References
Alahuhta, J., Lindholm, M., Båstrup-Spohr, L., Garcia-Giron, J., Toivanen, M., Heino, J., Murphy, K. (2021). Macroecology of macrophytes in the freshwater realm: Patterns, mechanisms and implications. Aquatic Botany 168, 103325. https://doi.org/10.1016/j.aquabot.2020.103325
Beck, M.W. & Alahuhta, J. (2017). Ecological determinants of Potamogeton taxa in glacial lakes: assemblage composition, species richness, and species-level approach. Aquatic Sciences 79, 427-441. https://doi.org/10.1007/s00027-016-0508-x 
Blackburn, K. B., & Morton, J. K. (1957). The incidence of polyploidy in the Caryophyllaceae of Britain and of Portugal. New Phytologist 56 , 344-351. https://www.jstor.org/stable/2429613 
Bornette, G. & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences 73 , 1–14. https://doi.org/10.1007/s00027-010-0162-7 
Chambers, R., Meyerson, L. & Saltonstall, K. (1999). Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64, 261-273. https://doi.org/10.1016/S0304-3770(99)00055-8
Chambers, P.A., Lacoul, P., Murphy, K.J. & Thomaz, S.M. (2008). Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595, 9-26.
Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6, 836–846. https://doi.org/10.1038/nrg1711
Dar, M.A., Wani, G. A., Reshi, Z.A., Al-Qarawi, A.A., Abd Allah, E.F. & Shah, M.A. (2020). Stage-specific ploidy level variations in invasive species in comparison to rare endemics in Kashmir Himalaya. Flora 262, 151525.
De’ath, G. (2007). Boosted trees for ecological modeling and prediction.Ecology, 88(1), 243–251. https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 
Eckert C.G. (2002) The loss of sex in clonal plants. In: Stuefer J.F., Erschbamer B., Huber H., Suzuki JI. (eds) Ecology and Evolutionary Biology of Clonal Plants. Springer, \soutDordrecht. https://doi.org/10.1007/978-94-017-1345-0_15 
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology , 77 , 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x 
Garbey, C., Murphy, K.J., Thiébaut, G. & Muller, S. (2004). Variation in P-content in aquatic plant tissues offers an efficient tool for determining plant growth strategies along a resource gradient. Freshwater Biology 49, 346-356. https://doi.org/10.1111/j.1365-2427.2004.01188.x 
Goga, M., Ručová, D., Kolarčik, V., Sabovljević, M., Bačkor, M., & Lang, I. (2018). Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecology and Evolution 8(5) , 2781–2787. https://doi.org/10.1002/ece3.3908 
Greenwell, B., Boehmke, B., Cunningham, J., & GBM, D. (2018). gbm: generalized boosted regression models. R package version 2.1.5.
Grime, J. P. (1979). Plant strategies and vegetation processes. Chichester: Wiley.
Guerra, M. (2016). Agmatoploidy and symploidy: a critical review. Genetics and Molecular Biology 39(4), 492-496 (2016). https://doi.org/10.1590/1678-4685-GMB-2016-0103
Hagerup, O. (1932). Über polyploidie in beziehung zu klima, ökologie und phylogenie. Hereditas 16 , 19–40. https://doi.org/ j.1601-5223.1932.tb02560.x   
Hardy, O.J., Vanderhoeven, S., De Loose, M. & Meerts, P. (2000). Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea ) from a contact zone in the Belgian Ardennes. New Phytologist 146 , 281–290. https://doi.org/10.1046/j.1469-8137.2000.00631.x 
Herben, T., Suda, J. & Klimesova, J. (2017). Polyploid species rely on vegetative reproduction more than diploids, a re-examination of the old hypothesis. Annals of Botany, 120 (2) , 341-349. https://doi.org/10.1093/aob/mcx009 
Hill, M.P., Coetzee, J.A., Martin, G.D., Smith, R. & Strange, E.F. (2020). Invasive alien aquatic plants in South African freshwater ecosystems. In: van Wilgen B., Measey J., Richardson Biological Invasions in South Africa. Invading Nature D., Wilson J., Zengeya T. (eds) - Springer Series in Invasion Ecology, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-32394-3_4 
Husband, B.C., Baldwin, S.J. & Suda, J. (2013). The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Greilhuber, J., Dolezel, J., & Wendel, J. (eds.) Plant genome diversity 2, 255-276, Springer. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-7091-1160-4_16 
Hussner, A., Stiers, I., Verhofstad, M.J.J.M. et al. (2017). Management and control methods of invasive alien freshwater aquatic plants: a review. Aquatic Botany 136, 112-137. https://doi.org/10.1016/j.aquabot.2016.08.002 
