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Abstract

In this paper, we prove the existence of solutions for the strongly nonlinear
equation of the type
Au+g(z,u) = f

where A is an elliptic operator of infinite order from a functional Sobolev spaces
of infinite order with variables exponents to its dual. g(zx,s) is a lower order
term satisfying essentially a sign condition on s and the second term f belongs
to L1(9).

keywords: Strongly nonlinear elliptic equations of infinite order, mono-
tonicity condition, sign condition.

1 Introduction

In their work Abdou, benkirane, Chrif and EL Manouni [4] studied a class of
anisotropic problems involving operators of finite and infinite higher order in the
variational case. They proved the existence of solutions in generalized Sobolev
spaces, also called anisotropic Sobolev spaces with variable exponents. The goal
of this paper is to show the existence of solutions of the problem as the following
model example:

S (1) D (aa| Dup 2D + gwu) = £ in 9, (L1)
|a|=0

where Q@ C IRY is a bounded domain, a, > 0 are real numbers, Pal(.) are
continuous functions on Q, such that p,(x) > 1 for any x € Q and for any multi-
indices «; the nonlinear term ¢ has to fulfil only the sign condition g(z, s)s > 0,
but we do not assume any growth conditions with respect to |u|. As regards the
second member, we suppose that f € L1(f).
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Note that in the particular case when p,(x) = p, for any z €  and any multi-
indices ¢, the solvability of (1.1) is done by M. Chrif et al. in [5], [8] and [9]. In
general case when p,(.) are continuous functions and f bolongs to the dual space
we refer to the recent work [4]. let us recall that in the case of non-homogeneous

operators :
o0

A(u) = > (=1l D*(ag|D¥u[P )72 D)
|ar|=0

the natural setting for our approach is the use of the variable exponent anisotropic
Sobolev spaces. The basic idea is to replace the Lebesgue spaces LP~(§2) by more
general spaces Lpa(x)(ﬂ), called variable exponent Lebesgue spaces. In the case
of finite order, the isotropic case the space LP(®)(Q) and Wy"? (x)(Q) were thor-
oughly studied in the monograph by Musielak [22] and the papers by Edmunds
et al. [14, 15, 16], Mih ailescu and Radulescu [21], Samko and Vakulov [23],
Diening et al. [11] and Harjulehto et al. [17]. For more information on proper-
ties, the modeling and application of spaces of variable exponents to some fluid
physical phenomenon we refer to Acerbi and Mingione [1], Alves and Souto [3],
Chabrowski and Fu [7], and Diening [10].

In this paper, we assume that f € L'(Q) and the main dificulty is that the
anisotropic Sobolev space of infinite order W§®(aq, pa)(2) (see [5], [12] and [13]),
are not adequate to study nonlinear problems of type (1.1) . This leads us to seek
weak solutions for our problems in a more general variable anisotropic Sobolev
space of infinite order, which will be introduced in the next section of this paper.
To establish our main result for a general Laray-Lions types operator, we consider
in section 3 the following strongly nonlinear equation :

Au+g(x,u) =f in Q, (1.2)

where A is an operator of infinite order defined as :

Au= 3" (~1)l*ID*Ao(z, D), |y] < lal,
|ar|=0

and the coefficient functions A, are assumed to satisfy some growth and coer-
civeness conditions without supposing a monotonicity condition.

2 Preliminaries

We recall in this section some definitions and basic properties of the variable
exponent Lebesgue Sobolev spaces LP(®) (©), where € is a bounded subset of
RN,
Set

Ci(Q) ={h e C(Q):min

for any h € C4(Q2). We define

h(zx) > 1},

meﬁ

hT =suph(z) and A~ = inf h(x).
€N e
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For any p € C(Q), we introduce the variable exponent Lebesgue space
LP(®) = {4 : u is a measurable real-valued function such that / u(z)[P@) da < oo},
Q

endowed with the so-called Luxemburg norm

) [P@)

‘u|p(:1:) = dr < 1}7

which is a separable and reflexive Banach space. For basic properties of the
variable exponent Lebesgue spaces we refer to [18].

