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Abstract

Flag  leaf  angle  (FLA) is  an  important  outcrossing  trait  affecting  the  hybrid  seed
production in rice (Oryza sativa L.). Natural variation of FLA has been reported in
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rice,  but  the  molecular  basis  for  this  variation  is  largely  unknown.  Here  we
investigated  the  phenotypic  values  of  FLA in  353  rice  natural  accessions  in  six
environments, which indicated rich phenotypic variation. We performed a genome-
wide  association  study on FLA using  1.3 million single  nucleotide  polymorphism
(SNPs).  A total  of  37 SNPs were identified significantly associated with FLA, of
which 27 were located in previously reported QTLs/Genes and 10 were novel. We
identified two causal  gene loci  for FLA,  OsFLA6 and  OsFLA2; OsFLA6  was co-
localized with the gene OsLIC. In addition, the accessions with large and small FLA
values have corresponding high and low OsFLA6 expression. We also confirmed that
the  allele  OsFLA2TT increased  the  FLA  compared  with  that  of  the  isogenic  line
carrying  allele  OsSYL2CC  by transgenic  complementation  experiment. The  allele
frequencies  of  OsFLA6GG and OsFLA2TT decreased  gradually  with  an  increase  in
latitude in the Northern Hemisphere. Our results should facilitate the improvement of
FLA of parents of hybrid rice.

Keywords: Flag leaf angle; Genome-wide association mapping; Heterosis utilization;
Hybrid seed production; Natural variation; Rice.

1 Introduction

Asian cultivated  rice (Oryza sativa L.)  is  one of  the most  important  staple  foods
feeding  more  than  3.5  billion  people  worldwide. With  the  human  population
increasing and the arable land decreasing, increasing the rice grain yield per unit area
per unit time is an inevitable choice. The utilization of heterosis is one of the effective
strategies to enhance rice grain yield. However, it entails the production of F1 hybrid
seeds yearly. For hybrid seed production in O. sativa, to remove the barriers to cross-
pollination at the initial heading stage, farmers usually cut off one-third or one-half of
the flag leaf blade of the parents, which can not only require more labors but also high
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operating skills to avoid injuring the young panicle. In addition, the wound caused by
leaf clipping also had adverse effect on the normal growth of rice plant. If the flag leaf
angle  (FLA)  in  female  parents  is  larger  than  90°,  leaf  clipping  can  be  omitted.
Therefore,  breeding  a  male  sterile  line  with  larger  FLA can  not  only  omits  the
procedure of flag leaf clipping but also facilitates the  mechanization of hybrid rice
seed production. 

Early research has shown that the FLA trait is controlled by a pair of major genes
and a number of minor gene pairs, with a small angle being partially dominant (Shen,
1983).  To  date,  163  quantitative  trait  loci  (QTLs)  for  FLA have  been  identified,
including 24, 20, 16, 16, 10, 11, 11, 18, 12, 6, 11 and 8 on chromosomes 1 to 12,
respectively  (Table  S1)  (Li  et  al.,  1999;  Yan  et  al.,  1999;  Dong  et  al.,  2003;
Kobayashi et al., 2003; Luo et al., 2008; Zhang et al., 2008; Cai, 2009; Huang et al.,
2010; Chen et al., 2012; Hu et al., 2012; Wang et al., 2012; Zhang et al., 2013; Bian
et al., 2014; Zou et al., 2014; Lu et al., 2015; Zhu et al., 2016; Dong et al., 2018a, b;
Ham et al., 2019). Among these QTLs, only one QTL qFla-8-2 has been fine-mapped
and predicted the candidate genes (Zhu  et al.,  2016). Several genes for leaf angle
(refers to all leaves growing on a stem), such as lla, OsLIC, ILA1 and OsARF19, have
been cloned (Wang et al., 2005, 2008; Ning et al., 2011; Zhang et al., 2015), but no
cloned gene responsible for FLA has been reported thus far. Therefore, it is necessary
to discover favorable alleles for FLA to enhance the yield of hybrid seed production
in rice. 

In  this  study,  we performed a genome-wide association  analysis  (GWAS) by
combining the FLA of 353 rice accessions on six environments with single nucleotide
polymorphism (SNP) data and identified significant SNP loci. Further, we identified a
novel causative gene  OsFLA2  for FLA by the gene-based association method.  The
function  of  OsFLA2TT was  validated  by  transgenic  complementation  test.  These
results filled a gap of gene cloning and functional analysis of FLA characteristics.
This study sets the stage for further improvement of FLA of the parents of hybrid rice.

