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We outline the mathematical model of the ultrasonic response of wet cortical bone
and its time harmonic formulation. We employ an energetic approach based on the
Reuss-bound of the free energy of a porous material consisting of a piezo-electric
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1 INTRODUCTION

Cortical and cancellous bone respond to fractures in different ways; cancellous bone unites very rapidly because there are many
points of contact which are rich in blood and cells. Fractured cortical bone, depending on whether contact of the severed portions
is close and immobilized, healing takes place with very little external callus4. On the other hand if immobilization is not rigid
then there is a build up of external callus.
Cortical bone is a composite material consisting of a piezo-elastic matrix and an interstitial fluid8,11,12,13. In this paper the

problem of derivation of an effective model of acoustic wave propagation in a two-phase mixture of linear piezo-elastic solid and
a Newtonian interstitial fluid is studied. Wave-propagation in cortical bone has been investigated in15,20. As the interstitial fluid
is ionic; whenever the bone is stimulated ultrasonically a charge appears on the bone matrix and a streaming potential is created
in the fluid. The current which occurs forms an electro-magnetic field. The solid phase occupies the region �(s) and is piezo-
elastic; however, there is also ionic advective transfer in the interstitial fluid part �(f ); see Figure 1 for the geometry alluded
to. Such a model might be useful for studying the excitation of long bones, such as the tibia. Sending a shear wave along the
tibia excites an electromagnetic field, which is measurable9,10,11. This procedure has two purposes, first to detect fracture and
its state of healing, second as a method of promoting healing through the stimulation of osteoblast activity. As a future activity
we intend to investigate this problem using the effective equations for poro-piezo-elastic equations in this work. Effective elastic
and acoustic properties of cortical bone have been investigated in various settings in14,16,19. The idea of using the Reuss energy
method is mentioned in our book7; however, this paper is an extension, correction and completion of this idea.
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FIGURE 1 Cancellous bone,
https://commons.wikimedia.org/wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_(vertical_cut)_2.jpg, (left),
and volume element for wet bone, white: matrix, grey: interstitial fluid.

2 CONSTITUTIVE EQUATIONS FORWET BONE

2.1 Reuss bound of the energy
The Reuss bound for the energy may be found by starting with a mixture theory representation for the energy, namely

Ψmix ∶= �(s)
[1
2
e ∶ C ∶ e − e ∶ � ∶ ⋅E(s) − 1

2
E(s) ⋅ �(s) ⋅ E(s)

]

+ �(f )
[

K (f )

2
(� − tr e)2 − 1

2
E(f ) ⋅ �(f ) ⋅ E(f )

]

, (2.1)

where �(s) and �(f ) are the support of the solid and fluid phases respectively. E(s) and E(f ) are the electric fields in the solid
and fluid respectively. The dielectric tensors in the solid and fluid respectively are �(s) and �(f ). Later on we shall consider the
isotropic case where these become constants. We use the notation that vectors, second and third order tensors are represented by
boldface symbols. Moreover, e = sym∇u and � = −∇ ⋅ w, where w = �

(

u(f ) − u
)

, where u(f ) is the absolute displacement
of the fluid and u is the overall displacement of the frame and fluid17. The Reuss potential is defined as

ΨReuss = min
{

Ψmix ∶ �(s)E(s) + �(f )E(f ) = E
}

=

�(s)

2
e ∶ C ∶ e + �(f )K

(f )

2
(� − tr e)2 − Ψpe, (2.2)

where the potential energy term Ψpe is defined as

Ψpe = �(s)
[

e ∶ �T ⋅ E(s) + E(s) ⋅ e(s) ⋅ E(s)
]

+ �(f ) 1
2
E(f ) ⋅ ef ⋅ E(f ) (2.3)

The constitutive equations are given as

D = �T ∶ e(u) + �(s) ∶ E(s) = �(f ) ∶ E(f ), (2.4)

where D is the electric displacement, which we assume is the same in the solid as fluid. �(s) and �(f ) are the dielectric, second
order tensors in the solid and fluid respectively. Using a mixture theory argument, the electric field may be expressed as

E = �(s)
(

�(s)
)−1

⋅
(

D − �T ∶ e(u)
)

+ �(f )
(

�(f )
)−1

⋅ D. (2.5)

Then
D = �eff ⋅

[

E + �(s)
(

�(s)
)−1

⋅ (�T ∶ e(u))
]

, (2.6)

where back substitution into the expression for  pe yields

Ψpe =
1
2

(

E + Θ(s)
(

�(s)
)−1

⋅ (� ∶ e(u)
)

∶ �eff ∶
(

E + Θ(s)
(

�(s)
)−1

⋅ (� ∶ e(u)
)
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− 1
2
Θ(s)