Lemma 2.1 (see Fan and Zhao [20] and Zhao et al. [24])
(1) The space (LP)(Q), || p(z)) is a separable, uniform convexr Banach space,

L)—i— = 1. For any u €

and its conjugate space is L% (Q), where e

LP@)(Q) and v € LI®)(Q), we have

uv dx Ul () V) a(z)-
0 g p(z)1Vlg(x)

(2) If p1, p2 € C+(Q), p1(z) < pa(x) for any x € Q, then

1
p(z)

LP2@)(Q) — LP@)(Q).
and the imbedding is continuous.

Lemma 2.2 (see Fan and Zhao [20] and Zhao et al. [24])
If we denote

p(u) = / lwfP@de  Yu e [P,
Q

then
(1) ‘u|p(x) <1 (: I;> 1) A p(u) <1 (: L > 1);’

(2) Tl > 1= |ul’,) < plu) < |u|,,(x -
p(z)

(3) lulp) <1 = luly,y > p(u) = [ul?

p(x)’
(4) ‘u|p(x) -0 p(u) — 0; ‘u|p(:r) — 00 = p(u) — Q.

Lemma 2.3 (see Fan and Zhao [20] and Zhao et al. [24])
If u, uy, € Lp(x)(Q), n=20,1,2,..., then the following statements are equivalent
each other:

(1) Jim |tUn, — Ulp(z) = 0;

(2) lim p(u, — ) = 0;

n—oo

(8) un — u in measure in £ and Jim p(uy) = p(u).
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Finally, we introduce a naturel generalization of the variable exponent Sobolev
space Wgn P(@) (Q), that will enable us to study with sufficient accuracy anisotropic
problem in section 3. For this purpose, let us denote by p(x) the vectorial func-
tion

ﬁ(w) - {pa(x)v ‘CM‘ < m}v
where m is a positive integer such that m > 1 and p,(.) € C(Q) for all multi-
indices a such that |a| < m.
We denote by C3°(€2) the space of all functions with compact support in 2 with
continuous derivatives of arbitrary order. We define W" i (I)(Q), the anisotropic
variable exponent Sobolev space, as the closure of C5°(£2) with respect the norm

HuHm,ﬁ(x) = Z |Dau|pa(1)'
|ee]=0

In the case when po(z) € C4+(€2) are constant functions for any |a| < m, the
resulting anisotropic space is denoted by W;" P (©2). Such spaces was developed
and considered by authors in [5], [8] and [9] in the study of some anisotropic
strongly non linear equations. It was proved that W;" P (Q) is a reflexive Banach
space for any p, > 1 for all multi-indice || < m. This result can be easily

extend to W(" P() (). In fact, the following lemma follows

Lemma 2.4 (see [4]) The space (Wgn’ﬁ(x)(ﬁ), |-l 5(z)) is a banach and reflezive
space.

In order to facilitate the manipulation of the space W" P (I)(Q), we introduce pi
and p_ as

pi =maz{pi(z), lo| <m},  p= =min{p, (), || <m}.

Lemma 2.5 Let Q be a bounded open subset of RN .
If mp~ > N, then Wan’p(‘r)(Q) C L=(Q) N CF(Q) where k = E(m — pﬂ,)

Moreover, the embedding is compact.

The proof follows immediately from the corresponding embedding theorems in

the isotropic case by using the fact that Wén’ﬁ(x)((l) C Wén’p: ().

Now, let an > 0 be a real numbers for multi-indices . The variable exponent
Sobolev space of infinite order is the functional space defined by

o0

W (aq, pa(r))(Q) = {u €EC™®(Q) :o(u)= > aa|D°‘u\§§(m) < oo}.
|a|=0

Since we shall deal with the Dirichlet problem in this paper, we shall use the
functional space W§°(aq, pa(2))(2) defined by

o0

W5 (an, pa(z)) () = {u € Cs°(Q):o(u) = Z aa|D°‘u|ZZ+(m) < oo}.
|a|=0
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In contrast with the finite order Sobolev space, the very first question, which
arises in the study of the spaces W§°(aq, pa(x))(£2), is the question of their
nontriviality ( or nonemptiness), i.e. the question of the existence of a function
u such that o(u) < oco.

