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Abstract. Sparse (fast) representations of deterministic signals have been well stud-
ied. Among other types there exists one called adaptive Fourier decomposition (AFD)
for functions in analytic Hardy spaces. Through the Hardy space decomposition of the
L2 space the AFD algorithm also gives rise to sparse representations of signals of finite
energy. To deal with multivariate signals the general Hilbert space context comes into
play. The multivariate counterpart of AFD in general Hilbert spaces with a dictionary
has been named pre-orthogonal AFD (POAFD). In the present study we generalize AFD
and POAFD to random analytic signals through formulating stochastic analytic Hardy
spaces and stochastic Hilbert spaces. To analyze random analytic signals we work on
two models, both being called stochastic AFD, or SAFD in brief. The two models are
respectively made for (i) those expressible as the sum of a deterministic signal and an
error term (SAFDI); and for (ii) those from different sources obeying certain distributive
law (SAFDII). In the later part of the paper we drop off the analyticity assumption
and generalize the SAFDI and SAFDII to what we call stochastic Hilbert spaces with
a dictionary. The generalized methods are named as stochastic pre-orthogonal adaptive
Fourier decompositions, SPOAFDI and SPOAFDII. Like AFDs and POAFDs for de-
terministic signals, the developed stochastic POAFD algorithms offer powerful tools to
approximate and thus to analyze random signals.
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1. Introduction

If F is a complex-valued signal in [0, 2π) with finite energy, then it can be expanded into
its L2([0, 2π))-convergent Fourier series:

F (t) =
∞∑

k=−∞

cke
ikt.

To make convenient use of complex analysis we alter the notation and denote it as f(eit) =
F (t). Then the Plancherel Theorem asserts ‖f‖2 =

∑∞
−∞ |ck|2, where the L2-norm is

defined from the inner product

〈f, g〉 =
1

2π

∫ 2π

0

f(eit)g(eit)dt.

The Plancherel relation infers that ck tends to zero and therefore the complex-valued
functions

f+(z) =
∞∑
k=0

ckz
k and f−(z) =

−∞∑
k=−1

ckz
k

are analytic in D and in C \D, respectively, where D stands for the open unit disc in the
complex plane C. Restricted to the unit circle, in the L2-convergence sense, we define

f+(eit) ,
∞∑
k=0

cke
ikt

as the analytic signal associated with f. Denote by H the Hilbert transformation on the
circle:

Hf(eit) =
∞∑

k=−∞

(−i)sgn(k)cke
ikt,

where sgn(k) = k/|k| when k 6= 0 and sgn(0) = 0. We have f± = 1
2
(f + iHf ± c0). The

non-tangential boundary limit of f+(z) as z → eit coincides with the above defined L2-
limit f+(eit). To be practical we assume that the test functions f are real-valued. Then
c−n = cn, and, as a consequence,

f(eit) = 2Re{f+(eit)} − c0.

Due to the above relation, the analysis of a real-valued signal of finite energy can be
reduced to the analysis of the associated analytic signal f+. Since f+ is the boundary
limit of the analytic function f+(z) in D, complex analytic methods are available for f+.
The totality of such analytic functions f+(z) in the disc is identical with the function
space

H2(D) , {f : D→ C | f is analytic and f(z) =
∞∑
k=0

ckz
k with

∞∑
k=0

|ck|2 <∞}

= {f : D→ C | f is analytic and sup
0<r<1

∫ 2π

0

|f(reit)|2dt <∞},(1.1)

called the (complex analytic) Hardy H2-space in the unit disc. There exist other complex
analytic Hardy spaces with more or less parallel theories as the one defined in the disc. In
other words, the Hardy space idea to study functions may be extended to signals defined
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on the real line R, or to those defined on manifolds in the higher dimensional complex
spaces Cd in the several complex variables setting (e.g., the Hardy spaces on the n-torus
[34], or the DruryCArveson space or the Hardy space of the solid ball in several complex
variables [2]), or to those in the real-Euclidean spaces Rd in the Clifford algebra setting
(the conjugate harmonic systems, [34, 8]), and with scalar, or complex, or vector values,
or even matrix-values ([1, 2]), etc., all obeying the same philosophy. We will only take
the context H2(D) as an example to explain the adaptive Fourier decomposition (AFD)
theory. In below we often abbreviate H2(D) as H2. The Hardy space H2(D) has several
equivalent characterizations that are not of interest of this paper. The disc case deals
with signals defined in a compact interval on the line. That is also the model for periodic
signals. In the first half of this paper we mainly concentrate in stochastic-lization of the
Hardy space in which the adaptive Fourier decomposition, AFD or Core-AFD, was earlier
established ([27]). We note that AFD on the disc heavily depends on two intimately
related concepts, Blaschke product and Takenaka-Malmquist system, the latter being
abbreviated as TM system. AFD is, in fact, in terms of TM system. In many analytic
function spaces Blaschke product-like functions are not available. Pre-orthogonal AFD
(POAFD) then provides a replacement of AFD in the Hilbert spaces that do not have
easy-usable Blaschke product-like functions, and nor explicit and constructive orthogonal
function systems like the TM system. The latter happens mostly for multivariate signals.
We leave the POAFD method to be studied in the later half of this paper in which we
formulate stochastic POAFD in the general setting of stochastic Hilbert space with a
dictionary.
In contrast with the deterministic signals setting, in practice, one encounters random
signals: Signals are mostly corrupted with noise or together with measurement errors, or,
as an alternative type, consisting of several classes of signals under certain distribution law.
A practical formulation then should be a real-valued function F (t, w), where almost surely
(a.s.) for a fixed probabilistic sample point w ∈ Ω the function F (·, w) is a deterministic
signal of finite energy; meanwhile for almost everywhere a point t in the time domain or
the space domain the function F (t, ·) is a random variable. We call such signals random
signals (RSs). To formulate the corresponding stochastic Hardy space theory in the case
t ∈ [0, 2π) we rewrite F (t, w) as F (t, w) = f(eit, w) = fw(t), and, since it a.s. has finite
energy, we have the trigonometric expansion

f(eit, w) =
∞∑

k=−∞

ck(w)eikt = [
∞∑

k=−∞

ck(w)zk]z=eit , where ck(w) =
1

2π

∫ 2π

0

f(eis, w)e−iksds.

The Plancherel Theorem gives

‖f(·, w)‖2 =
∞∑

k=−∞

|ck(w)|2.