(

�(s)
)−1 (� ∶ e(u)) ⋅

(

�eff
)−1 ∶

(

�(s)
)−1 (� ∶ e(u)) . (2.7)

It follows that the Reuss-energy has the structure

ΨReuss =
1
2
e(u) ∶ Ceff ∶ e(u) − e(u) ∶ �eff ⋅ E −

1
2
E ⋅ �eff ⋅ E +

�(f )K (f )

2
(� − tr (e(u)))2 ; (2.8)

here
Ceff ∶= �(s)

(

C − �T ⋅
(

�(s)
)−1

⋅�
)

�eff ∶= �(s)�eff ∶ � ⋅
(

�(s)
)−1

2.2 Fluid displacement
We denote spatial averages of a function F over �(f ) , �(s) and �(f ) ∶= �(f ) ∪ �(s) as ⟨F ⟩(s), ⟨F ⟩(f ) and ⟨F ⟩ respectively. The
fluid displacement may be written as

v(x)(f ) = u + A(x) ∶ e(x) + B(x)w, (2.9)
where

⟨B(x)⟩(f ) = I, ⟨A(x)⟩(f ) = O, ⟨∇A ⋅ ∇B(x)⟩(f ) = O,
⟨

∇(s)A(x)
⟩(f ) = I.

Here u is the movement of the composite material, and w is the relative fluid displacement of the composite displacement. The
dissipation is given by

△ ∶= �(f )

2�
⟨

‖dev∇(s)v̇‖2
⟩(f )

= �(f )

2�

[

ė(u) ∶
⟨

(dev∇(s)A)T ⋅ dev∇(s)A)
⟩(f ) ∶ ė(u) + ẇ ⋅

⟨

(dev∇(s)B)T ⋅ (dev∇(s)B)
⟩2
(f ) ⋅ ẇ

]

=
�1
2
‖dev ė(u)‖2 +

�2
2
ẇ2. (2.10)

2.3 Kinetic energy

T = 1
2
�(s) �(s)u̇2 + 1

2
�(f ) �(f )

⟨

|u̇ + A(x) ∶ e(u̇) + B(x)ẇ|2
⟩(f )

= 1
2
�(s)�(s)u̇2 + 1

2
�(f )�(f )u̇ ⋅ ⟨B(x)⟩(f ) ⋅ ẇ + 1

2
�(f )�(f )ẇ ⋅

⟨

BTB
⟩(f )

⋅ ẇ, +h.o.t.. (2.11)

If we define
�b ∶= �(s)�(s) + �(f )�(f ),

then the kinetic energy can be put in the usual form1,2

T = 1
2
�bu̇2 +

1
2
�(f )�(f )u̇ ⋅ ẇ + 1

2
�(f )�(f )ẇ2. (2.12)

2.4 Constitutive equations
The state or constitutive equations may be found by differentiating the energy and the dissipation, namely

� =
)ΨReuss
)e

+ )△
)ė

= Ceff ∶ e − �eff ⋅ E + �(f )K (f ) (tre − � ) + �1dev(ė(u)). (2.13)

D = −
)ΨReuss
)E

= �T
eff ∶ e + �eff ⋅ E, (2.14)

� =
)ΨReuss
)�

= �(f )K (f ) (� − tr(e)) , (2.15)
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where � is the fluid stress. The fluid stress is also the fluid pressure, denoted by pf . The Lagrange equations of motion then
become

d
dt
)T
)u̇

= �bü + �(f )�f ẅ = ∇ ⋅ �, (2.16)

d
dt
)T
)ẇ

+ )△
)ẇ

= �(f )�(f )ü + �22ẅ + �2ẇ = ∇s, (2.17)

where �22 is the fluid density.
For simplicity of explanation, we assume that in the future we will restrict our discussion to time harmonic motion. In this

instance, the equations of motion become

∇ ⋅
(

Ceff ∶ e − �eff ⋅ E + pI
)

+ !2
(

�bu + �(f )�fw
)

= 0; (2.18)

whereas, the pressure equation becomes

∇� + !2�(f )�(f )u + !2�22w − i! �2w = 0. (2.19)

3 ELECTRODYNAMICS

3.1 Electrically isotropic solid
If the material is electrically isotropic, it means that the dielectric and permittitivity tensors are scalars, respectively � and �.
We recall that from the Reuss formulation D(s) = D(f ) = D and H (s) = H (f ) = H ; hence, in the solid phase we construct
the magnetic induction B(s) as follows

∇ ×H = Ḋ = �(s)Ė + ė ∶ �
From which we compute, as ∇ ⋅H = 0,

∇ × ∇ ×H = −△H = �(s)∇ × Ė(s) + ∇ × (ė ∶ �)

and
△B(s) = �(s)�(s)B̈(s) − �(s)∇ × (ė ∶ �) . (3.1)

Next we calculate the equation of the electric force E(s) starting with ∇ × E(s) = −Ḃ(s) as

∇ × ∇ × E(s) = ∇∇ ⋅ E(s) − △E(s) = −∇ × Ḃ(s) = −�(s)∇ × Ḣ(s) = −�(s)D̈.