Definition 2.1 (Dubinskii[12]) The space W§®(aq, pa(x))(Q2) is called nontrivial
space if it contains at least one function which not identically equal to zero, i.e.
there is a function u € C§°(Q) such that o(u) < oco.

It turns out that the answer of this question depends not only on the given
parameters aq, po of the spaces W™ (aq, po(x))(2), but also on the domain €.
The dual space of W§°(an, pa())(2) is defined as follows

00 0o
W_Oo(aomp/a(x))(g) = {h h = Z (_1)|a‘aaDahaa U,(h) = Z aa‘ha g,;’(x) < OO},

|or|=0 |ar|=0

where h,, € LPa(*)(Q) and p/, is the conjugate of pq, i.e., p,, =

space W~°(aq, p,,(2))(£2) is given by the relation

(h,v) = Z g, /Qha(:x)Do‘v(a:) dx,

|| =0
which, as it is not difficult to verify, is correct.

In the particular case when p,(z) = p, for any multi-indices «, the Sobolev
space of infinite order is defined as

o0

W5 (aa, pa)(2) = {u € Cs°(Q) :o(u) = Z ao| Dulp? < oo}.
|a|=0

aq > 0, po > 1 and 7, > 1 are real numbers for all multi-indices o and |.|p, is

the usual norm in the Lebesgue space LP~(Q2), (see [12], [13]).

Lemma 2.6 (see [4])For all nontrivial space W§°(aq, pa(x))(Q2), there exists a
nontrivial space W§°(cq,2)(2) such that W§°(aq, pa(x))(2) C W (ca,2)(£2).

3 Main result

In this section, we formulate and prove the main result of this article.
Let A be the operator of infinite order defined as

0o
Au= 3" (=)D Aa(z, D), |y] <lal,
|ar|=0

where A, : QxR — IR is a real function and )\, is the number of multi-indices
~ such that |y| < |a|. Consider the following strongly nonlinear problem with
Dirichlet conditions:

Au+g(z,u) = f in .

Here, g :  x IR — IR is a measurable function and f € W~(aq, p,(z))(Q).
Let us now formulate the assumptions:
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(A1) Aun(z,&4) is a Carathéodory function for all «, |y| < |«
(Ag) Forae. z € Q, all m € IN*, all &,14,|7| < |a| and some constant co > 0,
we assume that

m

Z Aa(l’, 6’7)7704

|a|=0

m

<o Y aal€alP D nal,
|a|=0

where a, > 0, are reals numbers and (ps(.))s is a bounded sequence of

functions in C4(2) for all multi-indices .

(A3) There exist constants ¢; > 0,ca > 0 such that for all m € IN*, for all
&y, &a; |yl < |af, we have

Z Aa(iﬂ,f»y) : ga > Z aa|£o¢‘pa(x) — C2.
|ar|=0 |a|=0

(A4) The space W§°(aq, pa(x))(€2) is nontrivial.

(G1) The function g : Q x IR — IR is of Carathéodory type such that, for all
>0,

sup [g(,u)] < hs(a) € L),
|u|<d

(G2) We assume the ”sign condition” g(z,u)u > 0, for a.e. z € Q and all u € IR.

Finally, we assume that
fe Ly, (3.1)

and we shall prove the existence result without assuming any monotonicity
condition.

Theorem 3.1 Let us assume the conditions (A1) — (A4), (G1) and (Gz). Then
for all f €W =(aq, p,(2))(Q), there exists ue W§°(aa, pa(z))(Q) such that

{ g(z,u) € LYQ), g(z,u)u € L1(Q)
(Au,v) + [g g(z,w)vdr = (f,v), for all v € W§°(aq, pal(x))(Q).