In this study we impose the condition

[
Ew‖f(·, w)‖2

] 1
2 =

(
∞∑

k=−∞

Ew|ck(w)|2
) 1

2

<∞,(1.2)

where Ew|ck(w)|2 stands for the mathematical expectation of the function |ck(w)|2 of the
random variable w in the underlying probability space. In the whole paper the underlying
probability space, (Ω, µ), w ∈ Ω, is not specified, as the theory is valid for any but fixed
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probability measure. The quantity in (1.2) is called the energy expectation norm (EE-
norm) of f, denoted as ‖f‖N . Set,

L2
w(∂D,Ω) = {f : ∂D× Ω→ C | f is a RS, and ‖f‖N <∞},(1.3)

called the space of random signals of finite energy. L2
w(∂D,Ω) is written briefly as N .

The RSs in L2
w(∂D,Ω) are called normal random signals, or normal RSs. The space N is

a Hilbert space under the inner product, 〈·, ·〉N , induced from the EE-norm. A normal RS
is almost surely a signal of finite energy in t. In below we will preserve the inner product
notation 〈·, ·〉 only for the inner product of the time-domain-space L2(∂D).
Similarly to the deterministic case we will concentrate in studying “a half” of the space
N , consisting of the RSs with expansions in the spectrum range k = 0, 1, · · · ,

f+(eit, w) =
∞∑
k=0

ck(w)eikt, satisfying
∞∑
k=0

Ew(|ck(w)|2) <∞.

As a consequence, almost surely
∞∑
k=0

|ck(w)|2 <∞,

and thus almost surely

f+(z, w) =
∞∑
k=0

ck(w)zk

is an analytic function in D. The boundary limits exist a.e. in the pointwise way, and in
the L2-convergence sense as r = |z| → 1. Since f is assumed to be of real-valued, we have
c−k = ck, that implies

f(eit, w) = 2Re{f+(eit, w)} − c0(w).

On the boundary ∂D the projection f+, apart being obtained through the power series
expansion, can also be obtained through the singular integral operator, the (circular)
Hilbert transform, H :

f+(eit, w) =
1

2
(f(eit, w) + iHf(eit, w) + c0),(1.4)

where

Hf(eit, w) ,
∞∑

k=−∞

(−i)sgn(k)ck(w)eikt

=
1

π
v.p.

∫ ∞
−∞

cot
(s

2

)
f(ei(t−s), w)ds.

By using the Hilbert transformation, analysis of the normal RSs is reduced to analysis of
their half series. We define the stochastic Hardy space to be the collection of the functions
f+ in the above argument (with the superscript “+” being dropped off), denoted

H2
w(D) = {f : D× Ω→ C | f(z, w) is a.s. analytic in z and

f(z, w) =
∞∑
k=0

ck(w)zk with ‖f‖2
N =

∞∑
k=0

Ew|ck(w)|2 <∞}.(1.5)

The space H2
w(D) induces a space, being the totality of the boundary limits of the RSs in

H2
w(D), denoted as H2

w(∂D). The latter is a proper closed subspace of the Hilbert space
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N on the boundary ∂D. The mapping that maps functions in H2
w(D) to their boundary

limits in H2
w(∂D) is, in fact, an isometry between the two spaces.

The purpose of this study is two-fold. The first fold is to develop two types of stochastic
adaptive Fourier decompositions, named as SAFDI and SAFDII, for analyzing random
signals. In order to make use of complex analysis methods we employ the Fourier ex-
pansion, or Hilbert transform, or the Cauchy integral to obtain the analytic functions f+

from their boundary data. The second fold is to generalize the results obtained in the
first fold to the context of Hilbert space with a dictionary. A general context in which
some complex analysis methodology can be adopted is reproducing kernel Hilbert space
in which the reproducing kernel plays the role of the Cauchy kernel. In the later part
of the paper we establish a counterpart theory in what we call stochastic Hilbert space.
A Hilbert space with a dictionary is a more general concept than a reproducing kernel
Hilbert space.
The writing plan is as follows. In §2 with the stochastic Hardy space context we establish
two types of sparse approximations, SAFDI and SAFDII, for treating two different types
of analytic RSs: One is for noised signals (the ramdomization is from the noise), and the
other is for a collection of RSs obeying certain probability distribution. The second type
is more general than the first. In §3 we extend the theory to the context of stochastic
Hilbert space with a dictionary treating also two types of RSs, and develop, accordingly
two types of sparse approximations, named as SPOAFDI and SPOAFDII. The necessity
of developing a theory in the general Hilbert space context lays in the demanding of
applications, especially in the multivariate random signal cases, in which there do not
exist analyticity properties as being used in the classical Hardy space cases. As example,
by using the developed sparse representation algorithm one may analyse heart ECG signals
from a group of people at one time [35, 36, 9], or numerically or with explicit formulas
solve random stochastic partial differential equations [42].
For the reader’s convenience we give the following abbreviations list:

AFD: adaptive Fourier decomposition (for deterministic signals in the classical Hardy
spaces consisting of analytic signals of finite energy on the boundary, associated with a
Blaschke product structure)

BVC: boundary vanishing condition

MSP: maximal selection principle

POAFD: pre-orthogonal adaptive Fourier decomposition (Applicable for Hilbert spaces
with a dictionary satisfying BVC)

SBVC: stochastic boundary vanishing condition

RS: random signal

Normal RS: normal random signal, or a signal in the space (1.3)

N : the Hilbert space consisting of normal RSs.
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H2
w(D) : the stochastic Hardy space on the disc, corresponding to ck(w) = 0 for k < 0

H2
w(∂D) : the space of the functions as boundary limits of those in H2

w(D) defined on ∂D

SHS: a stochastic Hilbert space, or a Hilbert space of RSs possessing finite variation

SAFD, SAFDI, SAFDII: stochastic AFDs (SAFDs) are divided into two types: the type
I, SAFDI, is for the RSs that are expressible as a deterministic signal corrupted with a
noise of small N -norm; the type II, SAFDII, is for a general stochastic Hardy space.

SPOAFD, SPOAFDI, SPOAFDII: stochastic POAFDs (SPOAFDs) in SHS consist of two
types; the type I, SPOAFDI, is for the RSs being expressible as noised signals; the type
II, SPOAFDII, is for any general SHS.

