References
Agbor V.B., Cicek N., Sparling R., Berlin A. & Levin D.B. (2011) Biomass pretreatment: Fundamentals toward application.Biotechnology Advances 29 , 675–685.
Ainsworth E.A. & Ort D.R. (2010) How Do We Improve Crop Production in a Warming World? Plant Physiology 154 , 526–530.
Amaral L.I.V. do, Gaspar M., Costa P.M.F., Aidar M.P.M. & Buckeridge M.S. (2007) Novo método enzimático rápido e sensível de extração e dosagem de amido em materiais vegetais. Hoehnea 34 , 425–431.
Anderson E.M., Stone M.L., Katahira R., Reed M., Muchero W., Ramirez K.J., … Román-Leshkov Y. (2019) Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nature Communications 10 , 1–10.
Asseng S., Ewert F., Martre P., Rötter R.P., Lobell D.B., Cammarano D., … Zhu Y. (2015) Rising temperatures reduce global wheat production. Nature Climate Change 5 , 143–147.
De Assis Prado C.H.B., De Camargo-Bortolin L.H.G., Castro É. & Martinez C.A. (2016) Leaf Dynamics of Panicum maximum under Future Climatic Changes. PLoS ONE 11 , 1–17.
Bombeck P.L., Khatri V., Meddeb-Mouelhi F., Montplaisir D., Richel A. & Beauregard M. (2017) Predicting the most appropriate wood biomass for selected industrial applications: Comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules. Biotechnology for Biofuels 10 , 1–14.
Boraston A.B., Bolam D.N., Gilbert H.J. & Davies G.J. (2004) Carbohydrate-binding modules: Fine-tuning polysaccharide recognition.Biochemical Journal 382 , 769–781.
Borjas-Ventura R., Alves L.R., de Oliveira R., Martínez C.A. & Gratão P.L. (2019) Impacts of warming and water deficit on antioxidant responses in Panicum maximum Jacq. Physiologia Plantarum165 , 413–426.
Cultures P.T. Chapter 1 Plant Tissue Cultures. Methods715 , 1–20.
EMBRAPA (2014) Relatório de Avaliação dos impactos das tecnologias geradas pela Embrapa Gado de Corte—Capim Mombac¸a. Embrapa Gado Corte.
Fatma S., Hameed A., Noman M., Ahmed T., Shahid M., Tariq M., … Tabassum R. (2018) Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future. Protein & Peptide Letters 25 , 148–163.
Ferrarese, MLL; Zottis, A; Ferrarese-Filho O. (2002) Protein-free lignin quantification in soybean (Glycine max) roots. Biologia57 , 541–543.
Gagic M.J.F.K.R.M., Mace W., Sun X.Z., Harrison S., Knapp K., Jahufer M.Z.Z., … Bryan G. (2010) Genetic improvement of fibre traits in perennial ryegrass. Proceedings of the New Zealand Grassland Association , 71–78.
Gamage D., Thompson M., Sutherland M., Hirotsu N., Makino A. & Seneweera S. (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations.Plant Cell and Environment 41 , 1233–1246.
Gangola M.P. & Ramadoss B.R. (2018) Sugars Play a Critical Role in Abiotic Stress Tolerance in Plants. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants . pp. 17–38. Elsevier.
Gatt E., Khatri V., Bley J., Barnabé S., Vandenbossche V. & Beauregard M. (2019a) Enzymatic hydrolysis of corn crop residues with high solid loadings: New insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresource Technology 282 , 398–406.
Gatt E., Khatri V., Bley J., Barnabé S., Vandenbossche V. & Beauregard M. (2019b) Enzymatic hydrolysis of corn crop residues with high solid loadings: New insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresource Technology 282 , 398–406.
Habermann E., Dias de Oliveira E.A., Contin D.R., Delvecchio G., Viciedo D.O., de Moraes M.A., … Martinez C.A. (2019a) Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. Physiologia Plantarum165 , 383–402.
Habermann E., San Martin J.A.B., Contin D.R., Bossan V.P., Barboza A., Braga M.R., … Martinez C.A. (2019b) Increasing atmospheric CO 2 and canopy temperature induces anatomical and physiological changes in leaves of the C 4 forage species Panicum maximum. PLoS ONE14 , 1–25.
Hatfield R.D., Rancour D.M. & Marita J.M. (2017) Grass cell walls: A story of cross-linking. Frontiers in Plant Science 7 .