If we assume that there is no residual charge in the solid state, then

∇ ⋅ D = 0 = �∇ ⋅ E(s) + ∇ ⋅ (e�) ;

hence,
∇∇ ⋅ E(s) = − 1

�(s)
∇∇ ⋅ (e ∶ �) .

We arrive at
△E(s) = �(s)�(s)Ë(s) − 1

�(s)
∇∇ ⋅ (e ∶ �) + �(s) (ë ∶ �) . (3.2)

3.2 Electro-magnetism in the fluid
The fluid is assumed isotropic, but can maintain a current J; hence,

△H(f ) = −�(f )∇ × Ė(f ) − ∇ × J(f ), where J(f ) = �(f )E(f ),

where �(f ) is the conductivity of the fluid.
Hence,

△B(f ) = �(f )�(f )B̈(f ) + �(f )�(f )Ḃ(f ). (3.3)
Likewise, from

△E(f ) = ∇ × Ḃ(f ) = �(f )Ḣ(f ) = �(f )D̈ + �(f )�(f )Ė(f ),
we arrive at

△E(f ) = �(f )�(f )Ë + �(f )�(f )Ė(f ). (3.4)
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3.3 Effective electro-magnetic equations
In this section we will assume that the permittivity and permeability are isotropic, i.e. scalars and not tensors. Summarising, in
the solid we have the effective constitutive equations for the piezo-electric, poro-elastic material

B = �(s)B(s) + �(f )B(f ) =
(

�(s)�(s) + �(f )�(f )
)

H,

�eff = �(s)�(s) + �(f )�(f ),

D = �eff ⋅ E + �T
eff ∶ e, (3.5)

∇ ⋅ D = 0 = ∇ ⋅
(

�eff ⋅ E + �T
eff ∶ e

)

.
In addition, we have the electromagnetic constitutive equations

∇ × E = −Ḃ, ∇ ×H = Ḋ + J(f ), B = �(f )H, J = �(f )E.

This leads to the effective equations for the electromagnetic field, namely

ΔE − �eff�eff )
2
t E = − �

(s)

�eff
∇∇ ⋅

(

e ∶ �T
eff
)

+ �(s)�eff
(

)2t e ∶ �
T ) , (3.6)

and
ΔB − �eff�eff)

2
t B = −�(s)�(s)∇ ×

(

)te ∶ �T
eff
)

+ �(f )�(f )�(f ))tB. (3.7)
in time harmonic form we consider in this paper these become

ΔE + !2�eff�effE = − �
(s)

�eff
∇∇ ⋅

(

e ∶ �T
eff
)

− �(s)!2�eff
(

e ∶ �T
eff
)

,

and
ΔB + !2�eff�effB = − i!�(s)�(s)∇ ×

(

e ∶ �T
eff
)

+ i!�(f )�(f )�(f )B.

4 THE TRANSMISSION PROBLEM

In this section we will present an example from bone rigidity and healing of a fracture. Usually such problems are modeled
by placing the bone segment (�s ∪ �f ) in a water tank. The bone is assumed to consist of a composite material as studied
earlier in this paper. In the present case we assume that the tank is replaced by a possibly unbounded region. More precisely,
we assume that the bone specimen occupies a region denoted by �b = �s ∪ �f and the exterior water region by �w which
may be ℝ3 ⧵ �b. In �w the governing equation can be reduced to the two-dimensional non-homogeneous Helmholtz equation
for fluid pressure p subject to the linearized Navier-Stokes equation for compressible fluid flow for the pressure p(w) and fluid
displacement Uw ∶= (Uw

1 , U
w
2 ). That is, we require that p and U

w satisfy the equations

−(∇2p(w) + k20p
(w)) = f in �w, (4.1)

∇p(w) − �w!2Uw = f in �w, (4.2)

where f is a given function with compact support, and f = −div f . As in the simple poro-elastic case there are too many
unknowns, i.e. pressure, fluid displacement and frame displacement; hence, we remove the fluid displacement w from (2.18) by
using the substitution

w =
∇p(w) + !2�(f )�(f )u
−!2�22 + i!�2

(4.3)

and take the divergence to obtain

∇ ⋅
[

ℂeff ∶ e − �E + pI
]

+ !2
([

�b +
(�(f )�(f )!)2

−!2�22 + i!�2

]

u − �(f )�(f )

!2�22 − i!�2
∇s

)

= 0. (4.4)