2. Stochastic AFDs

In the deterministic signal analysis AFD is a sparse approximation methodology using
a suitably adapted Takenaka-Malmquist (TM) system. We use the terminology “sparse
approximation” or “sparse representation” in the sense that a given signal is expanded
by a system that is not necessarily a basis but with fast convergence. The expression
“fast convergence” has the specified meaning that it is either in the classical sense, or in
the best n partial sum approximation sense under n-parameters selections, where n can
be any prescribed positive integer. In the classical Hardy space formulation AFD well
fits with the Beurling-Lax Theorem, where any specific function belongs to a backward-
shift-invariant subspace in which the function is the limit of a fast converging TM series.
The AFD type expansions have found ample applications in signal and image analysis as
well as in system identification (see, for instance, [10, 41, 11, 12]). With the stochastic
Hardy space case, as defined in §1, we generate two types of AFD-like expansions, called
stochastic AFD1 (SAFD1) and stochastic AFD2 (SAFD2), of which each has its own
merits in applications. Before studying the SAFDs we develop some aspects in relation
to Hardy space projections of normal RSs.

2.1. Properties of Hardy Space Projection of Random Signals. Normal RSs
f(eit, w) can all be represented into the form

f(eit, w) = f̃(eit) + r(eit, w),(2.6)

where f̃ = Ewf and r(eit, w) = f(eit, w) − f̃(eit). The difference r is also called the
remainder RS. Like in the deterministic signals case we are to reduce analysis of normal
RSs to that of the associated analytic normal RSs. Given by the next two theorems,
the Hardy space projections f+, [f̃ ]+ and r+ preserve many properties possessed by the
function f ∈ N .

Theorem 2.1. If f ∈ N , then f̃ ∈ L2(∂D), r ∈ N , Er = 0. In writing

f(eit, w) =
∞∑

k=−∞

ck(w)eikt and r(eit, w) =
∞∑

k=−∞

dk(w)eikt,
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there hold

f̃(eit) =
∞∑

k=−∞

Ew(ck(w))eikt,

and,
dk(w) = ck(w)− Ewck, Ewdk = 0, k = 0,±1,±2 · · ·

The Hardy space projections f+, [f̃ ]+, r+, respectively, belong to H2
w(∂D), H2(∂D), and in

H2
w(∂D). There hold

{Ewf}+ = Ew{f+} and ‖r+‖N =
‖r + d0‖N√

2
.

Proof We note that(
∞∑

k=−∞

|Ew(ck(w))|2
)1/2

≤ Ew

( ∞∑
k=−∞

|ck(w)|2
)1/2

 (Minkovski′s inequality)

≤

[
Ew(

∞∑
k=−∞

|ck(w)|2)

]1/2

[Ew(1)]1/2 (Hölder′s inequality)

=

[
∞∑

k=−∞

Ew(|ck(w)|2)

]1/2

[Ew(1)]1/2

= ‖f‖N <∞.(2.7)

Then the Riesz-Fisher Theorem asserts that

g(eit) =
∞∑

k=−∞

Ew(ck(w))eikt ∈ L2(∂D).

Now we show f̃ = g.Denote fn(eit, w) =
∑
|k|≤n ck(w)eikt. ThenEwfn(eit, w) =

∑
|k|≤nEw(ck)e

ikt.

Similarly to the reasoning of (2.7), there follows

‖Ewf − Ewfn‖ = ‖Ew(f − fn)‖
≤ Ew‖f − fn‖

≤
(
Ew‖f − fn‖2

)1/2

= ‖f − fn‖N

=

∑
|k|>n

Ew(|ck(w)2)

1/2

→ 0, as n→∞.
Since the linear functional of the m-th Fourier coefficient, Cm, is continuous, there follows

Cm(Ewf) = lim
n→∞

Cm(Ewfn) = Ew(cm(w)).

This shows that Ewf = g ∈ L2(∂D) and is with the Fourier expansion

f̃ =
∞∑

k=−∞

Ew(ck(w))eikt ∈ L2(∂D).
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It then follows

Ew(r(eit, w)) = Ewdk = 0, ∀t ∈ [0, 2π) and k = 0,±1 · · ·(2.8)

As a consequence of (2.8), we have the orthogonality

Ew(|f̃(eit) + r(eit, w)|2) = |f̃(eit)|2 + Ew|r(eit, w)|2,(2.9)

and thus the finiteness of the N -norm of r :

Ew(|r(eit, w)|2) = ‖f‖2
N − ‖f̃‖2

L2(∂D) <∞ for a.e. t ∈ [0, 2π).(2.10)

To compute the N -norm of r+, by taking into account dk = d−k, we have

‖r+‖2
N = Ew

∫ 2π

0

|r+(eit, w)|2dt =
∞∑
k=0

Ew|dk(w)|2 =
‖r + d0‖2

N
2

.

The proof of the theorem is complete.

2.2. The Type SAFDI: Taking Mean First. In this section we assume that f(eit, w)

is in H2
w(D). Letting f̃ = Ew(f(eit, w)), we, as in the last section, have

f(eit, w) = f̃(eit) + r(eit, w).

The function f̃ is, in fact, in H2(D). This is a consequence of Theorem 2.1, or can be
proved by the similar but integral inequalities as, for r < 1,(∫ 2π

0

|Ewf(reit, w)|2dt
)1/2

≤ Ew

[(∫ 2π

0

|f(reit, w)|2dt
)1/2

]
(Minkovski′s inequality)

≤
(
Ew

∫ 2π

0

|f(reit, w)|2dt
)1/2

Ew(1)1/2 (Holder′s inequality)

≤ ‖f‖N <∞.(2.11)

We also note that, as a consequence of the last inequality, for a.s. w ∈ Ω, f(z, w), z = reit,
is a function in the classical analytic Hardy space with the power series expansion

f(z, w) =
∞∑
0

ck(w)zk =
∞∑
0

ck(w)rkeikt, r < 1.

The type SAFDI is based on AFD of the deterministic signal f̃ . For the self-containing
purpose we now go through a full AFD expansion of f̃ . We will be using the L2-normalized
Szegö kernel on the circle:

ea(z) =

√
1− |a|2

1− az
, a ∈ D.

