. Sci. Eng. Res ., 5 (2014) 305-320.
  18. L. Wu and R. Wang, Carbon monoxide: endogenous production, physiological functions, and pharmacological applications,Pharmacological Reviews , 57 (2005) 585-630.
  19. C. G. Douglas, J. S. Haldane and J. B. Haldane, The laws of combination of haemoglobin with carbon monoxide and oxygen, The Journal of Physiology , 44 (1912) 275-304; J. B. S. Haldane, Carbon monoxide as a tissue poison, Biochemical Journal , 21 (1927) 1068-1075.
  20. L. K. Weaver, Carbon monoxide poisoning, Crit. Care Clin ., 15 (1999) 297-317; D. Gorman, A. Drewry, Y. L. Huang and C. Sames, The clinical toxicology of carbon monoxide, Toxicology , 187 (2003) 25-38.
  21. T. Sjostrand, Early studies of CO production, Ann. NY Acad. Sci ., 174 (1970) 5−10.
  22. A. Verma, D. J. Hirsch, C. E. Glatt, G. V. Ronnett and S. H. Snyder, Carbon monoxide: a putative neural messanger, Science , 259 (1993) 381−384.
  23. P. A. Rodgers, H. J. Vreman, P. A. Dennery and D. K. Stevenson, D. K., Sources of carbon monoxide (CO) in biological systems and applications of CO detection technologies, Semin Perinatol ,18 (1994) 2−10.
  24. H. Yuyi, S. Qianwen, Y. Jin and J. Yong, Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases, Cell Death and Disease (2019) 10 (2019) 293-304.
  25. R. Wang, 2002. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter?,FASEB J ., 16 (2002) 1792−1798.
  26. R. K. Olson, J. A. Donald, R. A. Dombkowski and S. F. Perry, Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide, Respir. Physiol. Neurobiol ., 184 (2012) 117–129.
  27. M. M. Gadalla and S. H. Snyder, Hydrogen sulfide as a gasotransmitter,J. Neurochem ., 113(2010) 14–26.
  28. R. K. Olson, E. R. DeLeon and F. Liu, Controversies and conundrums in hydrogen sulfide biology, Nitric Oxide , 41, 11–26 (2014); B. Olas, Hydrogen sulfide in hemostasis: friend or foe?,Chem.-Biol. Interact ., 217(2014) 49.
  29. R. K. Olson, Is hydrogen sulfide a circulating “gasotransmitter” in vertebrate blood?,Biochim. Et. Biophys. ActaBioenerg ., 1787 (2009) 856–863.
  30. P. J. Hogg, Contribution of allosteric disulfide bonds to regulation of hemostasis, J. Thromb. Haemost ., 7 (2009) 13–16.
  31. M. R. Mir, N. Jain, P. S. Jaget, W. Khan, P. K. Vishwakarma, D. K. Ra­jak, B. A. Malik and R. C. Maurya, Urinary tract anti-infectious potential of DFT-experimental composite analyzed ruthe­nium nitrosyl complex of N-dehydroaceticacid-thiosemi­carbazide, Journal of King Saud University-Science ,31 (2019) 89–100.
  32. J. M. Mir, N. Jain, P. S. Jaget and R. C. Maurya. Density Functional­ized [RuII(NO)(Salen)(Cl)] Complex: computational,photo­dynamics and in vitro anticancer facets,Photodiagnosis and Photodynamic Therapy , 19 (2017) 363-374.
  33. J. M. Mir, N. Jain, B. A. Malik, R. Chourasia, P. K. Vishwakarma. Urinary tract infection fighting potential of newly syn­thesized ruthenium carbonyl complex of N-dehydroacetic acid-N′-o-vanillin-ethylenediamine, Inorg. Chim. Acta , 467(2017) 80-92.
  34. J. M. Mir, R. C. Maurya, A new Ru(II) carbonyl complex of 2-benzoylpyridine: Medicinal and material evaluation at the computational–experimental convergence. J. Chin. Adv.. Mater. Soc. , 6 (2018) 156-168.