Hébert-Ouellet Y., Meddeb-Mouelhi F., Khatri V., Cui L., Janse B., Macdonald K. & Beauregard M. (2017) Tracking and predicting wood fibers processing with fluorescent carbohydrate binding modules. Green Chemistry 19 , 2603–2611.
Intergovernmental Panel on Climate Change (2019) Carbon Dioxide: Projected emissions and concentrations.
Jeoh, T., Ishizawa, C. I., Davis, M. F., Himmel, M. E., Adney, W. S., & Johnson D.K. (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering 98 , 112–122.
Jiang J., Carrillo-Enríquez N.C., Oguzlu H., Han X., Bi R., Song M., … Jiang F. (2020) High Production Yield and More Thermally Stable Lignin-Containing Cellulose Nanocrystals Isolated Using a Ternary Acidic Deep Eutectic Solvent. ACS Sustainable Chemistry & Engineering8 , 7182–7191.
Jung C.D., Yu J.H., Eom I.Y. & Hong K.S. (2013) Sugar yields from sunflower stalks treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresource Technology 138 , 1–7.
Karimi K. & Taherzadeh M.J. (2016) A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresource Technology 200 , 1008–1018.
Khatri V., Hébert-Ouellet Y., Meddeb-Mouelhi F. & Beauregard M. (2016) Specific tracking of xylan using fluorescent-tagged carbohydrate-binding module 15 as molecular probe. Biotechnology for Biofuels9 , 1–13.
Khatri V., Meddeb-Mouelhi F., Adjallé K., Barnabé S. & Beauregard M. (2018a) Determination of optimal biomass pretreatment strategies for biofuel production: Investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules. Biotechnology for Biofuels11 , 1–16.
Khatri V., Meddeb-Mouelhi F. & Beauregard M. (2018b) New insights into the enzymatic hydrolysis of lignocellulosic polymers by using fluorescent tagged carbohydrate-binding modules. Sustainable Energy and Fuels 2 , 479–491.
Knox J.P. (2012) In situ detection of cellulose with carbohydrate-binding modules , 1st ed. Elsevier Inc.
Koch K.E. (1996) CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS.Annual Review of Plant Physiology and Plant Molecular Biology47 , 509–540.
Li X., Ximenes E., Kim Y., Slininger M., Meilan R., Ladisch M. & Chapple C. (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment.Biotechnology for Biofuels 3 , 1–7.
Lima M.A., Gomez L.D., Steele-King C.G., Simister R., Bernardinelli O.D., Carvalho M.A., … Polikarpov I. (2014) Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnology for Biofuels 7 , 1–19.
Masarin F., Gurpilhares D.B., Baffa D.C.F., Barbosa M.H.P., Carvalho W., Ferraz A. & Milagres A.M.F. (2011) Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content.Biotechnology for Biofuels 4 , 1–10.
Mboowa D., Khatri V. & Saddler J.N. (2020) The use of fluorescent protein-tagged carbohydrate-binding modules to evaluate the influence of drying on cellulose accessibility and enzymatic hydrolysis. RSC Advances 10 , 27152–27160.
MILLER G., SUZUKI N., CIFTCI-YILMAZ S. & MITTLER R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33 , 453–467.
Moura J.C.M.S., Bonine C.A.V., de Oliveira Fernandes Viana J., Dornelas M.C. & Mazzafera P. (2010) Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. Journal of Integrative Plant Biology 52 , 360–376.
Nakagame S., Chandra R.P. & Saddler J.N. (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering105 , 871–879.
Novy V., Aïssa K., Nielsen F., Straus S.K., Ciesielski P., Hunt C.G. & Saddler J. (2019) Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules. Proceedings of the National Academy of Sciences of the United States of America 116 , 22545–22551.
Oliveira C., Carvalho V., Domingues L. & Gama F.M. (2015) Recombinant CBM-fusion technology - Applications overview. Biotechnology Advances 33 , 358–369.
de Oliveira D.M., Finger-Teixeira A., Rodrigues Mota T., Salvador V.H., Moreira-Vilar F.C., Correa Molinari H.B., … Dantas dos Santos W. (2015) Ferulic acid: A key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal13 , 1224–1232.
Oliveira D.M., Mota T.R., Grandis A., de Morais G.R., de Lucas R.C., Polizeli M.L.T.M., … dos Santos W.D. (2019a) Lignin plays a key role in determining biomass recalcitrance in forage grasses.Renewable Energy 147 , 2206–2217.