In H2(D) it has the reproducing kernel property: For arbitrary g ∈ H2(D),

〈g, ea〉 =
√

1− |a|2g(a).
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Let f1 = f̃ . For any a ∈ D we have the following identity as an orthogonal decomposition

f̃(z) = 〈f1, ea〉ea(z) + f2(z)
z − a
1− az

,(2.12)

where f2 is call the reduced remainder, given by

f2(z) =
f1(z)− 〈f1, ea〉ea(z)

z−a
1−az

∈ H2(D).(2.13)

Due to the orthogonalization we have

‖f̃‖H2(D) = |〈f1, ea〉|2 + ‖f2‖H2(D).(2.14)

Thus, the larger the quantity |〈f1, ea〉|2 is, the smaller the energy of the reduced remainder
f2 is. Although D is an open set it can be proved (see [27], for instance) that

sup{|〈f1, ea〉|2 | a ∈ D}
is attainable at a point of D. Hence, one theoretically selects

a1 = arg max{|〈f1, ea〉|2 | a ∈ D}.
Such maximal selection is phrased as Maximal Selection Principle (MSP) of the Hardy
space ([27]). The MSP is evidenced by the boundary vanishing condition (BVC) of the
Szegö kernel dictionary in the Hardy space (see §3 for a more general formulation). Using
this a1 in place of a in (2.12), (2.13) and (2.14), we have that the corresponding reduced
remainder f2 has its least possible norm. In our terminology this is n-best approximation
with n = 1.
To f2 we carry on the same decomposition procedure, and so on, after n-iterations, we
have

f̃(z) =
n∑
k=1

〈fk, eak〉Bk(z) + fn+1(z)
n∏
k=1

z − ak
1− akz

,(2.15)

where {Bk}∞k=1 is the automatically generated orthonormal Takenaka-Malmquist (TM)
system corresponding to the maximally selected a1, · · · , ak, · · · , all in D, where, explicitly,

Bk(z) = eak(z)
k−1∏
l=1

z − al
1− alz

,(2.16)

ak = max{|〈fk, ea〉|2 | a ∈ D},(2.17)

fk+1(z) =
fk(z)− 〈fk, eak〉eak(z)

z−ak
1−akz

∈ H2(D).(2.18)

We note that {Bk} is automatically an orthonormal system, although not necessarily a
basis. It turns out that under the maximal selections of ak, k = 1, 2, · · · , there holds the
convergence:

f̃(z) =
∞∑
k=1

〈fk, eak〉Bk(z).(2.19)

Due to the consecutive optimal selections of the parameters ak the convergence is in a
fast pace. Although on the unit circle the Hardy space functions may not be smooth, it
admits a promising convergence rate ([27]).
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Remark 2.2. Any sequence (a1, · · · , an, · · · ) in D can define a TM system {Bk}∞k=1

by (2.16). A TM system is alternatively called a rational orthonormal system. In the
area of rational approximation, the study of TM systems together with their applications
has a long history ([37]). A TM system is an Hp-basis, 1 < p < ∞, if and only if∑∞

k=1(1− |ak|) =∞. A half of the Fourier basis, {zk−1}∞k=1, corresponding to all an being
identical with zero, is a particular example of the basis case. The study [27] opens a new
era of adaptive use of TM systems through maximal selections of the parameters according
to the data of the given signal. The MSP of AFD declares the best selection principle at the
one-step selection. This is due to attainability of the global maximum at each step, that
rests in the availability of repeating selections of the parameters when needed. AFD shares
the same idea as greedy algorithm for the one-step-optimal selection strategy, the latter,
however, does not address the issue concerning attainability of the global maximal in the
parameters, nor address necessity and feasibility of repeating selections of the parameters.
AFD found close connections to the Beurling Theorem for H2(D) asserting directional-
sum decomposition of the space into shift- and backward shift-invariant subspaces:

H2(D) = span{Bk}∞k=1 ⊕ bH2(D),(2.20)

where {Bk}∞k=1 is the TM system and b is the Blaschke product, when can be defined, with
the sole zeros a1, a2, · · · , including the multiplicities. The Blaschke product is well defined
if and only if

∑∞
k=1(1−|ak|) <∞. If the sequence cannot define a Blaschke product, then

H2(D) = span{Bk}∞k=1.(2.21)

With the AFD formulation we know that f̃ ∈ span{Bk}∞k=1, the backward shift-invariant
subspace in (2.20) or (2.21).

Remark 2.3. AFD was motivated by intrinsic positive frequency decomposition of ana-
lytic signals. It automatically generates a fast converging orthogonal expansion of which
each entry has a meaningful instantaneous frequency. It has several variations, namely
cyclic AFD, unwinding AFD, and be generalized, in the sparse approximation aspect, to
multi-dimensions with the Clifford and several complex variables setting with scalar- to
matrix-valued signals ([18, 28, 38, 39, 31, 1, 2]). In the one dimensional case a variation
called unwinding Blaschke expansion was first studied by Coifman and Nahon in 2000,
and then joined by Steinerberger and Peyriére making further connections with Blaschke
products and outer functions ([6, 7]). Unwinding method was also separately developed
in [19], and further developed in a recent paper on maximal unwinding AFD [29]. AFD
has also been generalized to Hilbert spaces with a dictionary satisfying BVC ([21, 23]).
The AFD generalization in Hilbert spaces is called pre-orthogonal adaptive Fourier de-
composition (POAFD). Amongst, POAFD algorithms in weighted Bergman spaces and
weighted Hardy spaces (Non-Hardy type Hilbert spaces of holomorphic functions) were
developed in ([25, 26]). AFD and its one-dimensional variations, as well as its generaliza-
tions to the non-Hardy type and general Hilbert spaces, have become powerful tools in
signal and image analysis, and in system identification ([11, 12, 5, 10, 41]).

Remark 2.4. In the AFD algorithm, as a consequence of the orthogonality, there hold
the relations:

〈fk, eak〉 = 〈gk, Bk〉 = 〈f̃ , Bk〉, k ≥ 2,(2.22)
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where

gk(z) = f̃(z, w)−
k−1∑
l=1

〈fl, eal〉Bl(z), k ≥ 2,(2.23)

is the k-th standard remainder. It is the relation (2.22) that allows AFD to be generalized
to Hilbert spaces with a dictionary satisfying BVC. In the latter there is no reduced
remainder structure, nor explicit TM system in the underlying Hilbert space as Gram-
Schmidt orthogonalization of the Szegö kernels as in the unit disc or the half complex
plane case.

We now continue our sparse representation theme for random signals. For an analytic ran-
dom signal f in H2

w(D), we obtain a sequence of parameters a1, a2, · · · , and an associated
TM system {Bk}∞k=1 that gives rise to an AFD sparse representation of the deterministic

f̃ = Ewfw. The question is that when we use the system {Bk}∞k=1 to expand the original
random signal f(eit, w) = fw(eit) for fixed w, then in what extent the related TM series
expansion can represent f as a RS? Or namely, what is the difference

df (e
it, w) = fw(eit)−

∞∑
k=1

〈fw, Bk〉Bk(e
it)?(2.24)

In view of the Beurling Theorem, when there holds
∑∞

k=1(1 − |ak|) < ∞, it would well
happen that for some w, fw ∈ H2(D) 	 span{Bk}∞k=1 = bH2(D), and in the case the
difference df (e

it, w) is a non-zero function. We have the following

Theorem 2.5. Let f ∈ H2
w(D), f̃ = Ewf, and

f̃ =
∞∑
k=0

〈f̃ , Bk〉Bk

be an AFD expansion of f̃ . Then, with the same {Bk},

Ewdf (e
it, w) = 0, ∀t ∈ [0, 2π).(2.25)