Next we substitute expression (4.3) into the pressure equation (2.19) to obtain

∇p(w) −
!2�22 − i!�2
�(f )K (f )

pf +
(

!2�(f )�(f ) − �22!2 + i!�2
)

e = 0, (4.5)

where e ∶= ∇u. In the region �(w) the electro-magnetic fields satisfy the equations

ΔE(w) + !2�(w)�(w)E(w) = 0 (4.6)
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and
ΔB(w) + !2�(w)�(w)B(w) = 0. (4.7)

Definition 1 (The non-homogeneous transition problem (TPf )). The problem consists of finding the quintuplet
(u,E,B, p(f ), p(w)) such that

(Es) ∇ ⋅
[

ℂeff ∶ e − �E + p(w)I
]

+ !2
([

�b +
�(f )�(f )�b!2

−!2�22 + i!�2

]

u + �(f )�(f )

!2�22 − i!�2
∇s

)

= 0, x ∈ �s,

(Ef ) ∇2s −
!2�22 − i!�2
�(f )K (f )

s +
(

!2[�(f )�f ) − �22] + i!�2
)

e = 0, x ∈ �b,

and the electromagnetic equations.

(EE) ΔE + !2�eff�effE = − 1
�eff

∇∇ ⋅
(

e ∶ �T ) − !2�eff
(

e ∶ �T ) , in x ∈ �b,

(EB) ΔB + !2�eff�effB = i!�(s)�(s)∇ ×
(

e ∶ �T ) + i!�(f )�(f )p(w)B, in x ∈ �b

and with the tank-water equations

(Ep), −
(

△p(w) + k20p
(w)) = f in �w, f ∶= −div f

where f has compact support in �w. Moreover, the system obeys the following transmission condition

(B1)
[

ℂeff ∶ e(u), −�eff ⋅ E ⋅ u + p(f )I
]

⋅ n = −p(f )n

with vanishing of the tangent frame stress �12 = �21 = 0,

(B2) �(w)!2
[

1 − �
(

�(f )�(f ) + !2�22 − i!�2
−!2�22 + i!�2

)]

u ⋅ n + �(w)!2�
−!2�22 + i!�2

)p(f )

)n
=
)p(w)

)n
− n ⋅ f on Γ

(B3). p(w) = − �()p(f ) on Γ.

We now list the equations which determine the transition of electromagnetic fields from the region �b to the region �w ∶= ℝ3∕�b
to23:

(B4) n ×
(

Eeff − E(w)
)

= 0,

(B5) n ×
(

Heff −H(w)
)

= J,

(B6) n ⋅
(

Beff − B(w)
)

= 0,

(B7) n ⋅
(

Deff − D(w)
)

= q)�b .

In addition, when ℝ3∕�b is unbounded, we assume that the Sommerfeld radiation condition holds for p(w) when x ∈ ℝ3∕�b.

Definition 2 (Traction free problem5 TP0). The problem for (u, p) in �b consists of the partial differential equations (Eb), (Ep),
(EE), (EB) together with the homogeneous boundary conditions

(B1)
[

ℂeff ∶ e(u), −�eff ⋅ E ⋅ u + p(f )I
]

⋅ n = 0,

(B2) �(w)!2
[

1 − �
(

�(f )�(f ) + !2�22 − i!�2
−!2�22 + i!�2

)]

u ⋅ n + �(w)!2�
−!2�22 + i!�2

)p(f )

)n
= 0 on Γ,

(B3)0 p(f ) = 0 on Γ.

(B4) n ×
(

Eeff − E(w)
)

= 0,

(B5) n ×
(

Heff −H(w)
)

= 0,

(B6) n ⋅
(

Beff − B(w)
)

= 0,
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(B7) n ⋅
(

Deff − D(w)
)

= 0.

are called the traction free problem for (u, p(f )), and the corresponding non-trivial solutions are referred to as the traction free
solutions.

For the variational formulation, we now reduce the partial differential equation (Ep) for p to a boundary integral equation for
p on Γ. We use the indirect approach for the reduction of partial differential equation by seeking a solution p(w) in the form of a
simple-layer potential

p(w) = −S� + ppart in �w, (4.8)
where � is an unknown density function and S� is the simple layer potential We note that a particular solution, p(part), of the
Helmholtz equation for the tank water pressure is given by

p(part)(x) ∶= 1
2� ∫

Γ

ek0|x−y|

|x − y|
�(y)dsy, x ∈ �w.

Hence, if p|Γ is known, applying the trace operator 0 to (4.8), we then obtain a boundary integral equation for the known density
�

p(f )(x)|Γ = −V� + 0ppart , (4.9)
whereV = 0S is the simple layer boundary integral operator. Then from the transmission condition (B3), we obtain the boundary
integral equation

(Epb) V� − 1
�f

p(f ) = 0p(w).