Iversen, L. L., Winkel, A., Baastrup-Spohr, L., Hinke, A. B., Alahuhta, J., Baattrup-Pedersen, A., Birk, S., Brodersen, P., Chambers, P A., Ecke, F., Feldmann, T., Gebler, D., Heino, J., Jespersen, T S., Moe, S J., Riis, T., Sass, L., Vestergaard, O., Maberly, S C., Sand-Jensen, K., Pedersen, O. (2019). Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science 366 , 878-881. https://doi.org/10.1126/science.aay5945 
Johnson, A.W. & Packer, J.G. (1965). Polyploidy and environment in Arctic Alaska. Science 148, 237–239. https://doi.org/10.1126/science.148.3667.237 
Johnson, M.T.J., Husband, B.C. & Burton, T.L. (2003). Habitat differentiation between diploid and tetraploid Galax urceolata (Diapensiaceae). International Journal of Plant Science 164, 703–710. https://doi.org/10.1086/376813 
Kron, P., Suda, J. & Husband, B.C. (2007). Applications of flow cytometry to evolutionary and population biology. Annual Review of Ecology, Evolution and Systematics 38, 847–876. https://doi.org/10.1146/annurev.ecolsys.38.091206.095504 
Kubátová, B., Trávnícek, P., Bastlová, D., Curn, V., Jarolímová, V. & Suda, J. (2008). DNA ploidy-level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. Journal of Biogeography 35, 167–176. https://doi.org/10.1111/j.1365-2699.2007.01781.x 
Lang, P. & Murphy, K.J. (2012) Environmental drivers, life strategies and bioindicator capacity of aquatic bryophyte communities in high-latitude upland streams. Hydrobiologia 679, 1-17. https://doi.org/10.1007/s10750-011-0838-6 
Les, D.H. (2017). Aquatic dicotyledons of North America: Ecology, life history, and systematics . CRC Press, Taylor & Francis. https://doi.org/10.1201/9781315118116 
Levin, D.A. (2019). Plant speciation in the age of climate change. Annals of Botany, 124, 769-775. https://doi.org/10.1093/aob/mcz108 
Lobato‑de Magalhães, T., Cabrera‑Toledo, D. &·Mahinda Martínez, M. (2019). Microsatellite loci transferability and genetic diversity of the aquatic plant Nymphoides fallax Ornduff (Menyanthaceae), endemic to the Mexican and Guatemalan highlands. Limnology 20, 233–241. https://doi.org/10.1007/s10201-019-00571 
Löve, Á & Löve, D. (1949). The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biologica A (R. B. Goldschmidt Jubilee Volume), 273–352.
Lowry, E. & Lester, S.E. (2006). The biogeography of plant reproduction: potential determinants of species’range sizes. Journal of Biogeography 33, 1975–1982. https://doi.org/10.1111/j.1365-2699.2006.01562.x 
Luceño, M., Mendes, A.P., Venzela, A.L.L & Alves M.V. (1998). Agmatoploidy and symploidy in Rhynchospora cephalotes (L.) Vahl (Cyperaceae). Cytologia 63, 79-81.
Lui, K., Thompson, F.L. & Eckert, C.G. (2005). Causes and consequences of extreme variation in reproductive strategy and vegetative growth among invasive populations of a clonal aquatic plant, Butomus umbellatus L. (Butomaceae). Biological Invasions 7, 427–444. https://doi.org/10.1007/s10530-004-4063-3 
Martin, S.L. & Husband, B.C. (2009). Influence of phylogeny and ploidy on species ranges of North American angiosperms. Journal of Ecology 97, 913–922. https://doi.org/10.1111/j.1365-2745.2009.01543.x 
Martin, S.L. & Husband, B.C. (2013). Adaptation of diploid and tetraploid Chamerion angustifolium to elevation but not local environment. Evolution 67, 1780–1791. https://doi.org/10.1111/evo.12065 
Murphy, K., Efremov, A., Davidson, T.A., Molina-Navarro, E., Fidanza, K., Crivelari Betiol, T.C., Chambers, P., Tapia-Grimaldo, J., Varandas Martins, S., Springuel, I., Kennedy, M., Mormul, R., Dibble, E., Hofstra, D., Lukács, B.A., Gebler, D., Båstrup-Spohr, L. & Urrutia Estrada, J. (2019). World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158. https://doi.org/10.1016/j.aquabot.2019.06.006 
Murphy, K., Carvalho, P., Efremov, A., Tapia Grimaldo, J., Molina-Navarro, E., Davidson, T.A. & Thomaz, S.M. (2020). Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport Effect. Freshwater Biology 65, 1622 - 1640. https://doi.org/10.1111/fwb.13528 
Petit, C. & Thompson, J.D. (1999). Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evolution and Ecology 13, 45–66. https://doi.org/10.1023/A:1006534130327 
Pieterse A.H. & Murphy K.J. (1993). Aquatic Weeds: 2nd Edition . Oxford University Press, Oxford, UK.