There holds the relation

Ew‖fw −
n∑
k=1

〈fw, Bk〉Bk‖2
H2

w
= ‖df‖2

N +
∞∑

k=n+1

Ew|〈fw, Bk〉|2,(2.26)

with

lim
n→∞

∞∑
k=n+1

Ew|〈fw, Bk〉|2 = 0.(2.27)

And, in terms of the error r = f − f̃ the difference, df is estimated

‖df‖2
N = ‖r‖2

N −
∞∑
k=1

Ew|〈rw, Bk〉|2 = ‖PbH2(D)r‖2
N = ‖PbH2(D)f‖2

N ,(2.28)

where PX is, in general, denoted as the projection operator into the closed subspace X.
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Proof Since {Bk}∞k=1 is an orthonormal system in the N -space, the projection function∑∞
k=1〈fw, Bk〉Bk is in the Hilbert space N . The Bessel inequality gives

∞∑
k=1

Ew|〈fw, Bk〉|2 ≤ ‖f‖2
N ,

that implies the desired relation (2.27). As a consequence of the Riesz-Fisher Theorem
the infinite series

∞∑
k=1

〈fw, Bk〉Bk

is well defined for a.s. w as a function in H2
w(D). Hence the difference df (w, ·) belongs to

H2
w(D). All these functions are in N .

Since the underlying product measure space of N is of finite total measure, both the
convergence and the projection function are also in L1. As a consequence of the Fubini
Theorem we can first take integral with respect to the probability, and get

Ew(fw −
∞∑
k=1

〈fw, Bk〉Bk) = f̃ − Ew(
∞∑
k=1

〈fw, Bk〉Bk)

= f̃ −
∞∑
k=1

Ew〈fw, Bk〉Bk

= f̃ −
∞∑
k=1

〈f̃ , Bk〉Bk

= 0,

as desired by (2.25).
Noting that for each w, df is orthogonal with all Bk’s, we have the orthogonal decompo-
sition

fw −
n∑
k=1

〈fw, Bk〉Bk = df +
∞∑

k=n+1

〈fw, Bk〉Bk,

that implies the desired Pythagoras relation (2.26).
Since

df = (fw − f̃)−
∞∑
k=1

〈fw − f̃ , Bk〉Bk = rw −
∞∑
k=1

〈rw, Bk〉Bk,

there follows

‖df‖2
N = Ew

∫ 2π

0

|rw(eit)−
∞∑
k=1

〈rw, Bk〉Bk(e
it)|2dt

= Ew

(
‖rw‖2

L2 −
∞∑
k=1

|〈rw, Bk〉|2
)

= ‖r‖2
N −

∞∑
k=1

Ew|〈rw, Bk〉|2.

The proof of the theorem is complete.
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Remark 2.6. The sparse random approximation established in Theorem 2.5 would mostly
concern a deterministic signal corrupted with non-significant errors. The effectiveness of
the averaging TM system represented by the N -norm of the general difference df (e

it, w)
defined through 2.24 is identical with the N -energy of f on bH2(D), dominated by the
N -variation of the error term r. In the following section we develop a sparse representation
for analytic random signal that enjoys df = 0 almost surely in Ω.

2.3. The SAFDII: Taking Mean Secondly.

Theorem 2.7. Let f ∈ H2
w(D). Then there exists a1 ∈ D such that

a1 = arg max{Ew|〈fw, ea〉|2 | a ∈ D}.

Proof Since Ew|〈fw, ea〉|2 is a continuous function in a ∈ D, it suffices to show that the
quantity satisfies a stochastic boundary vanishing condition (SBVC), that is

lim
|a|→1

Ew|〈fw, ea〉|2 = 0.(2.29)

Then a continuity argument based on (2.29) concludes the theorem.
The condition f ∈ N implies

Ew

∞∑
k=0

|ck(w)|2 <∞(2.30)

As a consequence of the integrability, almost surely
∞∑
k=0

|ck(w)|2 <∞.

This implies, almost surely fw(z) =
∑∞

k=0 ck(w)zk ∈ H2(D). Thanks to the BVC of the
classical Hardy space ([27]), we have almost surely

lim
|a|→1
|〈fw, ea〉|2 = 0.(2.31)

On the other hand, when |a| → 1, the function |〈fw, ea〉|2 uniformly in a ∈ D has a
uniform positive dominating function. In fact, using the Cauchy-Schwarz inequality,

|〈fw, ea〉|2 ≤ ‖fw‖2 =
∞∑
k=0

|ck(w)|2.

Given by (2.30), the dominating function is Ew-integrable. The Lebesgue domination
convergence theorem then can be used to conclude the desired SBVC (2.29). The proof
is complete.
The SAFDII proceeds as follows: Guaranteed by the Theorem 2.7, in the same iterative
steps as for the classical AFD, one can select, at the k- step, an optimal ak :

ak = arg max{Ew|〈(fk)w, ea〉|2 | a ∈ D},(2.32)

where f = f1, and

fk(z, w) = (fk)w(z) =
(fk−1)w(z)− 〈(fk−1)w, eak−1

〉eak−1
(z)

z−ak−1

1−ak−1z

, k ≥ 2.
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The above maximal selection is called stochastic maximal selection principle, abbreviate
as SMSP. We then construct a TM system {Bk}∞k=1, as given in (2.16), corresponding to
the selections a1, a2, · · · , and have the association

f(z, w) ∼
∞∑
k=1

〈fw, Bk〉Bk(z).

On the RHS of the last relation we also have

〈(fk)w, eak〉 = 〈(gk)w, Bk〉 = 〈fw, Bk〉,(2.33)

where

(gk)w(z) = gk(z, w) = f(z, w)−
k−1∑
l=1

〈fw, Bl〉Bl(z), k ≥ 2,(2.34)

is the k-th standard remainder. The relations (2.33) imply

Ew|〈(fk)w, eak〉|2 = Ew|〈(gk)w, Bk〉|2 = Ew|〈fw, Bk〉|2.(2.35)

The Bessel inequality for f in N with respect to the orthonormal system {Bk} implies

lim
k→∞

Ew|〈fw, Bk〉|2 = 0.(2.36)

In view of (2.35), the SMSP (2.32) is reduced to the form

ak = arg max{Ew|〈fw, Ba
k〉|2 | a ∈ D},(2.37)

where

Ba
k(z) = ea(z)

k−1∏
l=1

z − al
1− alz

.