Definition 3 (Nonlocal boundary value problem). The transmission problem TPf is termed a nonlocal boundary value problem
for the quintet (u, p(f ), �,E,B) if the quintet satisfies equations5 (Eb), (Ep), (EE), (EB) and the boundary integral equation (E3p)
together with the electro-magnetic transmission conditions B4, B5, B6, B7 and

{[

ℂeff ∶ e(u) + �eff ⋅ E ⋅ +
(

1 −
�(f )�(f )!
�22!2 − i�2

)

p(f )I
]

⋅ v
}

⋅ n = p(w)n

with
p(w) = −V� + 0p(part).

Here again �12 = �21 = 0, where σ(u) is the stress tensor. Additionally

�(w)!2
[

1 − �(f )
(

�(f )�(f )�2 + !2�22 + i!�2
−!2�22 + i!�2

)]

u ⋅ n + �(w)!2�(f )

−!2�22 + i!�2

)p(f )

)n
=
)p(w)

)n
− n ⋅ f ,

with
)p(w)

)n
= 1
2

(

� −K′�
)

+
)p(part)

)n
has to be satisfied.

5 THE VARIATIONAL FORMULATION

In this section, we formulate the variational formulation of the nonlocal boundary value problem6,18. As usual, multiplying (Es)
by the conjugate of the test function v

∫
�b

{

∇ ⋅
[

ℂeff ∶ e(u) − �eff ⋅ E + sI
]

+!2
(

�b u − �(f )�(f )
[

∇p(f ) +
!2�(f )�(f )

!2�22 + i!�2

])

⋅ v
}

dx = 0

and then integrating by parts, we obtain from the above

∫
�b

{

−ℂeff ∶ e(v) + �eff ∶ e(v) ⋅ E − p(f )∇ ⋅ v+ !2
(

�bu + �(f )�(f )
[

∇p + (!�(f )�(f ))2u
−!2 + i!�2

])

⋅ v dx

+∫
Γb

([

ℂeff ∶ e(u) − �eff ⋅ Eu + sI
]

⋅ v
)

⋅ n dsΓ = 0. (5.1)



8

We define the sesquilinear bilinear form

a(u, v) ∶= ∫
�b

{

ℂeff ∶ e(u) ∶ e(v)
}

dx, (5.2)

and by rewriting the boundary term in (5.1) we see that

a(u, v) + ∫
�b

[

�eff ⋅ E ⋅ v +
�(f )�(f )p(f )∇ v
!2�22 − i!�2

]

dx + ∫
�b

!2
[

�b −
�(f )�f )

!2�22 − i!�2

]

u ⋅ v dx

+!2 ∫
�b

�(f )
�(f )p(f )∇ ⋅ v
!2�22 − i!�2

dx = ∫
Γb

[

ℂeff ∶ e(u) − �eff ⋅ E + p(f )I
]

v ⋅ n ds (5.3)

We repeat this process for the p(f ) equation by multiplying equation (Ep) by the test function � and integrating by parts yields

∫
�b

∇s ⋅ ∇�dx = ∫
Γb

∇p(f ) ⋅ n�dsΓ − ∫
�b

(

!2
[

�f�f − �22
]

+ i!�2
)

e �dx − ∫
�b

(

!2�22 − i!�2!
�fKf

)

p(f )� dx .

By introducing the sesquilinear form
b(s, �) = ∫

�b

∇ s ⋅ ∇� dx (5.4)

using the condition (B2b) and replacing �b by its measure, the variational form of the p(f ) equation now may be written as

b(s, �) + !2 ∫
�b

s e(u)� dx −
!2�22 + i!�2

!2�(w)

[⟨

n ⋅ f − )ppart

)n
, �

⟩

−
⟨1
2
� −K′, �

⟩

]

∀� ∈ H1(�b) (5.5)

Finally, we multiply the boundary integral equation (Epb) by the test function  , and integrate it. This yields the variational
equation for (Epb)

p22
2�w!2

⟨

V�,  
⟩

−
p22

2�w!2�
⟨

p(f ),  
⟩

=
p22

2�w!2
⟨

0pp,  
⟩

, ∀ ∈ H−1∕2(Γ). (5.6)

Recalling the time harmonic versions of the electromagnet equations are for the electric field

ΔE + !2�eff�effE +
1
�eff

∇∇ ⋅ e(u) ∶ �T + !2�effe(u) ∶ �T = 0;

likewise, we have
ΔB + !2�eff�effB + i!�(s)�(s)∇ ×

(

e(u) ∶ �T ) + i!�(f )�(f )�(f )B = 0.

As previously done we identify two sesquilinear bilinear forms:

c(E,F) ∶= ∫
�b

[

∇E ∶ ∇F − !2�eff�effE ⋅ F
]

dx

and
d(B,b) ∶= ∫

�b

[

∇B ∶ ∇b − !2�eff�effE ⋅ F
]

dx.