Plue, J., Kimberley, A. & Slotte, T. (2018). Interspecific variation in ploidy as a key plant trait outlining local extinction risks and community patterns in fragmented landscapes. Functional Ecology32(8), 2095–2106. https://doi.org/10.1111/1365-2435.13127 
R Core Team (2020). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R-project.org/ 
Ramsey, J. & Ramsey, T.S. (2014). Ecological studies of polyploidy in the 100 years following its discovery. Philosophical Transactions of the Royal Society B 369, 20130352. https://doi.org/10.1098/rstb.2013.0352 
Rice, A., Glick, L., Abadi, S., Einhorn, M., Kopelman, N. M., Salman‐Minkov, A., … & Mayrose, I. (2015). The Chromosome Counts Database (CCDB)–a community resource of plant chromosome numbers. New Phytologist 206(1), 19-26. https://doi.org/10.1111/nph.13191 
Rice, A., Šmarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., Meiri, S., Belmaker, J. & Mayrose, I. (2019). The global biogeography of polyploid plants. Nature Ecology & Evolution 3, 265-273. https://doi.org/10.1038/s41559-018-0787-9 
Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J., Sutherland, W. J., & Svenning, J. C. (2011). The influence of Late Quaternary climate-change velocity on species endemism. Science 334(6056), 660-664. https://doi.org/10.5061/dryad.b13j1 
Santamaría, L. (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23, 137–154. https://doi.org/10.1016/S1146-609X(02)01146-3 
Segraves, K. A. (2017). The effects of genome duplications in a community context. New Phytologist 215, 57-69. https://doi.org/10.1111/nph.14564 
Šmarda, P. Hejcman, M., Březinová, A., Horová, L., Steigerová, H., Zedek, F., Bureš, P., Hejcmanová, P. & Schellberg J. (2013). Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytologist 200, 911–921. https://doi.org/10.1111/nph.12399 
Soltis, D.E., Visger, C.J., Marchant, D.B. & Soltis, P.S. (2016). Polyploidy: pitfalls and paths to a paradigm. American Journal of Botany 103, 1146–1166. https://doi.org/10.3732/ajb.1500501 
Stebbins, G. L. (1984). Polyploidy and the distribution of the Arctic-Alpine flora - new evidence and a new approach. Botanica Helvetica 94, 1–13.
Sun, J., Hunter, P.D., Tyler, A.N., & Willby, N.J. (2019). Lake and catchment-scale determinants of aquatic vegetation across almost 1,000 lakes and the contrasts between lake types. Journal of Biogeography 46, 1066–1082. https://doi.org/10.1111/jbi.13557 
te Beest, M., Le Roux, J.J., Richardson, D.M., Brysting, A.K., Suda, J., Kubesova, M. & Pysek, P. (2012). The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109, 19–45. https://doi.org/10.1093/aob/mcr277 
Tena-Flores, J.A., González-Elizondo, M.S., Herrera-Arrieta, Y., Almaraz-Abarca, N., Mayek-Pérez, N., da Silva, C.R.N. & Vanzela, A.L.L. (2013). Karyotype characterization of eight Mexican species of Eleocharis (Cyperaceae). Botanical Sciences 91, 119-128. http://rdcb.cbg.ipn.mx/handle/20.500.12273/66 
Tena-Flores, J.A., González-Elizondo, M.S., Herrera-Arrieta, Y., Almaraz-Abarca, N., Mayek-Pérez, N. & Vanzela, A.L.L. (2014). Karyotype characterization of four Mexican species of Schoenoplectus (Cyperaceae) and first report of polyploid mixoploidy for the family. Caryologia, 67(2), 124-134. https://doi.org/10.1080/00087114.2014.931633 
Therneau, T., Atkinson, B., & Ripley, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1–15.
Tippery, N.P., Sears, N.L., Zentner, A.B. & Sivadas, V. (2018). Evidence for allopolyploid speciation in Nymphoides (Menyanthaceae). Systematic Botany 43, 117–129. https://doi.org/10.1600/036364418X696950 
Tischler, G. (1935). Die Bedeutung der Polyploide für die Verbreitung der Angiospermen. Biologische Jahrbuch 47, 1.
Trabucco, A., & Zomer, R. J. (2018). Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consort Spat Inf. https://doi.org/10.6084/m9.figshare.7504448.v3 
Ulum, F. B., Costa Castro, C., & Hörandl, E. (2020). Ploidy-dependent effects of light stress on the mode of reproduction in the Ranunculus auricomus complex (Ranunculaceae). Frontiers in Plant Science11, 104. https://doi.org/10.3389/fpls.2020.00104 
Wani, G. A., Shah, M. A., Reshi, Z. A., & Dar, M. A. (2018). Polyploidy determines the stage of invasion: clues from Kashmir Himalayan aquatic flora. Acta Physiologiae Plantarum, 40(3). https://doi.org/10.1007/s11738-018-2629-4