We now prove

Theorem 2.8. Let f(w, eit) ∈ H2
w(D) and (a1, · · · , an, · · · ) be a sequence selected accord-

ing to the SMSP given in (2.32). Then there holds, in the N -norm sense,

f(z, w) =
∞∑
k=1

〈fw, Bk〉Bk(z).(2.38)

Proof By assuming the opposite, we prove the convergence through a contradiction. If
the RHS does not converge to the LHS, then there is a non-trivial normal RS, g ∈ N ,
such that

f(z, w) =
∞∑
k=1

〈fw, Bk〉Bk(z) + g(z, w), ‖g‖N > 0.(2.39)

We note that g is orthogonal with all B1, B2, · · · , Bk, · · · , and

‖g‖2
N = ‖f‖2

N −
∞∑
k=1

Ew|〈fw, Bk〉|2.(2.40)

In particular,

lim
k→∞

Ew|〈fw, Bk〉|2 = 0.(2.41)

We show that there exists b ∈ D such that

Ew|〈gw, eb〉|2 = δ2 > 0
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for some δ > 0. For, if this were not true, then almost surely for all b ∈ D

〈gw, eb〉 = 0.

Due to the density of eb in H2(D) we would have, for a.s. w ∈ Ω, gw = 0 as a function of
t, being contradictory to the condition ‖g‖N > 0. We, in particular, can choose b being
different from all the selected ak, k = 1, 2, · · · . In below we will fix this b ∈ D and proceed
to derive a contradiction.
Set

hk = −
∞∑
l=k

〈fw, Bl〉Bl.

From the definition of gk in (2.34), there follows the orthogonal decomposition

g = gk + hk.

The Bessel inequality implies, when k is large,

Ew|〈hk, eb〉|2 ≤ Ew‖hk‖2 ≤ δ2/4.

Hence

2Ew(|〈gk, eb〉|2) + δ2/2 ≥ Ew|〈gk, eb〉+ 〈hk, eb〉|2 = δ2,

which implies

Ew|〈gk, eb〉|2 ≥ δ2/4.

Due to the reproducing kernel property of eb, for a large k,

(1− |b|2)2Ew|(gk)(b)|2 ≥ δ2/4.(2.42)

Since pointwise there holds

fk = gk/bk and |bk(b)| < 1,(2.43)

, where bk is the Blaschke product generated by a1, · · · , ak as sole zeros, there follows
|fk| ≥ |gk|. Hence,

(1− |b|2)2Ew|(fk)(b)|2 ≥ δ2/4.

By using the reproducing property of eb again, the inner product form of the last equality
has the form

Ew|〈fk, eb〉|2 = Ew|〈fw, Bk〉|2 ≥ δ2/4

for large enough k. This is contradictory to (2.41). The proof is thus complete.

Remark 2.9. The proof is an adaptation of one used in [27] to the stochastic case, in
which, as in the classical case, the relation (2.43) is crucial.

3. Stochastic SPOAFDs in Hilbert Spaces

Our discussions on stochastic Hilbert spaces will be based on the related deterministic
Hilbert spaces, the latter being assumed to have a dictionary satisfying BVC. For the
self-containing purpose we give a brief exposition on POAFD algorithm for deterministic
signals ([23], also see [21, 22, 5]).
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3.1. POAFD in a Hilbert Space With a Dictionary Satisfying BVC. The classical
formulation of sparse representation of a Hilbert space is often under the assumption
that the space has a dictionary that, by definition, is a collection of certain elements of
unit norm whose span is dense in the Hilbert space. The unit norm requirement for a
dictionary is not essential. We usually assume that in the underlying Hilbert space H
there a subclass of elements Kq, q ∈ E, whose linear span is dense. We call such a set
a pre-dictionary. The parameter set E is an open set of the complex plane, or more
generally an open set of Rd or Cd′ , or a product of two such open sets, etc. We denote
the normalizations of Kq by Eq, that is, Eq = Kq/‖Kq‖, q ∈ E. Below we often call the
Kq’s in a pre-dictionary by kernels. We borrow this terminology from reproducing kernel
Hilbert space. Indeed, the parameterized reproducing kernels constitute a subclass that
induces through normalization a dictionary of the space.
Now, we introduce what is called and assumed Boundary Vanishing Condition (BVC )
in our Hilbert space context: For any but fixed G ∈ H, if pn ∈ E and pn → ∂E (including
∞ if E is unbounded while in the case we use the compactification topology for the added
infinity point), then

lim
n→∞

|〈G,Epn〉| = 0.

We next define what we call by “multiple kernels”. Let (q1, · · · , qn) be any n-tuple of
parameters in E. We denote by l(k) the multiplicity of qk in the k-tuple (q1, · · · , qk).
Multiple kernels are defined as follows. For any k ≤ n, denote

K̃k =

[(
∂

∂q

)(l(k)−1)

Kq

]
q=qk

.

With a little abuse of notation, we will also denote K̃k by K̃qk , k = 1, 2, · · · , n, indicating
the parameter sequence in use. The concept multiple kernel is a necessity of the pre-
orthogonal maximal selection principle (POMSP): Suppose we already have an (n − 1)-
tuple {q1, · · · , qn−1}, allowing multiplicities, corresponding to the (n−1)-tuple of kernels,
{K̃q1 , · · · , K̃qn−1}. By performing the G-S orthonormalization process consecutively we
obtain an equivalent (n − 1)-orthonormal system, {B1, · · · , Bn−1}. For any given G in
the Hilbert space we wish to investigate whether there exists a qn that gives rise to the
supreme value

sup{|〈G,Bq
n〉| : q ∈ E, q 6= q1, · · · , qn−1},

where the finiteness of the supreme is guaranteed by the Cauchy-Schwarz inequality, and
Bq
n be such that {B1, · · · , Bn−1, B

q
n} is the G-S orthonormalization of {K̃q1 , · · · , K̃qn−1 , Kq}.