  35. J. M. Mir and R. C. Maurya, A gentle introduction to gasotrans­mitters with special reference to nitric oxide: Biological and chemical implications, Rev. Inorg. Chem .,38 (2018) 193–220.
  36. J. M. Mir, B. A. Malik, M. W. Khan and R. C. Maurya, Molybdenum dinitrosyl Schiff base complexes of dehydroacetic acid and thiourea derivatives: DFT-experimental characterization and nosocomial anti-infectious implications, J. Chin. Chem. Soc., (2019)1–9; DOI:10.1002/jccs.201800337.
  37. J. M. Mir and R. C. Maurya, Experimental and theoretical insights of a novel molybdenum(0) nicotine complex containing CN and NO as co-ligands, J. Chin. Adv.. Mater. Soc. , 2018;doi.org/10.1080/22243682.2018.1534608.
  38. J. M. Mir, R. C. Maurya. Nitric oxide functionalized molybdenum (0) pyrazolone Schiff base complexes: thermal and biochemical study, RSC Adv., 8(2018) 35102–35130.
  39. J. M. Mir and R. C. Maurya, Physiological and pathophysiological implications of hydrogen sulfide: A persuasion to change the fate of the dangerous molecule, J. Chi­nese Adv. Mater.Soc ., 2018; DOI:10.1080/22243682.2018.1493951.
  40. R. C. Maurya and J. M. Mir, A Gentle Introduction to Gasotransmitters, NO, CO and H2S, Lap Lambert Academic Publishing, Deutschland, Germany, ISBN: 978-3-330-01114-4 (2016) 1-309; R. C. Mauryaand J. M. Mir, “NO-, CO-, and H2S-Based Metallopharmaceuticals”, in “Advances in Metallodrugs: Preparation and Applications in Medical Chemistry”, Shahid-ul-Islam, AtharAdilHashmi and Salman Ahmad Khan (Eds.), Scrivener Publishing LLC, Beverly, MA,ISBN: 978-1-119-64042-4(2020)157–202.A.
  41. A. K. Mustafa, M. M. Gadallaand S. H. Snyder. Signaling by gasotransmitters, Sci. Signal , 2 (2009) 1-8. doi:10.1126/scisignal.268re2.
  42. L. Li, P. Roseand P. K. Moore, Hydrogen sulfide and cell signaling,Annu. Rev. Pharmacol. Toxicol , 51(2011) 169–187.
  43. R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine,Nature , 288 (1980) 373–376.
  44. A. Hermann, G. F. Sitdikova, T. M. Weiger (Eds.), Gasotransmitters: Physiology and Pathophysiology, Springer-Verlag (2012).
  45. M. A. Marletta, Nitric oxide synthase structure and mechanism, J. Biol. Chem., 268(1993) 12231-12234; C. F. Nathan, Nitric oxide as a secretory product of mammalian cells, FASEB J 6(1992) 3051-3064.
  46. U. Förstermannand H. Kleinert, Nitric oxide synthase: Expression and expressional control of the three isoforms, Naunyn-Schmiedeberg’s. Arch. Pharmacol ., 352 (1995) 351-364;R. G. Knowles, S. Moncada, Nitric oxide synthases in mammals, Biochem. J ., 298 (1994) 249-258.
  47. F. Becquet, Y. Courtois, O. Goureau,Nitric oxide decreases in vitro phagocytosis of photoreceptor outer segments by bovine retinal pigmented epithelial cells, J. Cell. Physiol . 159(1994) 259-262.
  48. F. Becquet, Y. Courtois, and O. Goureau, Nitric Oxide in the eye: Multifaceted roles and diverse outcomes, Surv. Ophthalmol , 42 (1997) 71-82.
  49. J. F. Kerwin, J. R. Lancaster and P. L. Feldman, Nitric oxide: a new paradigm for second messengers, J. Med. Chem ., 38 (1995) 4343-4362.