Proof.
In order to get our result, we will deal with the following steps:

1. We prove the existence of approximate solutions t,,.
2. We establish the a priori estimates.

3. We prove that wu, converges to an element u € W§°(aq,pa(x))(§2) and we
finally show that w is the solution of our problem.

Step (1): The approximate problem.
Consider ¢ € C§°(IRN) such that 0 < p(z) < 1 and ¢(z) = 1 for z close to 0.
Let f,, be a sequence of regular functions defined by

fo(x) = @(=)Tnf(2),

xT
n
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where T, is the usual truncation given by

Tnﬁz{ ig if €] <n

It is clear that |f,| < n for a.e. z € Q. Thus, it follows that f, € L>(2).Using
Lebesgue’s dominated convergence theorem, since f, — f a.e. x € Q and
|fn] < |f] € LY(R), we conclude that f,, strongly converges to f in LY(Q).
Define the operator of order 2n + 2 by

Apia(u) = > (=1)"Fle,D?u + Z DDA, (z, DW), |y < n,
|o|=n+1 || =0

where ¢, are constants small enough such that they fulfill the conditions of the
Lemma 2.6. The operator Ag,+2 is clearly monotone since the term of higher
order of derivation is linear and satisfies the monotonicity condition, this follows
from the result of [19]. Moreover from assumptions (A;), (A2) and (As), we
deduce that Ag, o satisfies the growth, the coerciveness and the monotonicity
conditions. Hence by Theorem 3.1 (see [4]), there exists an approximate solution
uy, of the following problem:

(Phy) { gz, un) €LY(Q), g(x,un )ty € L) q
(Agnio(un),v) + fQ g(z,up)vde = (fp,v), Yve W(;H‘l»}’(x)(ﬂ)

with

n

Jn = Z (_1)|a|aaDafaa fa € e Lral (Q)

|ee|=0

Step (2): A priori estimate.
Set v = u,, and using (As), (G2), Lemma 2.1 and 2.2, we deduce the estimates

> calDUnl3+ D aalDunlle < K (3.2)
|o|=n+1 || =0
and
/ g(x, up)up dr < K (3.3)
Q

for some constant K = K(f) > 0, with
,3 — pg lf ’D u‘pa < 1
“ Do Zf ‘D u‘pa (z) > 1
From this and since the summation in estimate (3.2) is finite, we can also write
~ +
Z Ca|D%n |3 + Z aa|D%n|pe < K (3.4)
|a|=n+1 |a|=0
The estimate (3.4) is equivalent to

n+1 i
> aa| D%y b o <K (3.5)
|ar|=0
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with a, = ¢4 and p, = 2 for |a| = n + 1. Consequently, we have
unllyynrio@ < K. (3.6)

Then via a diagonalization process, there exists a subsequence still, denoted
by u,, which converges uniformly to an element u € C§°(Q2), also for all deriva-
tives there holds D%, — D% (for more details we refer to [5], [12]).

Step (3): Convergence of problem (Pby,).

There exists a solution u, of problem (Pb,), n = 1,2,.... Then by passing to
the limit, we have

lim (Agpio(uy),v) + lim /g(x,un)vdx: lim (f,,v),
Q

n—-+oo n—-+oo n—-+oo

for v € W§°(aq, pa(x))(2). It is clear that

lim (fn,v) = (f,v) forall veW5°(aq,pa(x))(£2).

n—-+00

Now, we shall prove that

Hr}rl (Agnto(up),v) = (Au,v), for all ve W5°(aq, pa(x))(£2).
In fact, let ng be a fix number sufficiently large (n > ng) and let v € W§°(aq, pa) ().
Set

(A(u) — Agpia(un),v) = Iy + I + I3,

where

no

L= Y (Aa(z, D) = Aa(x, Dun), D)
|or|=0

L = Y (Au(z, Dw), D%)
|a|=ng+1

IS = — Z <Aa(3§'7D’Yun)7Dav>_ Z Ca<Daun,Da'l)>,
|a|=ng+1 |o|=n+1

or in another form,

n+1
I3 =— Z (Aa(r, Duy), D%).

|a|=no+1

with Ay (2,&,) = caba and cq > 0 for |a| =n + 1.