2 Results

2.1 Phenotypic statistics of FLA in natural rice accessions

The phenotypic value of FLA was investigated in the 353 rice accessions containing
indica and japonica subspecies across six environments. The distributions of average
value over the  six  environments  for FLA in  indica and  japonica subspecies  were
shown in Figure 1a. Compared with  indica rice,  the  japonica rice  population had
lower values for FLA (Figure 1a). In the 353 accessions, the mean value of FLA was
calculated per environment,  ranging from  35.87 ±  20.66° to  38.49 ±  21.38°,  with
coefficients of variation (CV) across the six environments from  55.55% to  58.48%
(Figure  1b,  c).  These  results  showed  that  there  existed  the  abundant  phenotype
variation in the population studied. Based on the results of joint analysis of variance
for  FLA,  we  found  that  there  were  significant  differences  among  genotypes,  no
significant differences among the  environments, and  significant differences for  the
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interactions of genotypes with environments (Table  S2). These results indicated that
although  the environment had effect on  FLA,  the abundant phenotypic variation of
FLA was mainly attributable to variation in genotype. 

2.2 Genome-wide association mapping for FLA

Based on the mixed linear model with correction of kinship bias, GWAS on FLA trait
of  353  accessions  with  high-quality  SNPs  (MAF  >  0.05) were  carried  out.  We
detected a total of 37 significantly associated SNP loci in the 28 LD regions (Table 1).
These  SNP loci  located  on  chromosomes  1,  2  and  4–10  and  explained  the  total
phenotypic  variation  approximately  from  1.50% to  9.27%,  which  were  repeatedly
detected in at least four environments, indicating that the SNPs linked with FLA were
more  stable (Figure S1,  Table 1 and Table S3).  Eighteen of  these  SNP loci  were
detected across six environments and five loci were detected in five environments
(Figure S1, Table 1 and Table S3). Next, we further analyzed the major SNP loci
relevant to FLA with a significant peak, present in chromosome 6 and 2, respectively. 

2.3 Allele OsFLA6GG increase FLA

For the association signal in the 30.70-30.92 Mb region on chromosome 6, there were
31  genes  for  FLA  identified  (Figure  2a,  b).  Although  18  genes  contain
nonsynonymous  SNPs,  none  of  these  SNPs  was  found  to  have  a  significant
association with FLA in GWAS or  gene-based association (GBA) (Table S4). Thus,
we applied the method reported by Yano et al. (2016) and Fang et al. (2017) to use the
nearby  LD  block  (29.63-30.14  Mb)  for  further  analysis  considering  allelic
heterogeneity. In this region, 42 of 87 genes contain nonsynonymous SNPs (Table S5
and  Table  S6).  Only  one  nonsynonymous  SNP was  found to  be  significantly
associated  with  FLA (-log10P ≥7.0);  it  was  located  within  the  gene  locus
Os06g0704300.  Hereafter, gene  Os06g0704300 is referred to as  OsFLA6. The full
length  of  OsFLA6 is  3620 bp,  including  11 exons and  10 introns.  OsFLA6  was
classified into two haplotypes based on three missense SNPs in the coding region
(Figure 2c). Among  them, the SNP locus (29,739,644) was significantly associated
with FLA (Table 1 and Table S5), which causes a base change from base A to base G
at nucleotide (nt) 328 in the coding sequence, resulting in an amino acid change from
threonine  (T) to  alanine  (A)  at  amino  acid  110. The  average  FLA value  of  116
accessions carrying the allele OsFLA6AA were 26.5 ± 11.8°. The average FLA value of
232 accessions carrying the allele  OsFLA6GG were  37.5  ± 12.3°. The differences in
FLA value between allele OsFLA6AA and OsFLA6GG was highly significant (Welch’s t-
test; P=6.06E-04) (Figure 2d). 