  50. D. S. Bredt and S. H. Snyder, Nitric oxide: a physiologic messenger molecule, Ann. Rev. Biochem ., 63(1994) 175-195; J. Koistinaho, S. M. Sagar, NADPH diaphorase reactive neurones in the retina,Prog. Ret. Eye Res ., 15(1995) 69-87.
  51. C. M. Venturini, R. G. Knowles, R. M. J. Palmer and S. Moncada, Synthesis of nitric oxide in the bovine retina,Biochem. Biophys . Res. Comm ., 180 (1991) 920-925.
  52. O. Goureau, J. Bellot, B. Thillaye, Y. Courtois and Y. de Kozak, Increased nitric oxide production in endotoxin-induced uveitis: reduction of uveitis by an inhibitor of nitric oxide synthase. J. Immunol ., 154 (1995) 6518-6523.
  53. A. Yoshida, N. Pozdnyakov, L. Dang and S. M. Orselli, Nitric oxide synthesis in retinal photoreceptor cells,Visual Neuroscience , 12(1995) 493-500.
  54. N. N. Osborne. N. L. Barnett, A. J. Herrera, NADPH diaphorase localization and nitric oxide synthetase activity in the retina and anterior uvea of the rabbit eye, Brain Res ., 610 (1993) 194-198.
  55. R. Yamamoto, D. S. Bredt, S. H. Snyder and R. A. Stone, The localization of nitric oxide synthase in the eye and related cranial ganglia, Neurosci ., 54 (1993)189-200.
  56. K. Koch, H. Lambrecht, M. Haberecht, D. Redburn and H. H. Schmidt, Functional coupling of a Ca2+/calmodulin dependent nitric oxide synthase and a soluble guanyl cyclase in vertebrate photoreceptor cells, EMBO J, 13(1994) 3312-3320.
  57. M. T. R. Perez, B. Larsson, P. Aim, Localization of neuronal nitric oxide synthase-immunoreactivity in rat and rabbit retinas, Brain Res., 104(1995) 207-217.
  58. B. A. Lieppe, C. Stone, J. Koistinaho, D. R. Copenhagen, Nitric oxide synthase in Müller cells and neurons of salamander and fish retina,J. Neurosci ., 14 (1994) 7641-7654.
  59. J. T. Rosenbaum, H. O. MacDevitt, R. B. Guss, P. R. Egbert, Endotoxin-induced uveitis in rats as a model for human disease,Nature , 286 (1980) 611-613.
  60. N. N. Osborne, N. L. Barnett, A. J. Herrera, NADPH diaphorase localization and nitric oxide synthetase activity in the retina and anterior uvea of the rabbit eye, Brain Res ., 610 (1993)194-198.
  61. U. Chakravarthy, A. W. Stitt, J. McNally,J. R. Bailie, E. M. Hoeyand  P Duprex, Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes, Curr. Eye Res ., 14 (1995) 285-294.
  62. J. A. Nathanson, and McKee, Identification of an extensive system of nitric oxide-producing cells in the ciliary muscle and outflow pathway of the human eye, Invest . Ophthalmol . Vis .Sci. , 36 (1995)1765-1773.
  63. O. Goureau, D. Hicks, Y. Courtois and Y. de Kozak, Induction and regulation of nitric oxide synthase in retinal Müller glial cells,J. Neurochem ., 63(1994)310-317.
  64. O. Goureau, M. Lepoivre and Y. Courtois, Lipopolysaccharide andcytokines induce a macrophage-type of nitric oxide synthasein bovine retinal pigmented epithelial cells.Biochem. Biophys. Res. Comm ., 186 (1992) 854-859.
  65. O. Goureau, D. Hicks and Y. Courtois, Human retinal pigmented epithelial cells produce nitric oxide in response to cytokines,Biochem. Biophys. Res. Comm ., 198 (1994) 120-126.