Oliveira D.M., Mota T.R., Oliva B., Segato F., Marchiosi R., Ferrarese-Filho O., … dos Santos W.D. (2019b) Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology 278 , 408–423.
Oliveira D.M., Mota T.R., Salatta F. V., Sinzker R.C., Končitíková R., Kopečný D., … dos Santos W.D. (2020) Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell & Environment .
Olivera Viciedo D., de Mello Prado R., Martínez C.A., Habermann E. & de Cássia Piccolo M. (2019) Short-term warming and water stress affectPanicum maximumJacq. stoichiometric homeostasis and biomass production. Science of the Total Environment 681 , 267–274.
Ostovareh S., Karimi K. & Zamani A. (2015) Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Industrial Crops and Products 66 , 170–177.
Poornejad N., Karimi K. & Behzad T. (2013) Improvement of saccharification and ethanol production from rice straw by NMMO and [BMIM][OAc] pretreatments. Industrial Crops and Products41 , 408–413.
Ruiz-Vera U.M., Siebers M.H., Jaiswal D., Ort D.R. & Bernacchi C.J. (2018) Canopy warming accelerates development in soybean and maize, offsetting the delay in soybean reproductive development by elevated CO2 concentrations. Plant Cell and Environment 41 , 2806–2820.
Salvador V.H., Lima R.B., dos Santos W.D., Soares A.R., Böhm P.A.F., Marchiosi R., … Ferrarese-Filho O. (2013) Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLoS ONE8 , 1–10.
Silveira M.H.L., Morais A.R.C., Da Costa Lopes A.M., Olekszyszen D.N., Bogel-Łukasik R., Andreaus J. & Pereira Ramos L. (2015) Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem 8 , 3366–3390.
Singhvi M.S. & Gokhale D. V. (2019) Lignocellulosic biomass: Hurdles and challenges in its valorization. Applied Microbiology and Biotechnology 103 , 9305–9320.
Sluiter A., Ruiz R., Scarlata C., Sluiter J. & Templeton D. (2008) Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005.
Somogyi M. (1945) A new reagente for the determination of sugars.J Biol Chem 160 , 61–63.
Sosa L.L., Jozami E., Oakley L.J., Montero G.A., Ferreras L.A., Venturi G. & Feldman S.R. (2019a) Using C4 perennial rangeland grasses for bioenergy. Biomass and Bioenergy 128 , 105299.
Sosa L.L., Jozami E., Oakley L.J., Montero G.A., Ferreras L.A., Venturi G. & Feldman S.R. (2019b) Using C4 perennial rangeland grasses for bioenergy. Biomass and Bioenergy 128 , 105299.
Studer M.H., DeMartini J.D., Davis M.F., Sykes R.W., Davison B., Keller M., … Wyman C.E. (2011) Lignin content in natural populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America 108 , 6300–6305.
Tenhaken R. (2015) Cell wall remodeling under abiotic stress.Frontiers in Plant Science 5 .
Thalmann M. & Santelia D. (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytologist 214 , 943–951.
Tobimatsu Y. & Schuetz M. (2019) Lignin polymerization: how do plants manage the chemistry so well? Current Opinion in Biotechnology56 , 75–81.
Wang T., McFarlane H.E. & Persson S. (2016) The impact of abiotic factors on cellulose synthesis. Journal of Experimental Botany67 , 543–552.
Wedow J.M., Yendrek C.R., Mello T.R., Creste S., Martinez C.A. & Ainsworth E.A. (2019) Metabolite and transcript profiling of Guinea grass (Panicum maximum Jacq) response to elevated [CO 2 ] and temperature. Metabolomics 15 , 1–13.
Wei H., Gou J., Yordanov Y., Zhang H., Thakur R., Jones W. & Burton A. (2013) Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth. Journal of Plant Research 126 , 305–320.
van der Weijde T., Alvim Kamei C.L., Torres A.F., Vermerris W., Dolstra O., Visser R.G.F. & Trindade L.M. (2013) The potential of C4 grasses for cellulosic biofuel production. Frontiers in Plant Science4 , 1–18.
Zhao C., Liu B., Piao S., Wang X., Lobell D.B., Huang Y., … Asseng S. (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America 114 , 9326–9331.
Zhu J., Lee B.H., Dellinger M., Cui X., Zhang C., Wu S., … Zhu J.K. (2010) A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant Journal 63 , 128–140.
Ziaco E., Truettner C., Biondi F. & Bullock S. (2018) Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant, Cell & Environment41 , 823–836.