Further, we performed qRT-PCR analysis of flag leaf and flag leaf lamina joint at
differentiation stage 6, 7, and 8, respectively, sampling from three accessions (A7444,
Shenlenuo and Ludao) with large FLA and three accessions (Nipponbare, Kendao 13
and  Chenwan  3hao)  with  small  FLA. The  results  showed  that  the  expression  of
OsFLA6AA was higher than that of OsFLA6GG in flag leaf and flag leaf lamina joint at
differentiation  stage  7,  but  no  significant  difference  was  found at  stages 6  and 8
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(Figure  2e).  We also found that  the expression of  OsFLA6AA in  each of the three
accessions with larger FLA was significantly higher than that of OsFLA6GG in each of
the three accessions with  smaller  FLA (Figure  2e).  Based on the website of  China
Rice Data Center (http://www.ricedata.cn/gene/list/286.htm), we found that the gene
locus  Os06g0704300  was  identical  to  OsLIC (Oryza  sativa leaf  and  tiller  angle
increased controller), which  encodes a CCCH-type zinc finger protein and regulates
leaf  angle and tiller  angle through the BR signaling pathway (Wang  et  al.,  2008;
Zhang et al., 2012). Research on the function of LIC has been reported and we will no
longer study the function of OsFLA6GG.

2.4 Introduction of the allele OsFLA2TT increases FLA

For the association signal in the 2.16-2.50 Mb region on chromosome 2, there were 18
genes for FLA identified (Figure  3a,  b). Based on SNP information,  16 of the 18
genes contain nonsynonymous SNPs (Table  S7 and Table S8). However, only one
nonsynonymous  SNP was  significantly  associated  with  FLA (-log10P≥7.0);  it  was
located  within  the  gene  locus  Os02g0142875.  Hereafter,  gene  Os02g0142875 is
referred to as OsFLA2. The full length of OsFLA2 is 2177 bp, including three exons
and two introns. Gene OsFLA2 encodes a 95 amino acid protein. For OsFLA2, there
was no  putative  conserved  domains  detected.  OsFLA2 was  classified  into  two
haplotypes based on six SNPs in its cDNA containing one intron and five exon SNPs
(Figure 3c). For the five exon SNPs, one SNP site (2,372,278 bp) was synonymous
and four was nonsynonymous. Among the four nonsynonymous SNPs, the SNP site
(2,372,437) was significantly associated with FLA (Table 1 and Table S7). The SNP
site (2,372,437) causes a base change from base C to base T at nt  137 in the cDNA
sequence, which results in an amino acid change from serine (S) to phenylalanine (F)
at  amino  acid  46. The  average  FLA values  of  286 accessions  carrying  the  allele
OsFLA2CC was 28.5 ± 10.5°. The average FLA values of 24 accessions carrying the
allele  OsFLA2TT was  51.5 ±  13.1°.  The  difference  in  FLA values  between  the
OsFLA2CC and OsFLA2TT genotypes was highly significant (Welch’s t-test; P=4.88E-
04) (Figure 3d). 

The  qRT-PCR  results  showed  that  there  were  expression  for  OsFLA2TT  and
OsFLA2CC  in  flag leaf and flag leaf lamina joint at differentiation stages 6,  7 and 8
(Figure 3e). The expression of  OsFLA2TT was  was higher than that of  OsFLA2CC in
flag  leaf  and  flag  leaf  lamina  joint at  differentiation  stage  7,  but  no  significant
difference was found at stages 6 and 8 (Figure 3e). We also found that the expression
of  OsFLA2TT in each of the three accessions  (A7444,  Shenlenuo and Ludao)  with
large  FLA was  significantly  higher  than  that  of  OsFLA2CC in  each  of  the  three
accessions (Nipponbare, Kendao 13 and Chenwan 3hao) with small FLA (Figure 3e).
These results suggested that enhanced expression of OsFLA2TT might increase FLA. 

According to the results of GWAS, no SNP loci located in the promoter region of
OsFLA2 were associated with  FLA. Based on the website  of  promoter  functional
elements
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(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/#opennewwindow),  we
found  that  there  were  no  SNP loci  in  the  cis-element  regulatory  region.  So,  we
speculated that phenotypic variation between the accessions with the TT allele and
those with the CC allele was caused by SNP loci in the coding sequence region. Next,
we conducted transformation of OsFLA2 gene to confirm it. 

The genome sequence of the allele OsFLA2TT and empty vector were introducted
into  Nipponbare,  respectively.  Compared  with the  plants  of  Nipponbare  genome,
plants  transformed  with  the  allele OsFLA2TT had  a  larger  FLA,  whereas  those
transformed  with  the empty  vector showed  no  phenotypic  change  (Figure  3f,  g).
These results showed that OsFLA2 was the causal gene for FLA on chromosome 2.