  66. J. Liversidge, P. Grabowski, S. Ralston, Rat retinal pigment epithelial cells express an inducible form of nitric oxide synthase and produce nitric oxide in response to inflammatory cytokines and activated T cells, Immunology , 83 (1994) 404-409; J. R. Sparrow, C. F. Nathan, Y. Vodovotz, Cytokine regulation of nitric oxide synthase in mouse retinal pigment epithelial cells in culture,Exp. Eye Res ., 59(1004)129-139.
  67. C. L. Hartsfield, Cross talk between carbon monoxide and nitric oxide,Antioxid. Redox Signal , 4 (2002) 301–307.
  68. M. A. Gonzales and P. K. Mascharak, Photoactive metal carbonyl complexes as potential agents for targeted CO delivery, J. Inorg . Biochem ., 133 (2014) 127–135; T. R. Johnson, B. E. Mann, J. E. Clark, R. F., Colin J. Green and R. Motterlini, Metal carbonyls: a new class of pharmaceuticals ?, Angew. Chem. Int. Ed. , 42 (2003) 3722-3729.
  69. M. D. Maine, The heme oxygenase system: A regulator of second messenger gases, Annu. Rev. Pharmacol . Toxicol. , 37(1997) 517-554.
  70. R. Tenhunen, H. S. Marver and R. Schmid, Microsomal heme oxygenase: Characterization of the enzyme, J. Biol. Chem ., 1969, 244, 6388-6394.
  71. R. Schmid, A. F. McDonagh, ThePorphyrins, Vol. VI (Ed.: D. Dolphin), Academic Press, New York (1979) 257-293.
  72. R. Motterlini, A. Gonzales, R. Foresti, J. E. Clark, C. J. Green and R. M. Winslow, Heme oxygenase-1−derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo,Circ.Res. , 83(1998) 568-577.
  73. T. R. Johnson, B. E. Mann, J. E. Clark, R. F., Colin J. Green and R. Motterlini, Metal carbonyls: a new class of pharmaceuticals ?,Angew. Chem. Int. Ed. , 42(2003) 3722-3729.
  74. L. J. Ignarro, G. Cirino, A. Alessandro and C. Napoli,Nitric oxide as a signalling molecule in the vascular system: an overview, J. Cardiovasc. Pharmacol ., 34 (1999) 879-886.
  75. L. J. Ignarro, Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego, 2000.
  76. D. M. Lawson, C. E. M. Stevenson, C. R. Andrew and R. E. Eady, Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase, EMBO J ., 19 (2000) 5661-5671.
  77. J. R. Stone and M. A. Marletta, Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states,Biochemistry , 33(1994) 5636-5640.
  78. G. Deinum, J. R. Stone, G. T. Babcock and M. A. Marletta, Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with Resonance Raman Spectroscopy, Biochemistry , 1996, 35, 1540-1547.
  79. E. Martin, K. Czarnecki, V. Jayaraman, F. Murad and J. Kincaid,Resonance Raman and Infrared Spectroscopic Studies of High-Output Forms of Human Soluble Guanylyl Cyclase, J. Am. Chem. Soc ., 127 (2005) 4625-4631.
  80. M. A. Gonzales and P. K. Mascharak, Photoactive metal carbonyl complexes as potential agents for targeted CO delivery, J. Inorg. Biochem. , 133 (2014) 127–135.
  81. S. Ghatta, D. Nimmagadda, X. Xu and S.T. O’Rourke, Large-conductance, calcium-activated potassium channels: structural and functional implications,Pharmacol. Therapeut ., 110 (2006)103-116.
  82. W. Zhao, J. Zhang, Y. Lu and R. Wang, The vasorelaxant effect of H2S as a novel endogenous gaseous KATPchannel opener, EMBO J, 20 (2001) 6008–6016.
  83. L. Li, P. Rose and P. K. Moore, Hydrogen sulfide and cell signaling,Ann. Rev. Pharmacol . Toxicol ., 51(2011) 169–187.