The variational forms of the electro-magnetic equations become

c(E,F) + ∫
�b

1
�eff

∇ ⋅ e(u)�T∇ ⋅ F dx + ∫
�b

�eff!
2e(u) ∶ �T ⋅ F dx − ∫

Γb

[

(∇E ⋅ F) ⋅ n + 1
�eff

∇ ⋅ e(u)�TF
]

ds = 0 (5.7)

d(B,b) + i!� ∫
�b

�(f )�(f )B ⋅ b dx − ∫
�b

(e(u) ∶ �T ) ⋅ (∇ × b) dx + i!�(f ) ∫
Γb

(

e ∶ �T × b
)

dsΓ = 0 (5.8)

Collecting (5.8), (5.7), and (5.8), we have the variational formulation for the nonlocal boundary value problem:

Definition 4 (Variational formulation). Given f, find the quintuplet (u,E,B, p(f ), �) ∈
(

H1(�b)
)3×

(

H1(�b)
)3×

(

H1(�b)
)3×

H1(�b) ×H−1∕2(Γ) such that

(

(u,E,B, p(f ), �), (v,F,b, �,  )
)

= lf (v,F,b, �,  ) (5.9)
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for all (v,F,b, �,  ) ∈
(

(H1(�b))3 × (H1(�b))3 × (H1(�b))3 ×H1(�b) × (H−1∕2(Γ)2)
)

where  and lf are respectively the
sesqulinear form and linear functional defined by


(

u,E,B, p(f ), �), (v, �,  )
)

∶= a(u, v) + b(p(f ), �) + c(E,F) + d(B,b)

+ ∫
�b

�(f )�(f )

∇ v
!2�22 − i!�2dx + ∫

�b

!2
[

�b −
�(f )�(f )

!2�22 − i!�2

]

u ⋅ v dx + !2 ∫
�b

�(f )e(u)� dx + ∫
�b

1
�eff

∇ ⋅ e(u)�T∇ ⋅ F dx

+ ∫
�b

�eff!
2e(u) ∶ �T ⋅ F dx − ∫

Γb

[

(∇E ⋅ F) ⋅ n + 1
�eff

∇ ⋅ e(u)�TF
]

dsΓ +
�

1 − �
!2�22 + i!�2

!2�(w)
⟨1
2
� −K′�, �

⟩

+ i!∫
�b

�(f )�(f )B ⋅ b dx − ∫
�b

(e(u) ∶ �T ) ⋅ (∇ × b) dx + ∫
Γb

[

ℂeff ∶ e(u) − �eff ⋅ E − �I
]

⋅ v ⋅ n dsΓ. (5.10)

l(v, �,  ) ∶= −
!2�22 + i!�2

!2�(w)

⟨

n ⋅ f − )ppart

)n
�
⟩

− i!�(f ) ∫
Γb

(

e ∶ �T × b
)

dsΓ + ∫
Γb

0ppartv ⋅ n (5.11)

6 EXISTENCE AND UNIQUENESS

From the definition of the sesquilinear form in (6.1), it is clear that satisfies a Gårding inequality. Substituting (u, p,E,B, �)
for (v,F,b, �,  ) we see that


(

(u, p(f ),E,B, �), ((u, p(f ),E,B, �))
)

∶= a(u,u) + b(p(f ), p(f )) + c(E,E) + d(B,B)

+ ∫
�b

�(f )�(f )s∇u
!2�22 − i!�2

dx + ∫
�b

!2
[

�b −
�(f )�(f )

!2�22 − i!�2

]

u ⋅ u dx + !2� ∫
�b

�(f )e(u)� dx

+ ∫
�b

1
�eff

∇ ⋅ e(u)�T∇ ⋅ E dx + ∫
�b

�eff!
2e(u) ∶ �T ⋅ E dx

−∫
Γb

[

(∇E ⋅ E) ⋅ n + 1
�eff

∇ ⋅ e(u)�TE
]

dsΓ +
�

1 − �
!2�22 + i!�2

!2�(w)
⟨1
2
� −K′�, �

⟩

+ i!� ∫
�b

�(f )�(f )B ⋅ B dx − ∫
�b

(e(u) ∶ �T ) ⋅ (∇ × B) dx + ∫
Γb

[

ℂeff ∶ e(u) − �eff ⋅ E − v�I
]

⋅ u ⋅ n dsΓ. (6.1)

l
(

(u, p(f ),E,B, �)
)

∶= − �
1 − �

!2�22 + i!�2
!2�(w)

⟨

n ⋅ f − )ppart

)n
�
⟩

−

i!(1 − �)�(f ) ∫
Γb

(

e ∶ �T × B
)

dsΓ + ∫
Γb

0p
partv ⋅ n (6.2)