2.5 Allele frequency distribution of OsFLA2 and OsFLA6

To elucidate the allele types of  OsFLA2 and OsFLA6 loci in  wild rice, we analyzed
the the sequences of 12 wild rice reported by  Dang  et al. (2020).  The sequencing
analysis  results showed that the alleles of both  OsFLA2 and  OsFLA6 loci were  all
found in wild rice (Figure 4).  We investigated the regional differentiation of diverse
alleles on  OsFLA2  and  OsFLA6 gene loci.  For the allele  OsFLA2TT (large FLA), it
mainly  distributed  in  accessions  collected  from  low-latitude  regions,  such  as
southeastern Asia. For OsFLA2CC (small FLA), we found that it mainly distributed in
accessions collected from high-latitude regions, such as northeastern China, and FLA
decreases with the increase of latitude (Figure 4). A similar situation was observed for
OsFLA6, in which the allele OsFLA6GG was mainly distributed in accessions collected
from southern China and southeastern Asia (Figure  4). These results suggested that
the large  FLA accession with  the  allele OsFLA2TT/OsFLA6GG was naturally selected
during the indica rice domestication process and that the smalle FLA accession with
the  allele  OsFLA2CC/OsFLA6AA was  naturally  retained  during  the  Japonica  rice
domestication process.

3 Discussion

In this  study, we investigated the  FLA  phenotype data  in 353 rice accessions and
confirmed that there existed  a rich phenotypic variances. The CV for  FLA ranged
from 55.55% (E3) to 58.48% (E4) (Figure 1c). The results of a joint variance analysis
indicated that the variations in FLA were the main contribution to diverse genotypes,
although significant interactions between genotypes and environments were detected.
In conclution, these results provide the basis to mine the elite allels for FLA. 

We detected 37 SNP loci significantly associated with FLA, which were located
in  28 LD  regions  (Table  1).  By  searching the  website  of  Gramene
(http://www.gramene.org/markers/)  and  the  China  Rice  Data  Center  database
(http://www.ricedata.cn/gene/), local LD region harboring the 27 associated SNP sites
were overlapped with the flanking regions of eight QTLs and two genes (OsBRI1 and
OsLIC) reported previously (Li et al. 1999; Yamamuro et al. 2000; Dong et al. 2003;
Luo  et al. 2008; Wang et al. 2008; Hu et al. 2012; Zhang  et al. 2012; Zhang  et al.
2013; Bian et al. 2014; Ham et al. 2019) (Table S9), and the remaining 10 associated
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SNP loci were newly identified in this study. 

Two GWAS signals significantly associated with FLA were identified to nearly
single-gene resolution.  Gene OsFLA6 coincided with the locations of gene,  OsLIC.
Wang et al. (2008) reported that inhibition of endogenous OsLIC expression resulted
in significant increase of leaf angle and tiller angle. Zhang et al. (2012) confirmed that
OsLIC modulated the leaf angle by  acting as an antagonistic transcription factor of
BRASSINAZOLE-RESISTANT 1 (BZR1) via the brassinosteroids signaling pathway. In
this study, we further confirmed that OsFLA6 (OsLIC) could regulate the FLA. Gene
OsFLA2 is a newly identified gene in this study. The full length of OsFLA2 is 2177
bp, including three exons and two introns. Gene OsSYL2 encodes an 95 amino acid
protein. We have demonstrated that a base C-to-T nonsynonymous mutation at nt 137
in the cDNA sequence of OsFLA2 caused the large FLA phenotype by qRT-PCR and
the complementation test. 

For FLA, it is a common feature that indica rice (at low latitude) has a large FLA
and  japonica rice (at  high  latitude) has  a  small  FLA in  China.  A small  FLA in
temperate japonica rice, especially in northeastern China, is a trait adaptive to high-
latitude  climate  conditions  (short  maturity  period)  that  underwent  purification
selection. The small FLA of temperate  japonica rice is beneficial for obtaining high
grain  yield  in  pure-line  cultivars  (Yang  et  al.,  1984)  but  adverse  for  hybrid  seed
production due to the requirement of removing the flag leaf of male-sterile plants to
receive pollen from the male parent (Dong et al., 2018b). Therefore, it is necessary to
increase  the  FLA to  facilitate  pollination in  the  F1 hybrid  seed  production. The
accessions with the two alleles,  OsFLA2TT and  OsFLA3GG, can be used to increase
FLA in the maintainer lines (pollen parents used for multiplying the CMS lines) of
hybrid japonica rice by crossing and marker-assisted selection breeding method. 