  84. R. Wang, Physiological implications of hydrogen sulfide: a whiff exploration that blossomed, Physiol. Rev ., 92 (2012) 791–896.
  85. M. Ishigami, K. Hiraki, K. Umemura, Y. Ogasawara, K. Ishii and H. Kimura, A source of hydrogen sulfide and a mechanism of its release in the brain, Antioxidants& Redox Signaling , 11(2009) 205–214.
  86. N. Shibuya, M. Tanaka, M. Yoshida, Y. Ogasawara, T. Togawa, K. Ishii and H. Kimura,3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfanesulfur in the brain, Antioxidants & Redox Signaling 11(2009) 703–714.
  87. Y. Mikami, N. Shibuya, Y. Kimura, N. Nagahara, Y. Ogasawara and H. Kimura, Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferaseto produce hydrogen sulphide,Biochemical Journal , 439(2011) 479–485.
  88. C. Persa, K. Osmotherly, C. W. Chen, S. Moon, and M. F. Louabcd, The distribution of cystathionine β-synthase (CBS) in the eye: Implication of the presence of a trans-sulfuration pathway for oxidative stress defense, Exp. Eye Res . 83(2006) 817–823
  89. W. W Pong,  R. Stouracova, N. Frank, J. P. Kraus and W. D. Eldred, Comparative localization of cystathionineβ-synthase and cystathionineγ-lyase in retina: differences between amphibians and mammals, J. Comp. Neurol ., 505 (2010) 158–165.
  90. Y. Mikami, N. Shibuya, Yuka Kimura, N. Nagahara, M. Yamada and H. Kimura, Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+influx,J. Biol. Chem ., 286 (2011) 39379-39386.
  91. N. Shibuya, S. Koike, M. Tanaka, M. Ishigami-Yuasa, Y. Kimura, Y. Ogasawara, K. Fukui, N. Nagahara and H. Kimura, A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells, Nat. Commun , 4 (2013)1-7;DOI: 10.1038/ncomms2371
  92. M. Kulkarni, Y. F. Njie-Mbye, I. Okpobiri, M. Zhao, C. A. Opere, S. E. Ohia, Endogenous production of hydrogen sulfide in isolated bovine eye, Neurochem. Res ., 36(2011) 1540–1545.
  93. J. D. Picker and H. L. Levy, Homocystinuria caused by cystathionine beta-synthase deficiency, University of Washington, Seattle (2010).
  94. M. Yu, G. Sturgill-Short, P. Ganapathy, A. Tawfik, N. S. Peachey, and S. B. Smith, Age-related changes in visual function in cystathionine-beta- synthase mutant mice, a model of hyperhomocysteinemia, Exp. Eye Res ., 96 (2012)124–131.
  95. P. S. Ganapathy, B. Moister, P. Roon, B. A. Mysona, J. Duplantier, Y. Dun, T. K. V. E. Moister, M. J. Farley, P. D. Prasad, K. Liu and S. B. Smith, Endogenous elevation of homocysteine induces retinal neuron death in the cystathionine-β-synthase mutant mouse, Invest. Ophthalmol .Vis. Sci ., 50 (2009) 4460–4470.
  96. A. Tawfik, S. Markand , M. Al-Shabrawey, J. N. Mayo, J. Reynolds, S. E. Bearden, V. Ganapathy and S. B. Smith, Alterations of retinal vasculature in cystathionine-β-synthase heterozygous mice: a model of mild to moderate hyperhomocysteinemia, Am. J. Pathol ., 184 (2014) 2573–2585.
  97. C. Bayse, ACS Symposium Series, American Chemical Society, Washington DC, 2013.
  98. M. N. Hughes, N. M. Centellesand K. P. Moore, Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfidein vitro and its measurement in vivo : a review,Free Radic. Biol. Med ., 47(2009)1346–1353.