We can show, using the methodology of6,5, that

Re

{


(

(u, p,E,B, �), (u, p,E,B, �)
)}

= a(u,u) + b(s, s) + c(E,E) + d(B,B) + 
(

(u, p,E,B, �)
)

,

where  is compact on (H1(�b))3 ×H1(�b) × (H1(�b))3 × (H1(�b))3 × (H−1∕2(Γ)2); furthermore, it follows that

Theorem 1. The sesqulinear form in (6.1) satisfies the Gårding’s inequality in the form

Re
(

(

u,E,B, p(f ), �)
)

,
(

u, p(f ),E,B, �
)

)

≥ �
{

‖u‖2
(H1(�b))2

+ ‖s‖2H1(�b) + ‖sp(f )‖2
H− 12 (Γ)

}

− �
{

‖u‖2
(H1−�(�b))2

+ ‖p(f )‖2H1−�(�b) + ‖p(f )‖2
H− 12 −�(Γ)

}

,

where � > 0 and � ≥ 0 are constant and � > 0 is a small parameter.
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As is well known, Gårding’s inequality implies the validity of the Fredholm alternative. Hence uniqueness implies the exis-
tence. For this purpose, we now consider the the homogeneous transmission problem TPf with f = 0, since the uniqueness of
the solution of the variational equation (5.9) will be depending upon that of TPf .

Theorem 2. If the quintiplet (u,E,B, s, p) is a classical solution of homogeneous transmission problem TP0 with Imk0 = 0,
then p = 0.

Proof. The proof mirrors the standard uniqueness proof used for the scattering transition problem and is, moreover, well known.
We repeat it here only to make this section translucent. An application of the divergence theorem together with the radiation
condition permits

∫
SR

|

|

|

|

|

)p(w)

)r
− ik0p

|

|

|

|

|

2

ds = ∫
SR

(

|

|

|

|

|

)p(w)

)r

|

|

|

|

|

2

+ |

|

k0 p||
2

)

ds + 2k0Im ∫
)�b

p(w)
)p̄
)n
ds = o(1)

as R → ∞, where SR is the surface of a ball of radius R, enclosing the body �b. The main idea here is to show that
∫
)�b

p(w) )
̄p(w)

)n
ds is real. Then

∫
SR

(

|

|

|

|

)p
)r

|

|

|

|

2
+ |

|

k0 p||
2
)

ds = o(1)

and from the Rellich-Vekua lemma, p = 0. To show this, we now compute ∫
)�b

p )p̄
)n
ds by using the variational forms for (Eb)

and (Es) in Section 4.
We consider (TP0) and show (u0,E0,B0, s0, �0) is the trivial solution. We assume (u0, s0) ≠ (0, 0) and (u,E,B, s, �) is a

solution of TP0. If so then it satisfies the transmission conditions

s0|Γ = �(f )V�0,
[

ℂeff ∶ e(u), −�eff ⋅ E ⋅ u + sI
]

⋅ n = V�0

[

ℂeff ∶ e(u), −�eff ⋅ E ⋅ u + s0I
]

⋅ n =
(1
2
I −K′

)

�0

Since p0 = −s�0, x ∈ �w, p0 is a solution of the homogeneous Helmholtz in �w, i.e.

Δp0 + k20p0 = 0, x ∈ �w.

Hence,

p0
|

|

|Γ
= −V�0,

)p0
)n

|

|

|Γ
=

(1
2
I −K′

)

�0.

We remark that Theorem 2 does not imply that the components (u, s) of the quintuple (u0,E0,B0, s0, �0) considered in TP 0
are trivial solutions, since they may be solutions of the traction free problem defined in Section 3. Hence in order to ensure the
existence of a solution of the variational equation (5.9), we make the following assumptions:

(I) There is no traction free solution.

(II) The square of the wave number, k20, is not an eigenvalue of the Dirichlet problem for the negative Laplacian in �b.

We remark that Assumption (II) is a guarantee for the invertibility of the simple-layer operator V (see18, [p. 30]). We now
summarize our results in the following theorem.

Theorem 3. Under Assumptions (I) and (II) , there exists an unique solution of the problem TPf in
(

H1(�b)
)3 ×H1(�b)3 ×

H1(�b)3 ×H1(�b) ×H− 1
2 (Γ) .
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7 FUTURE DEVELOPMENTS

For many applications, such as the growth of bone, it is necessary to consider ionic transfer in the fluid phase. As the mass of
the ions is insignificant with respect to the density of the fluid, we may treat this as diffusion dominated transport.