We will go to the limit as n — 400 to prove that I, Is and I3 tend to 0. Starting
by I1; we have Iy — 0 since Ay (z,&,) is of Carathéodory type. The term I is
the remainder of a convergent series, hence I, — 0. For what concerns I3; in
view of (A2) and Holder inequality (Lemma 2.1) we have

n+1 n+1
Z (Ao(z, Duy), D%)| < Z |(Aq(x, DMuy), D%)]
|a|=no+1 |a|=no+1
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n+1
< Y, aa/\Do‘un\p“(x)_l\D%]dx
Q
|a|=no+1
n+1
c Y. aal [DunPe®7Y, )| D%
|a|=no+1

IN

’pa(:v)'

Now, in view Lemma 2.3, one get

| D@1, oy < ( / | D%y | (P ()= Do) dx) ’
« Q
< ( / | DO, [P @) da:) i
Q
S |Dozun‘l/a ﬂa

Pa(T)

+
Q Pa—1
< D%unlyas
where v, and 3, are real numbers for all multi-indices |a| < n, defined as

{ /1+ if ‘ |D%n‘pa(aj)_l‘pﬁl(m) <1
Vo =

Pa

/17 if ’ ’D%n’pa(x)_llpfl(az) >1

Pa

/Ba _ p;r Zf ‘Daun’pa(:p) <1
Po Zf ‘Daun‘pa(z) >1

It’s very easy to verify that for all multi-indices || < n, on has
Vo /Boz S p;r -1

Therefore, for all € > 0, there exists k(g) > 0 (see [6, p. 56]) such that

n+1 n+1 n n+1 "
Z (Aa(x, Duy), D%)| < eco Z aa|D°‘un\§Z(m)+COk(€) Z aa]DO‘v|£Z(I)
|a|=no+1 |a|=no+1 |a|=no+1
s +
< o Hak(e) 3 el DR,
|a|=no+1

where K is the constant given in the estimate (3.5). Since the sequence (po(z))
o0

+
is bounded and Z aa|D%\£ *(z) 18 the remainder of a convergent series,
|a|=nop+1
therefore Is — 0 holds. Hence (Agpio(uyn),v) — (A(u),v) as n — +oo for
all v € W§°(an, pa())(€2). It remains to show, for our purposes, that

Jim [ gl uvde = [ g s,
for all v € W§°(aq, pa(z))(2). Indeed, we have u, — u uniformly in , hence
g(x,up) = g(z,u) for a.e. x € Q. In view of (3.3), we deduce by Fatou’s lemma
that

/ g(z,u)udr < lim g(x, up)uy, de < K.
Q

n—+o0o JO
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This implies that g(z, u)u € L'(2). On the other hand, let § > 0, since |g(z,t)|6 <
lg(z,t)t| and then |g(z,t)| < 6§~ t|g(z,t)t| for |t| > §, we have

g(x,un)| < ﬁlr;lg(fc,t)l+5_1\g(w,un)-un!
t|<

h(g(l') + 5_1 |g(m, un)un|

IN

It follows that
[ ot ulde < [ hste)do+07'K,
E E

for some measurable subset F of {2 and for some € > 0. Here, K is the constant of
(3.3) which is independent of n. For |E| sufficiently small and § = 2£, we obtain
/ |g(x, up)|dx < e. Then, using Vitali’s, we get theorem g(z,u,) — g(x,u) in
E
LY(Q). Hence it follows that g(x,u) € L*(Q).
By passing to the limit, we obtain

(Au,v) + /Qg(:c,u)v dx = (f,v), forall v e Wy°(aq,pa(x))(S2).

Consequently,

g(x,u) € LY(Q), g(z,u)u € L}(Q)
(Au,v) + /Qg(a:, wvdr = (f,v) for all v € Wi (an, pa(z)) ()

This completes the proof.

Remark 3.1 Note that the existence result is given with no monotonicity con-
dition on the operator.
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