  99. M. C. Belardinelli, A. Chabli, B. Chadefaux-Vekemans and P. Kamoun, Urinary sulphur compounds in Down syndrome, Clin. Chem., 47 (2001) 1500–1501.
  100. K. Fischer, J. Chen, M. Petri and J. Gmehling, Solubility of H2S and CO2 in N-octyl-2-pyrrolidone and of H2S in methanol and benzene, AIChE J , 48(2002)887–893.
  101. E. A. Guenther, K. S. Johnson and K. H. Coale, Direct ultraviolet spectrophotometric determination of total sulfide and iodide in natural waters, Anal. Chem., 73 (2001)3481–3487.
  102. R. O. Beauchamp Jr., J. S. Bus, J. A. Popp, C. J. Boreiko and D. A. Andjelkovich, A critical review of the literature on hydrogen sulfide toxicity, Crit. Rev. Toxicol , 1964, 13,25–97.
  103. R. J. Reiffenstein, W. C. Hulbert, S. H. Roth. Toxicology of hydrogen sulphide, Annu. Rev. Pharmacol. Toxicol , 32 (1992) 109–134.
  104. S. Kage, S. Kashimura, H. Ikeda, K. Kudo and N. Ikeda, Fatal and nonfatal poisoning by hydrogen sulfide at an industrial waste site,J. Forensic Sci , 47 (2002) 652–655.
  105. G. C. Y. Chiou, Review: Effects of Nitric Oxide on Eye Diseases and Their Treatment, J. Ocul. Pharmacol. Ther ., 17 (2001)189-198.
  106. M. Goldstein, P. Ostwald and S. Roth, Nitric Oxide: A Review of Its Role in Retinal Function and Disease, Vision Res ., 36 (1996) 2979-2994.
  107. A.Yadav, R. Choudhary and S. H. Bodakhe, Role of Nitric Oxide in the Development of Cataract Formation in CdCl2-induced Hypertensive Animals, Current Eye Research . 43 (2018) 1454-1464.
  108. R. Balasubramanian, A. Bui, X. Dong, L. Gan, Lhx9 is required for the development of retinal nitric oxide-synthesizing amacrine cell subtype,Mol.Neurobiol ., 55 (2018) 2922–2933.
  109. Y. C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung and C. Y. Cheng CY, Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis,Ophthalmology , 121 (2014) 2081-90.
  110. H. A. Quigley and A. T. Broman, The number of people with glaucoma worldwide in 2010 and 2020, Br. J. Ophthalmol ., 90 (2006) 262-267.
  111. L. K. Wareham, E. S. Buys and R. M. Sappington, The Nitric Oxide-Guanylate Cyclase Pathway and Glaucoma, Nitric Oxide , 77(2018) 75–87.
  112. M. S. Son, C. H. Park and J. W. Kim, Effect of Valproic Acid on Nitric Oxide and Nitric Oxide Synthase in Trabecular Meshwork Cell, J. Korean Ophthalmol. Soc ., 9 (2018) 543-548.
  113. M. E. Cavet , H. H. DeCory,The Role of nitric oxide in the intraocular pressure lowering efficacy of latanoprostenebunod: Review of nonclinical studies, J. Ocul. Pharmacol. Ther .,34 (2017) 52-60.
  114. J. M. Mir and R. C. Maurya, NO news is good news for eyes: A mini review, Ann. Ophthalmol. Vis. Sci ., 1(2018) 1003.
  115. J. A. Nathanson, Nitrovasodilators as a new class of ocular hypotensive agents, J. Pharmacol . Exp. Ther ., 260 (1992) 956-965.
  116. H. Kotikoski, P. Alajuuma, E. Moilanen, P. Salmenperä, O. Oksala, P. Laippala and H. Vapaatalo, Comparison of nitric oxide donors in lowering intraocular pressure in rabbits: Role of cyclic GMP, J. Ocul. Pharmacol. Ther ., 18 (2002)11-23.
