References
Alahuhta, J., Lindholm, M., Båstrup-Spohr, L., Garcia-Giron, J.,
Toivanen, M., Heino, J., Murphy, K. (2021). Macroecology of
macrophytes in the freshwater realm: Patterns, mechanisms and
implications.
Aquatic Botany 168, 103325.
https://doi.org/10.1016/j.aquabot.2020.103325Beck, M.W. & Alahuhta, J. (2017). Ecological determinants of
Potamogeton taxa in glacial lakes: assemblage composition,
species richness, and species-level approach.
Aquatic Sciences 79, 427-441.
https://doi.org/10.1007/s00027-016-0508-x Blackburn, K. B., & Morton, J. K. (1957). The incidence of polyploidy
in the Caryophyllaceae of Britain and of Portugal.
New
Phytologist 56 , 344-351.
https://www.jstor.org/stable/2429613 Chambers, P.A., Lacoul, P., Murphy, K.J. & Thomaz, S.M. (2008). Global
diversity of aquatic macrophytes in freshwater. Hydrobiologia 595, 9-26.
Dar, M.A., Wani, G. A., Reshi, Z.A., Al-Qarawi, A.A., Abd Allah, E.F. &
Shah, M.A. (2020). Stage-specific ploidy level variations in invasive
species in comparison to rare endemics in Kashmir Himalaya. Flora
262, 151525.
Eckert C.G. (2002) The loss of sex in clonal plants. In: Stuefer J.F.,
Erschbamer B., Huber H., Suzuki JI. (eds) Ecology and Evolutionary
Biology of Clonal Plants. Springer, \soutDordrecht.
https://doi.org/10.1007/978-94-017-1345-0_15 Garbey, C., Murphy, K.J., Thiébaut, G. & Muller, S. (2004). Variation
in P-content in aquatic plant tissues offers an efficient tool for
determining plant growth strategies along a resource gradient.
Freshwater Biology 49, 346-356.
https://doi.org/10.1111/j.1365-2427.2004.01188.x Goga, M., Ručová, D., Kolarčik, V., Sabovljević, M., Bačkor, M., &
Lang, I. (2018). Usnic acid, as a biotic factor, changes the ploidy
level in mosses.
Ecology and Evolution 8(5) , 2781–2787.
https://doi.org/10.1002/ece3.3908 Greenwell, B., Boehmke, B., Cunningham, J., & GBM, D. (2018). gbm:
generalized boosted regression models. R package version 2.1.5.
Grime, J. P. (1979). Plant strategies and vegetation processes.
Chichester: Wiley.
Hagerup, O. (1932). Über polyploidie in beziehung zu klima, ökologie und
phylogenie.
Hereditas 16 , 19–40.
https://doi.org/ j.1601-5223.1932.tb02560.x
Hardy, O.J., Vanderhoeven, S., De Loose, M. & Meerts, P. (2000).
Ecological, morphological and allozymic differentiation between diploid
and tetraploid knapweeds (
Centaurea jacea ) from a contact zone in
the Belgian Ardennes.
New Phytologist 146 , 281–290.
https://doi.org/10.1046/j.1469-8137.2000.00631.x Herben, T., Suda, J. & Klimesova, J. (2017). Polyploid species rely on
vegetative reproduction more than diploids, a re-examination of the old
hypothesis.
Annals of Botany, 120 (2) , 341-349.
https://doi.org/10.1093/aob/mcx009 Hill, M.P., Coetzee, J.A., Martin, G.D., Smith, R. & Strange, E.F.
(2020). Invasive alien aquatic plants in South African freshwater
ecosystems. In: van Wilgen B., Measey J., Richardson
Biological
Invasions in South Africa. Invading Nature D., Wilson J., Zengeya T.
(eds) - Springer Series in Invasion Ecology, vol 14. Springer, Cham.
https://doi.org/10.1007/978-3-030-32394-3_4 Husband, B.C., Baldwin, S.J. & Suda, J. (2013). The incidence of
polyploidy in natural plant populations: major patterns and evolutionary
processes. In: Greilhuber, J., Dolezel, J., & Wendel, J. (eds.)
Plant genome diversity 2, 255-276, Springer.
http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-7091-1160-4_16 Iversen, L. L., Winkel, A., Baastrup-Spohr, L., Hinke, A. B., Alahuhta,
J., Baattrup-Pedersen, A., Birk, S., Brodersen, P., Chambers, P A.,
Ecke, F., Feldmann, T., Gebler, D., Heino, J., Jespersen, T S., Moe, S
J., Riis, T., Sass, L., Vestergaard, O., Maberly, S C., Sand-Jensen, K.,
Pedersen, O. (2019). Catchment properties and the photosynthetic trait
composition of freshwater plant communities.