If D+− is the binary water-ion diffusion coefficient, T the absolute temperature and R the universal ideal gas constant, the
convection-diffusion equations governing ion, c

+− transport are given by22

)tc
+− + ∇ ⋅

⎛

⎜

⎜

⎝

D+−c
D
+−

RT
∇m

+−
⎞

⎟

⎟

⎠

= 0, (7.1)

where m
+− are molar electrochemical potentials of cations and anions according to the dilute solution approximation are given

by3

m
+− ∶= ±F�f + RT log c

+−. (7.2)

Following22 we introduce a dimensionless electric potential �f =
F�f
RT

and assume mono-valent ions (i.e. Z = 1) we have

1
RT

∇m
+− = ∇c

+−

c
+−
± ∇�f , (7.3)

and from which the Nernst-Plank, concentration-transport equation follows22

)tc
+− + ∇ ⋅

(

c
+−v
)

= ∇ ⋅
[

D+−

(

∇c
+− ± c

+−∇�f
)]

= ∇ ⋅
[

D+− exp (∓�f )∇
(

c
+− exp (±�f )

)]

. (7.4)

In the fluid there will be a flow of ions and hence, a current which induces a magnetic field. This leads to the use of non-
homogeneous, time-dependent equations in the fluid phase.

�(f )∇ ⋅ E(f ) = q . (7.5)

The induced electromagnetic field must satisfy the Maxwell-Gauss equation to obtain

E(f ) = −∇�f −
)A
)t

(f )
(7.6)

where A(f ) is a vector potential related to B(f ) by B(f ) = ∇ × A(f ), �f is the electric potential in the fluid and qf the volume
charge density.
The Debye length characterizes the thickness of the diffuse ionic layer compensating for negative surface charge.

7.1 Electrolyte movement
Here we take s, the fluid stress, to be a tensor of the form

σ(f ) ∶= −pI +  M (7.7)

where
 M =

�f
2
(

2E⊗ E − E2I
)

+ 1
2�f

(

2B⊗ B − B2I
)

, (7.8)

and  M is the electro-magnetic stress tensor23. Our equation for fluid motion takes the form

∇ ⋅
(

−pI +  M

)

+ !2�(f )�(f )u + !2�22w − i!�2w = 0. (7.9)

The pressure varies over the fluid region in the equilibrium state and its magnitude is a sum of the bulk phase pressure pb
and the osmatic, dipolar effect on the pressure close to the boundary between fluid and solid. For dilute solutions is defined as
� ∶= RT (c+ + c− − 2cb)22; hence,

pb ∶= p − RT
(

c+ + c− − 2cb
)

.

and the equation of fluid motion becomes

−∇pb − 2RT
(

cosh �̄ − 1
)

∇cb + 2RT cb
(

sinh �̄∇�̄ +  M

)

+ !2�(f )�(f )u + !2�22w − i!�2w = 0. (7.10)
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To handle the electromagnetic equations, using21,22 we split �f into a streaming potential and the dipole potential22 one
obtains

∇ ⋅
[

∇
(

 b + �
)

+ )A(f )
)t

]

= 1
L2D

sinh(�). (7.11)

where LD is the Debye length given by LD =
√

�̃fRT ∕(2F 2cb).

△A(f ) = �̃f �̃f )
2A(f )
)t2

− �̃fJ,

where the current J is given by
J = 2vf cb sinh�. (7.12)

In general, the procedure for healing bone uses time-harmonic waves. If we assume that the frequency is ! we have

!2�fuf + ∇
(

�fa
2
f∇ ⋅ u

)

+ i!�̃f e(u) + q
(

∇� + i!Af
)

= 0, (7.13)

where the vector potential A(f ) now satisfies a non-homogeneous, reduced wave equation

△A(f ) + 1
a2f
�̃f �̃f!

2A(f ) = −2i
�̃f!

a2f
uf cb, (7.14)

where, as pointed out by Moyne and Murad22 the relation of volume to surface electric charge densities qf and qf are related
by qf = q


f ∕l.

8 CONCLUSION

Modeling of bone has important applications, for example to detect fractures or promote healing through stimulation. In this
paper, cortical bone is studied as a composite material. Amixture theory is applied to obtain effective equations for a poro-elastic,
piezo-electric bone matrix, assuming a linear piezo-elastic solid and a Newtonian interstitial fluid. The formulation includes
mechanical, electrical and magnetic effects, as a mechanical excitation will create an electromagnetic field.
For the transmission problem, the bone segment is modeled surrounded by water and different problems depending on the

transition are defined. The variational formulation of the equations is introduced. Existence and uniqueness of the solution is
studied for the different boundary problems.
Finally, an outlook on future developments of bone modeling is given, where the ionic transfer in the fluid phase is also taken

into account. For further future activities numerical simulations are intended. Here, fracture and healing will be investigated by
sending a shear wave through a long bone, such as the tibia, which results in a measurable electromagnetic field. Additionally,
an alternative model using the FE2 method instead of the mixture argument is possible, thus not only including the supports of
the single phases, but also the exact geometry using an RVE.
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