  117. F. F. Behar-Cohen, O. Goureau, F. D′Hermies F, Y. Courtois and Y. Courtois, Decreased intraocular pressure induced by nitric oxide donors is correlated to nitrite production in the rabbit eye,Invest. Ophthalmol . Vis. Sci ., 37(1996)1711-1715.
  118. T. Sugiyama, T. Kida, K. Mizuno, S. Kojima and T. Ikeda, Involvement of nitric oxide in the ocular hypotensive action of nipradilol,Curr. Eye Res ., 23(2001)346-351.
  119. M. Orihashi, Y. Shima, H. Tsuneki and I. Kimura, Potent reduction of intraocular pressure by nipradilol plus latanoprost in ocular hypertensive rabbits, Biol. Pharm. Bull ., 28 (2005) 65-68.
  120. J.Y. Hu, B. Katz, Non-arteritic ischemic optic neuropathy and supplemental nitric oxide usage,Am. J. Ophthalmol. Case Rep., 11 (2018) 26–27.
  121. A. Mahmud, M. Hennessy and J. Feely, Effect of sildenafil on blood pressure and arterial wave reflection in treated hypertensive men.J. Hum. Hypertens ., 15 (2001)707-713.
  122. S. S. Hayreh, Erectile Dysfunction Drugs and Non-Arteritic Anterior Ischemic Optic Neuropathy: Is There a Cause and Effect Relationship?,J. Neuro-Ophthalmol ., 25(2005) 295–298.
  123. S. S. Hayreh, P. A. Podhajsky and B. Zimmerman, Non-arteritic anterior ischemic optic neuropathy: time of onset of visual loss, Am. J. Ophthalmol .,124(1997) 641-647.
  124. M. E. Cavet and H. H. DeCory, The Role of Nitric Oxide in the Intraocular Pressure Lowering Efficacy of LatanoprosteneBunod: Review of Nonclinical Studies, J. Ocul. Pharma. and Therap ., 34 (2018) 52-60.
  125. F. Galassi, E. Masini, B. Giambene, F. Fabrizi, C. Uliva, M. Bolla and E Ongini, A topical nitric oxide-releasing dexamethasone derivative: effects on intraocular pressure and ocular haemodynamics in a rabbit glaucoma model, Br. J. Ophthalmol. , 90 (2006) 1414-1419.
  126. F. Impagnatiello, E. Bastia1, N. Almirante, S. Brambilla, B. Duquesroix, A. C. Kothe and M. V. W. Bergamini,Prostaglandin analogues and nitric oxide contribution in the treatment of ocular hypertension and glaucoma, British Journal of Pharmacology , 176 (2019)1079–1089; L. K. Wareham, E. S. Buys and R. M. Sappington, The Nitric Oxide-Guanylate Cyclase Pathway and Glaucoma, Nitric Oxide,77(2018) 75-87;Q. Huang, E. Y. Rui, M. Cobbs, D. M. Dinh, H. J. Gukasyan, J. A. Lafontaine, S. Mehta, B. D. Patterson, D. A. Rewolinski, P. F. Richardson and M. P. Edwards, Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure, J. Med. Chem., 58 (2015) 2821–2833
  127. D. Sambhara and A. A. Aref, Glaucoma management: relative value and place in therapy of available drug treatments, Ther. Adv.Chronic Dis ., 5(2014)30–43.
  128. J. Harding, Cataract, Biochemistry, Epidemiology and Pharmacology , Chapman & Hall, New York (1991).
  129. J. A. Bawer, B. P. Booth, and H. L. Fung, Nitric oxide donors: Biochemical pharmacology and therapeutics , InNitric Oxide, Biochemistry, Molecular Biology and Therapeutic Implications , Editors, L. Ignarro, and F. Murad, Academic Press, New York, pp. 361–381 (1995).
  130. R. Gaudana, H. K. Ananthula, A. Parenky and A. K. Mitra, Ocular Drug Delivery, The AAPS Journal , 12 (2010) 348-360.