Science 366 ,
878-881.
https://doi.org/10.1126/science.aay5945 Johnson, M.T.J., Husband, B.C. & Burton, T.L. (2003). Habitat
differentiation between diploid and tetraploid
Galax urceolata (Diapensiaceae).
International Journal of Plant Science 164,
703–710.
https://doi.org/10.1086/376813 Kubátová, B., Trávnícek, P., Bastlová, D., Curn, V., Jarolímová, V. &
Suda, J. (2008). DNA ploidy-level variation in native and invasive
populations of
Lythrum salicaria at a large geographical scale.
Journal of Biogeography 35, 167–176.
https://doi.org/10.1111/j.1365-2699.2007.01781.x Lang, P. & Murphy, K.J. (2012) Environmental drivers, life strategies
and bioindicator capacity of aquatic bryophyte communities in
high-latitude upland streams.
Hydrobiologia 679, 1-17.
https://doi.org/10.1007/s10750-011-0838-6 Lobato‑de Magalhães, T., Cabrera‑Toledo, D. &·Mahinda Martínez, M.
(2019). Microsatellite loci transferability and genetic diversity of the
aquatic plant
Nymphoides fallax Ornduff (Menyanthaceae), endemic
to the Mexican and Guatemalan highlands.
Limnology 20,
233–241.
https://doi.org/10.1007/s10201-019-00571 Löve, Á & Löve, D. (1949). The geobotanical significance of polyploidy.
I. Polyploidy and latitude. Portugaliae Acta Biologica A (R. B.
Goldschmidt Jubilee Volume), 273–352.
Luceño, M., Mendes, A.P., Venzela, A.L.L & Alves M.V. (1998).
Agmatoploidy and symploidy in Rhynchospora cephalotes (L.) Vahl
(Cyperaceae). Cytologia 63, 79-81.
Lui, K., Thompson, F.L. & Eckert, C.G. (2005). Causes and consequences
of extreme variation in reproductive strategy and vegetative growth
among invasive populations of a clonal aquatic plant,
Butomus
umbellatus L. (Butomaceae).
Biological Invasions 7,
427–444.
https://doi.org/10.1007/s10530-004-4063-3 Martin, S.L. & Husband, B.C. (2013). Adaptation of diploid and
tetraploid
Chamerion angustifolium to elevation but not local
environment.
Evolution 67, 1780–1791.
https://doi.org/10.1111/evo.12065 Murphy, K., Efremov, A., Davidson, T.A., Molina-Navarro, E., Fidanza,
K., Crivelari Betiol, T.C., Chambers, P., Tapia-Grimaldo, J., Varandas
Martins, S., Springuel, I., Kennedy, M., Mormul, R., Dibble, E.,
Hofstra, D., Lukács, B.A., Gebler, D., Båstrup-Spohr, L. & Urrutia
Estrada, J. (2019). World distribution, diversity and endemism of
aquatic macrophytes.
Aquatic Botany 158.
https://doi.org/10.1016/j.aquabot.2019.06.006 Murphy, K., Carvalho, P., Efremov, A., Tapia Grimaldo, J.,
Molina-Navarro, E., Davidson, T.A. & Thomaz, S.M. (2020). Latitudinal
variation in global range-size of aquatic macrophyte species shows
evidence for a Rapoport Effect.
Freshwater Biology 65,
1622 - 1640.
https://doi.org/10.1111/fwb.13528 Petit, C. & Thompson, J.D. (1999). Species diversity and ecological
range in relation to ploidy level in the flora of the Pyrenees.
Evolution and Ecology 13, 45–66.
https://doi.org/10.1023/A:1006534130327 Pieterse A.H. & Murphy K.J. (1993). Aquatic Weeds: 2nd Edition .
Oxford University Press, Oxford, UK.
Plue, J., Kimberley, A. & Slotte, T. (2018). Interspecific variation in
ploidy as a key plant trait outlining local extinction risks and
community patterns in fragmented landscapes.
Functional Ecology32(8), 2095–2106.
https://doi.org/10.1111/1365-2435.13127 R Core Team (2020). R: a Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
R-project.org/
Ramsey, J. & Ramsey, T.S. (2014). Ecological studies of polyploidy in
the 100 years following its discovery.