4 Experimental procedures

4.1 Rice accessions

In  our  previously  study,  the  three  stigma  characteristics  of  353  accessions  were
reported  (Dang  et  al.,  2020).  In  this  study,  using  the  same  353  accessions,  we
investigated the FLA characteristic following the same field plant and management.
These accessions were grown across six different environment, over 3 years (2014-
2016) and two locations  of  Nanjing (32°07'N,  118°64'E)  and Yuanyang (35°05'N,
113°96'E).

4.2 Phenotypic investigation

The FLA of the plants were measured with a protractor at the stage of the panicle on
the main stem heading 10cm above the flag leaf lamina joint. For each accession, the
average FLA value of 10 plants was used as the phenotypic value. 

4.3 Genome-wide association study

The  genotyping  data  for  the  accessions  are  available  at  EBI  European  Nucleotie
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Archive with the accession number ERP000106, NCBI Sequence Read Archive with
the accession number PRJNA171289 and PRJNA554986 (Huang et al., 2012; Chen et
al.,  2014;  Dang  et  al.,  2020).  Based on the  mixed linear  model,  the  GWAS was
conducted using the R package Genomic Association and Prediction Integrated Tool
(Lipka  et  al.,  2012).  We  used  the  R  package  “LDheatmap”  to  construct  the  LD
heatmaps surrounding peaks in the GWAS (Shin  et al.,  2006). The manhattan and
quantile-quantile plots were drawn by using the R package qqman (Turner, 2014). We
used the correction method of Benjamini and Hochberg (1995) to calculated the false
discovery rate (FDR) and selected 1.0×10-5 as the threshold. The position of SNPs in
OsFLA2 and  OsFLA6 are  based on data  from the MSU Rice Genome Annotation
Project (http://rice.plantbiology.msu.edu). 

4.4 RNA extraction and quantitative real-time polymerase chain reaction (qRT-
PCR)

The total RNA was extracted from flag leaf and flag leaf lamina joint at development
stages 5–8 (as per the criterion described by Itoh et al., 2005) by using the ultrapure
RNA kit (OMEGA BIO-TEK, https://www.omegabiotek.com), respectively, sampled
from the six accessions (three accessions with smaller FLA and three accessions with
larger  FLA). The  RNase-free DNase I treatment (Vazyme,  http://www.vazyme.com)
was used to  remove any genomic DNA contamination.  And the  HiScript II  Q RT
SuperMix (Vazyme,  http://www.vazyme.com)  was used to  perform the  first-strand
cDNA synthesis by reverse transcription from 1 µg of RNA. We used the 18S rRNA
gene as an internal control. We performed the qRT-PCR in a 96-well  thermocycler
(Roche  Applied  Science  LightCycler  480)  using  SYBR  Green  (Vazyme,
http://www.vazyme.com) and  set  the  cycling  conditions  as  follows:  firstly,
denaturation (95ºC, 5 min);  Secondly,  amplification and quantification program-40
cycles (95ºC for  10 s,  60ºC for  30 s,  72ºC for  60 s )  with  a  single fluorescence
measurement; thirdly, the melting curve (60ºC–95ºC) with a heating rate of 0.1ºC per
second and continuous fluorescence measurement); and finally, cooling step  (40ºC).
We performed the three independent replicates. The primer sequences of qRT-PCR are
shown in Table S10. We calculated the relative gene expression of the target gene
using the equation: Exp=2-ΔCt, where ΔCt =Cttarget gene - Ct18S rRNA. 