  131. C. Bucolo and F. Drago, Carbon monoxide and the eye: Implications for glaucoma therapy,Pharmacology& Therapeutics 130 (2011) 191–201.
  132. V. H. Lee and J. R. Robinson,Topical Ocular Drug Delivery: Recent Developments and Future Challenges, J. Ocul. Pharmacol ., 2 (1986) 67-108.
  133. S. Macha, A. K. Mitra, and P. M. Hughes, Overview of ocular drug delivery, In A. K.Mitra (Ed.), Ophthalmic drug delivery systems (pp. 1−12), New York: MarcelDekker, Inc. (2003).
  134. A. Sommer, J. M. Tielsch, J. Katz, H. A. Quigley, J. D. Gottsch, J. Javitt and K. Singh, Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans: the Baltimore eye survey,Archives of Ophthalmology , 109 (1991)1090-1095.
  135. E. Stagni, M. G. Privitera, C. Bucolo, G. M. Leggio, R. Motterlini, and F. Drago, A water-soluble carbon monoxide-releasing molecule (CORM-3) lowers intraocular pressure in rabbits, British Journal of Ophthalmology , 93 (2009) 254-257.
  136. X. Gasull, E. Ferrer, A. Llobet, A. Castellano, J. M. Nicolás, J. Palés, and A. Gual, Cell membrane stretch modulates the high-conductance Ca2+-activated K+channel in bovine trabecular meshwork cells, Invest. Ophthalmol. Vis. Sci., 44 (2003)706-714.
  137. D. Wakefield, J. H. Chang, Epidemiology of uveitis, Int. Ophthalmol. Clin . 45 (2005) 1–13.
  138. P. Fagone, K. Mangano, S. Mammana, E. Cavalli, R. D. Marco, M. L. Barcellona, L. Salvatorelli, G. Magro, F. Nicoletti, Carbon monoxide-releasing molecule-A1 (CORM-A1) improves clinical signs of experimental autoimmune uveoretinitis (EAU) in rats, Clinical Immunology ,157(2015) 198–204
  139. C. Szabo, Hydrogen sulphide and its therapeutic potential, Nat. Rev. Drug Discov., 6 (2007) 917–935.
  140. F. Maggio, Glaucomas, Top. Companion Anim. Med . 30 (2015) 86–96.
  141. A. V. Mantravadi and N. Vadhar, Glaucoma, Prim. Care Clin. Off. Pract ., 42 (2015)
437–449.
  1. H. Neufeld, D. K. Dueker, T. Vegge and M. L. Sears, Adenosine 3′, 5′-monophosphateincreases the outflow of aqueous humour from the rabbit eye, Invest. Ophthalmol ., 14 (1975) 40-42.
  2. J. Robinson, E. Okoro, C. Ezuedu , L. Bush , C. A. Opere, S. E. Ohia, Y. F. Njie-Mbye, Effects of hydrogen sulfide-releasing compounds on aqueous humor outflow facility in porcine ocular anterior segments, ex vivo, J. Ocul. Pharmacol ., 33(2017) 91-97.
  3. K. Módis, P. Panopoulos,G. Olah,C. ColettaA. Papapetropoulos and C. Szabo, Role of phosphodiesterase inhibition and modulation of mitochondrial cAMP levels in the bioenergetic effect of hydrogen sulfide in isolated mitochondria. Nitric oxide, 31(2013) S28.
  4. E. Perrino, C. Uliva, C. Lanzi, P. D. Soldato, E. Masini and A. Sparatore, New prostaglandin derivative for glaucoma treatment,Bioorg. Med. Chem. Lett ., 19 (2009)1639–1642.
  5. A. Salvi, P. Bankhele, J. Jamil, M. KulkarniChitnis, Y. F. Njie-Mbye, S. E. Ohia and C. A. Opere, Effect of hydrogen sulfide donors on intraocular pressure in rabbits. J. OcularPharmacol. Therapeut ., 32 (2016) 371–375.