Philosophical Transactions
of the Royal Society B 369, 20130352.
https://doi.org/10.1098/rstb.2013.0352 Rice, A., Glick, L., Abadi, S., Einhorn, M., Kopelman, N. M.,
Salman‐Minkov, A., … & Mayrose, I. (2015). The Chromosome Counts
Database (CCDB)–a community resource of plant chromosome
numbers.
New Phytologist 206(1), 19-26.
https://doi.org/10.1111/nph.13191 Rice, A., Šmarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N.,
Meiri, S., Belmaker, J. & Mayrose, I. (2019). The global biogeography
of polyploid plants.
Nature Ecology & Evolution 3,
265-273.
https://doi.org/10.1038/s41559-018-0787-9 Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J.,
Sutherland, W. J., & Svenning, J. C. (2011). The influence of Late
Quaternary climate-change velocity on species
endemism.
Science 334(6056), 660-664.
https://doi.org/10.5061/dryad.b13j1 Santamaría, L. (2002). Why are most aquatic plants widely distributed?
Dispersal, clonal growth and small-scale heterogeneity in a stressful
environment.
Acta Oecologica 23, 137–154.
https://doi.org/10.1016/S1146-609X(02)01146-3 Šmarda, P. Hejcman, M., Březinová, A., Horová, L., Steigerová, H.,
Zedek, F., Bureš, P., Hejcmanová, P. & Schellberg J. (2013). Effect of
phosphorus availability on the selection of species with different
ploidy levels and genome sizes in a long-term grassland fertilization
experiment.
New Phytologist 200, 911–921.
https://doi.org/10.1111/nph.12399 Soltis, D.E., Visger, C.J., Marchant, D.B. & Soltis, P.S. (2016).
Polyploidy: pitfalls and paths to a paradigm.
American Journal of
Botany 103, 1146–1166.
https://doi.org/10.3732/ajb.1500501 Stebbins, G. L. (1984). Polyploidy and the distribution of the
Arctic-Alpine flora - new evidence and a new approach. Botanica
Helvetica 94, 1–13.
Sun, J., Hunter, P.D., Tyler, A.N., & Willby, N.J. (2019). Lake and
catchment-scale determinants of aquatic vegetation across almost 1,000
lakes and the contrasts between lake types.
Journal of
Biogeography 46, 1066–1082.
https://doi.org/10.1111/jbi.13557 te Beest, M., Le Roux, J.J., Richardson, D.M., Brysting, A.K., Suda, J.,
Kubesova, M. & Pysek, P. (2012). The more the better? The role of
polyploidy in facilitating plant invasions.
Annals of Botany 109, 19–45.
https://doi.org/10.1093/aob/mcr277 Tena-Flores, J.A., González-Elizondo, M.S., Herrera-Arrieta, Y.,
Almaraz-Abarca, N., Mayek-Pérez, N., da Silva, C.R.N. & Vanzela, A.L.L.
(2013). Karyotype characterization of eight Mexican species of
Eleocharis (Cyperaceae).
Botanical Sciences 91,
119-128.
http://rdcb.cbg.ipn.mx/handle/20.500.12273/66 Tena-Flores, J.A., González-Elizondo, M.S., Herrera-Arrieta, Y.,
Almaraz-Abarca, N., Mayek-Pérez, N. & Vanzela, A.L.L. (2014). Karyotype
characterization of four Mexican species of
Schoenoplectus (Cyperaceae) and first report of polyploid mixoploidy for the family.
Caryologia,
67(2), 124-134.
https://doi.org/10.1080/00087114.2014.931633 Therneau, T., Atkinson, B., & Ripley, B. (2019). rpart: Recursive
Partitioning and Regression Trees. R package version 4.1–15.
Tippery, N.P., Sears, N.L., Zentner, A.B. & Sivadas, V. (2018).
Evidence for allopolyploid speciation in
Nymphoides (Menyanthaceae).
Systematic Botany 43, 117–129.
https://doi.org/10.1600/036364418X696950 Tischler, G. (1935). Die Bedeutung der Polyploide für die Verbreitung
der Angiospermen. Biologische Jahrbuch 47, 1.
Ulum, F. B., Costa Castro, C., & Hörandl, E. (2020). Ploidy-dependent
effects of light stress on the mode of reproduction in the
Ranunculus auricomus complex (Ranunculaceae).
Frontiers in
Plant Science,
11, 104.
https://doi.org/10.3389/fpls.2020.00104 Wani, G. A., Shah, M. A., Reshi, Z. A., & Dar, M. A. (2018). Polyploidy
determines the stage of invasion: clues from Kashmir Himalayan aquatic
flora
. Acta Physiologiae Plantarum,
40(3). https://doi.org/10.1007/s11738-018-2629-4