4.5 Generation of OsFLA2 transgenic plants

The full-length genomic DNA of Os02g0142875 was amplified by PCR from A7444
rice  and  cloned  into  the  pBWA(V)HII vector  (Table  S10).  This  construct
(pBWA(V)HII-OsFLA2)  was  then  transformed  into  Nipponbare  by  Agrobacterium
EHA105. And the corresponding empty vector transformed into Nipponbare was used
as a control. Thirty-two independent T1 seedlings obtained were grown to maturity
under natural conditions. In the next rice growing season (May to October), the T2

seeds harvested from T1 plants at the maturity stage were grown in the paddy field. At
the tillering stage,  the three allele genotypes (TT,  TC, CC) on the  Os02g0142875
locus  were  determined  using  the  primers  listed  in  Table  S10 and  the  FLA were
measured in the Os02g0142875TT and Os02g0142875CC plants at full heading stage.
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Figure legends

Figure 1. Phenotypic characteristics of FLA in  indica subgroup,  japonica subgroup
and  six  environments,  respectively.  (a)  Phenotypic  value  distributions of FLA in
indica subgroup and  japonica subgroup.  The  number  of  varieties  within  each
population was 172 and 181, respectively. (b) Phenotypic value distributions of FLA
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in six environments. (c)  Phenotypic statistics of FLA in six environments.  The box
edges represent the upper and lower quantile, with the median value shown by the
black line in the middle of the box. Vertical lines represent the data from the lowest
quantile to the top quantile. Individuals falling outside the range of the whiskers are
shown as asterisks.

Figure  2. GWAS  for  FLA  and  identification  of  the  candidate  gene  OsFLA6
(Os06g0704300).  (a)  Manhattan  plots  for  FLA  on  chromosome  6.  Arrowheads
indicate the associated loci containing the candidate gene Os06g0704300. Horizontal
lines indicate the significance threshold (-log10 P = 7.0). (b) Local Manhattan plot
(top)  and  LD  heatmap  (bottom).  The  arrow  indicates  the  position  of  nucleotide
variation in Os06g0704300. The candidate region lies between the red solided lines.
(c) SNPs in OsFLA6 cDNA between HapA and HapB. (d) Boxplots for FLA based on
the two alleles (n=232 versus 116 ). Center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× the interquartile range; dots, outliers. Differences between
the  alleles  were  statistically  analyzed  based  on  Welch’s  t-test  (**  P<  0.01).  (e)
Relative  expression  of  Os06g0704300 in  flag  leaf  and  flag leaf  lamina  joint  at
development stages 6–8 from the three accessions (Ludao, Haomake and A7444) with
a large FLA and the three accessions (Nipponbare, Kendao 13 and Chenwan 3hao)
with a small FLA, determined by qRT-PCR (**P<0.01, *P<0.05, two-tailed Welch’s
t-test).  Data are  presented  as  means ± s.e.;  n=3 independent  biological  replicates.
FLA, flag leaf angle. 

Figure  3. GWAS  for  FLA  and  identification  the  causal  gene  OsFLA2
(Os02g0142875). (a) Manhattan plots for FLA. Arrowheads indicate the position of
strong peaks. The red lines represent significance thresholds (-log10 P=7.0). (b) Local
Manhattan plot (top) and LD heatmap (bottom). The arrow indicates the position of
nucleotide  variation  in  Os02g0142875.  The  candidate  region lies  between the  red
solided lines. (c) SNPs in OsFLA2 cDNA between HapA and HapB. (d) Boxplots for
FLA based on the  two alleles (n=286 versus  24 ). Center line, median; box limits,
upper  and  lower  quartiles;  whiskers,  1.5×  the  interquartile  range;  dots,  outliers.
Differences between the alleles were statistically analyzed based on Welch’s t-test (**
P< 0.01). (e)  Relative expression of Os02g0142875 in flag leaf and flag leaf lamina
joint  at  development  stages  6–8 from  the  three  accessions  (Ludao,  Haomake and
A7444)  with  a  large  FLA and the  three  accessions  (Nipponbare,  Kendao  13 and
Chenwan 3hao) with a small FLA, determined by qRT-PCR (**P < 0.01, two-tailed
Welch’s  t-test).  Data  are  presented  as  means ±  s.e. ;  n=3  independent  biological
replicates. (f) Images of FLA of transgenic plants transformed with the empty vector
(VEC), C allele, and T allele. Scale bar = 3 cm. (g) FLA of transgenic plants. Data are
presented as means ± s.e. (n=20). 