Since q is distinct from the proceeding q1, · · · , qn−1, B
q
n is given by

Bq
n =

Kq −
∑n−1

k=1〈Kq, Bk〉HBk

‖Kq −
∑n−1

k=1〈Kq, Bk〉HBk‖
.(3.44)

Under BVC a compact argument leads that there exists a point qn ∈ E and q(l), l =
1, 2, · · · , such that q(l) are all different from q1, · · · , qn−1, liml→∞ q

(l) = qn, and

lim
l→∞
|〈G,Bq(l)

n 〉| = sup{|〈G,Bq
n〉| : q ∈ E, q 6= q1, · · · , qn−1} = |〈G,Bqn

n 〉|,(3.45)
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where

Bqn
n =

K̃qn −
∑n−1

k=1〈K̃qn , Bk〉HBk√
‖K̃qn‖2 −

∑n−1
k=1 |〈K̃qn , Bk〉H|2

,(3.46)

proved through an argument involving Taylor series expansion (see [22, 5]). The BVC
together with multiple kernels are theoretical guarantee of POAFD method: We iteratively
apply the above process to G = Gn, where Gn is the standard remainder

Gn = F −
n−1∑
k=1

〈F,Bk〉Bk,

and (B1, · · · , Bn) is the G-S orthogonalization of (K̃q1 , · · · , K̃qn). Under the consecutive
maximal selections of {qk}∞k=1 one eventually obtains, with a fast convergent pace,

F =
∞∑
k=1

〈F,Bk〉HBk(3.47)

([21, 22, 5]).

Remark 3.1. We note that repeating selections of parameters can be avoided in practice.
By definition of supreme, for any ρ ∈ (0, 1), a parameter qn ∈ E can be found, different
from the previously selected qk, k = 1, · · · , n− 1, to have

|〈Gn, B
qn
n 〉| ≥ ρ sup{〈Gn, B

q
n〉 : q ∈ E, q 6= q1, · · · , qn−1}.(3.48)

The corresponding algorithm is called Weak Pre-orthogonal Adaptive Fourier Decompo-
sition (WPOAFD). With WPOAFD one may have all the selected q1, · · · distinguished,
and thus l(k) ≡ 1 and Kk = K̃k for all k. WPOAFD is still a fast converging algorithm
although at each step it does not reach the optimal.

Remark 3.2. An order O(1/
√
n) of the convergence rate can be proved: For M > 0, by

defining

MM = {F ∈ H : ∃{cn}, {Eqn} s. t. F =
∞∑
n=1

cnEqn with
∞∑
n=1

|cn| ≤M},(3.49)

for any F ∈MM , the POAFD partial sums satisfy

‖F −
n∑
k=1

〈F,Bk〉HBk‖H ≤
M√
n
.

We note that the above convergence rate is the same as that of the Shannon expansion into
the sinc functions of bandlimited entire functions. In the POAFD case the orthonormal
system {B1, · · · , Bn, · · · } is not necessarily a basis but a system adapted to the given
function F. For the Hardy space case, due to the relations in (2.22), the MSP (2.17) for
AFD reduces to the MSP (3.45) for POAFD, and AFD reduces to POAFD. The algorithm
codes of AFD and POAFD, as well as those of the related ones are available at request
in http://www.fst.umac.mo/en/staff/fsttq.html.
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Remark 3.3. AFD and POAFD have been seen to have two directions of developments.
One is n-best kernel expansion. That is to determine n-parameters at one time, being
obviously of better optimality than the n maximal consecutive kernel expansion as given
in (3.47). The n-best approximation is motivated by the classical problem, yet still open
in its ultimate algorithm, called the best approximation to Hardy space functions by
rational functions of degree not exceeding n ([3, 4, 30]). The gradient descending method
for cyclic AFD ([30]) and cyclic AFD separately ([18]) may be adopted to give practical
(not mathematical) n-best algorithms in Hilbert spaces with a dictionary satisfying BVC.
The second direction of development of POAFD is related to exploration of Blaschke
product-like functions and interpolation problems in in various types of concrete Hilbert
spaces, including Hardy and non-Hardy types, and those with hypercomplex variables
and matrix-valued functions. For related publications see [19, 6, 1, 2, 29].

3.2. Stochastic POAFDs. Let H be a Hilbert space with a pre-dictionary {Kq} pa-
rameterized in an open set E : q ∈ E. We assume that the pre-dictionary satisfies BVC

lim
q→∂E

|〈F,Eq〉| = 0,(3.50)

where Eq = Kq/‖Kq‖. Let us consider random signals F (t, w), t ∈ T,w ∈ Ω, where for
a.s. w ∈ Ω, F (·, w) = Fw ∈ H; and for any t ∈ T, F (t, ·) is a random variable. Define

N (H,Ω) = {F (t, w) : F (·, w) ∈ H, for a.s. w; and F (t, ·) being a random

variable for each fixed t; and Ew‖F (·, w)‖2
H <∞.}(3.51)

This formulation supports two types of stochastic POAFDs, abbreviated as SPOAFDI
and SPOAFDII.
SPOAFDI is one to treat a noised deterministic signal. It corresponds to first take the
mean and then do maximal energy extractions. We need to show EwFw ∈ H. Following
what is done in (2.11), by using the Minkovski inequality followed by the Cauchy-Schwarz
inequality, we get

‖EwFw‖H ≤ Ew‖Fw‖H ≤
(
Ew‖Fw‖2

H
)1/2

= ‖F‖N (H,Ω) <∞.
This shows that the mean belongs to the underlying Hilbert space H. Since H has a pre-
dictionary that satisfies BVC, one can perform POAFD in H. The difference d(t, w) =
F (t, w)−EwF (t, w) enjoys the zero-mean property and all the related quantities may be
analyzed as in the subsection 2.2. This approach gives rise to the type SPOAFDI that is
suitable for analyzing signals corrupted with noise of zero mean and of a small N (H,Ω)
norm.
To perform the SPOAFDII we first need to prove the stochastic boundary vanishing
condition, or SBVC,

lim
q→∂E

Ew|〈Fw, Eq〉|2 = 0.

The proof follows the same route as for the SAFDII. To show SBVC we again use the
Lebesgue Dominated Convergence Theorem for the probability space, through showing

1. For a.s. w ∈ Ω
lim
q→∂E

|〈Fw, Eq〉|2 = 0;

and,
2. For all q the function |〈Fw, Eq〉|2 is dominated by a positive integrable function in the
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probability space.

The property 1 is a consequence of BVC of the dictionary {Eq}q∈E in H. To show 2, we
have, by the Cauchy-Schwarz inequality,

Ew|〈Fw, Eq〉|2 ≤ Ew‖Fw‖2 = ‖F‖2
N (H,Ω) <∞.

This concludes that ‖Fw‖2 is a desired dominating function for |〈Fw, Eq〉|2 in the proba-
bility space. The SBVC is hence proved.
Based on the SBVC we have the following theorem.