Figure  4. The  gene  allele  frequency  differences  at  the  causal  polymorphisms  of
OsFLA2  and OsFLA6 in  five  geographic  groups.  The  type  of  reference  allele  is
indicated in blue, and the alternative is indicated in red. Indo, Indonesia; SC, southern
China;  CC,  central  China;  EC,  eastern  China;  NEC,  northeastern  China.  The
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accessions from SC were mainly wild rice and indica subspecies. The accessions from
Indo were mainly tropical japonica subspecies. The accessions from CC were mainly
indica subspecies. The accessions from EC and NEC were mainly temperate japonica
subspecies. 

Table 1 The summary of SNP significantly associated with flag leaf angle.

Chromosome SNP location Local LD Allele Range -log10(P) Range R2(%) Environment

1 31510189 31259625-31511021 T/C 7.11-7.60 1.80-3.27 E1-E3, E5

1 31557795 31310573-31780397 T/G 7.02-7.23 1.53-2.16 E1-E3, E5

1 31557823 31412710-31653328 A/G 7.02-7.16 1.53-1.95 E1-E6

1 31558572 31412710-31653328 G/A 7.04-7.65 1.59-3.42 E1-E6

2 2205168 2174604-2449915 A/C 7.04-7.62 1.59-3.33 E2-E5
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2 2372437 2174604-2449915 C/T 7.85-9.59 4.02-9.27 E1-E6

2 9979855 9979855-9979855 G/T 7.31-8.36 2.40-5.55 E1-E6

2 22948971 22948971-22948971 C/T 7.16-7.90 1.95-4.17 E1-3, E5

4 4651577 4558421-4816199 A/C 7.12-7.61 1.83-3.30 E2-E4, E6

4 4694627 4694627-4732062 A/G 7.08-7.58 1.71-3.21 E1-E3, E6

4 4694847 4694627-4732062 T/C 7.06-7.14 1.65-1.89 E1-E6

4 4694932 4694627-4732062 A/T 7.07-7.48 1.68-2.91 E1-E3, E6

4 4716577 4694627-4732062 T/C 7.17-7.45 1.98-2.82 E1-E3, E6

4 4722888 4722888-4874394 T/C 7.04-7.50 1.59-2.97 E1-E6

4 4865528 4722888-5062959 C/T 7.29-7.61 2.34-3.30 E1-E4, E6

4 5010851 4870317-5062370 T/A 7.04-7.18 1.59-2.01 E1-E6

4 5012383 4794812-5062959 T/C 7.07-7.34 1.71-2.49 E1-E6

4 5034015 4816199-5062959 A/G 7.04-7.29 1.59-2.34 E1-E6

4 5060780 4865528-5062959 T/C 7.25-7.52 2.20-3.03 E1-E3, E6

5 4715861 4680302-4718467 T/A 7.01-9.08 1.50-7.71 E1-E6

5 22333371 22327857-22376878 G/C 7.04-7.55 1.59-3.12 E1-E6

5 22360006 22327857-22376878 G/A 7.11-7.50 1.80-2.97 E1-E6

5 22376878 22327857-22376878 C/T 7.14-7.58 1.89-3.21 E1-E6

6 4712788 4684367-4766915 C/T 7.05-7.94 1.62-4.29 E1-E3, E5, E6

6 24430896 24393060-24660723 T/C 7.06-7.92 1.65-4.23 E2-E5

6 26595688 26586772-26597162 A/G 7.03-8.44 1.56-5.79 E1, E2, E4, E5

6 29740496 29739306-30896016 A/G 7.29-8.15 2.34-4.92 E2-E6

6 30938389 30938389-30947929 A/T 8.08-8.84 4.71-6.99 E1-E6

6 30938760 30938389-30947929 G/T 7.02-7.07 1.53-1.68 E2-E5

7 26706376 26641024-26726197 C/G 7.26-7.67 2.25-3.48 E2, E4-E6

7 26715083 26641024-26726197 C/A 7.20-7.40 2.07-2.67 E2-E6

8 8508983 8471294-8606630 T/C 7.06-7.15 1.65-1.92 E2-E5

8 8637090 8471294-8704450 A/G 7.05-7.34 1.62-2.49 E1-E6

9 13036365 13005216-13154929 T/C 7.24-7.92 2.19-4.23 E1-E6

9 14928244 14928244-14928244 T/C 7.04-7.63 1.59-3.36 E1-E6

9 15322414 15271847-15337382 G/C 7.07-7.67 1.68-3.48 E1, E3-E6

10 1447463 1427948-1473753 A/G 7.47-7.95 2.88-4.32 E1-E6
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