Theorem 3.4. Let F (t, w) ∈ N (H,Ω) and (q1, · · · , qn, · · · ) be a consecutively selected
kernel sequence under SMSP

qk = arg sup{Ew|〈(Gk)w, B
q
k〉|

2 | q ∈ E},
where

(Gk)w = Fw −
k−1∑
l=1

〈Fw, Bl〉Bl,

and (B1, · · · , Bk−1, Bk) is the G-S orthonormalization of (B1, · · · , Bk−1, K̃qk). Then there
holds, in the N (H,Ω)-norm sense,

F (z, w) =
∞∑
k=1

〈Fw, Bk〉Bk(z).(3.52)

Remark 3.5. The proof of Theorem 2.8 crucially depends on the property |bk(z)| ≤ 1
of the classical Blaschke products. In the general Hilbert spaces case there may not exist
Blaschke product-like functions. Below we give a proof of Theorem 3.4 that does not
depend on Blaschke product-like functions. The proof is an adaptation of one for the
deterministic signal case (see [20] or [22], or [5], where [5] is English equivalent to [22]).

Proof of Theorem 3.4 We will prove the theorem by contradiction. If the RHS series of
(3.52) does not converges to the LHS function, then there is a non-trivial random signal
H ∈ N (H,Ω) such that

F (t, w) =
∞∑
k=1

〈Fw, Bk〉Bk(z) +H(z, w), ‖H‖N (H,Ω) > 0.(3.53)

We note that H is orthogonal with all B1, B2, · · · , Bk, · · · , and

0 < ‖H‖2
N (H,Ω) = ‖F‖2

N (H,Ω) −
∞∑
k=1

Ew|〈Fw, Bk〉|2.(3.54)

We claim that the fact ‖H‖N (H,Ω) > 0 implies that there exists q ∈ E such that

Ew|〈Hw, Eq〉|2 = δ2 > 0.

For, if this were not true, then almost surely for all q ∈ E

〈Hw, Eq〉 = 0.

Due to the density of Kq in H, we would have almost surely Hw = 0 as a function of t,
being contradictory to ‖H‖N (H,Ω) > 0. We may, in particular, choose q being distinguished
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from all the selected qk, k = 1, 2, · · · . In below such q ∈ E will be fixed. The following
argument will lead to a contradiction with the selections of qM for large enough M.
Based on the notation Gk for standard remainders defined in the theorem we rewrite the
relation (3.53) as

Fw =

(
M∑
k=1

+
∞∑

k=M+1

)
〈(Gk)w, Bk〉Bk +H

=
M∑
k=1

〈(Gk)w, Bk〉Bk + G̃M+1 +H

=
M∑
k=1

〈(Gk)w, Bk〉Bk +GM+1,

where

G̃M+1 =
∞∑

k=M+1

〈(Gk)w, Bk〉Bk and GM+1 = G̃M+1 +H.

The Bessel inequality implies

lim
M→∞

‖G̃M+1‖N (H,Ω) = 0.(3.55)

On one hand, we have, from the orthogonality and (2.36), for large M,

Ew|〈(GM+1)w, BM+1〉|2 = Ew|〈Fw, BM+1〉|2 = Ew|〈Fw, BqM+1

M+1 〉|
2 < δ2/16.(3.56)

On the other hand, we can show, for large M, there holds

Ew|〈(GM+1)w, B
q
M+1〉|

2 > 9δ2/16,(3.57)

where Bq
M+1 is the last function of the Gram-Schmidt orthonormalization of the (M +

1)-system (B1, B2, · · · , BM , Kq) in the given order. From the triangle inequality of the
N (H,Ω)-norm,(

Ew|〈(GM+1)w, B
q
M+1〉|

2
)1/2 ≥

(
Ew|〈Hw, B

q
M+1〉|

2
)1/2 −

(
Ew|〈(G̃M+1)w, B

q
M+1〉|

2
)1/2

.

Using the Gauchy-Schwarz inequality and then (3.55), for large enough M we have

Ew|〈(G̃M+1)w, B
q
M+1〉|

2 ≤ ‖G̃M+1‖2
N (H,Ω) ≤ δ2/16.

Therefore, (
Ew|〈(GM+1)w, B

q
M+1〉|

2
)1/2 ≥

(
Ew|〈Hw, B

q
M+1〉|

2
)1/2 − δ/4.(3.58)

Next we compute the energy of the projection of Hw into the span of (B1, · · · , BM , Eq).
The energy is then just Ew|〈Hw, B

q
M+1〉|2, for Hw is orthogonal with B1, · · · , BM . However,

the span is just the same if we alter the order (B1, · · · , BM , Eq) to (Eq, B1, · · · , BM). As a
consequence, the energy of the projection into the span is surely not less than the energy
of Hw projected onto the first function Eq. This gives rise to the relation

Ew|〈Hw, B
q
M+1〉|

2 ≥ Ew|〈Hw, Eq〉|2 = δ2.

Combining with (3.58), we have(
Ew|〈(GM+1)w, B

q
M+1〉|

2
)1/2 ≥ 3δ/4.



21

Thus we proved (3.57) that is contradictory with (3.56). This shows that the selection of
qM+1 did not obey SMSP, for we would better select q instead of qM+1 at the (M + 1)-th
step. The proof of the theorem is hence complete.

Remark 3.6. Theorem 2.8 and Theorem 3.4 have separate proofs. Theorem 2.8 is, as
a matter of fact, a special case of Theorem 3.4. The question is whether validity of the
former can be reduced to the latter. The answer is “Yes”. In 2.8 we do not use the G-S
orthogonalization, but the backward shift process to obtain the orthogonality. Whether
the two methodologies result in the same orthonormal system? In Appendix we prove that
the TM system, obtained in AFD through the backward shift process to the Szegö kernel,
coincides with that from the G-S orthogonalization to the same kernels. This validates
the above “Yes” answer. Precisely, we will prove

Theorem 3.7. Let {a1, · · · , an} be any n-tuple of parameters in D in which multiplicities
are allowed. Denote by l(m) the multiplicity of am in the m-tuple {a1, · · · , am}, 1 ≤ m ≤
n. For each m, denote by

k̃am(z) =
∂l(m)−1

(∂a)l(m)−1
ka(z)|a=am , where ka(z) =

1

1− az
.

Then the Gram-Schmidt orthonormalization of {k̃a1 , · · · , k̃am} in the given order coin-
cides with the m-TM system {B1, · · · , Bm} (2.16) defined through the ordered m-tuple
{a1, · · · , am}.

There exist different proofs for this result. In Appendix we give a constructive proof. As
far as the author is aware, the unit disc and a half of the complex plane are the only cases
to which the equivalence of the two processes has been proved.
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5. Appendix

Proof of Theorem 3.7 Denote the canonical Blaschke product determined by a1, · · · , am
by

ba1,··· ,am(z) =
m∏
l=1

z − al
1− alz

.

We first show that for any a ∈ D being different from a1, · · · , am−1 there holds

ka(z)−
m−1∑
l=1

〈ka, Bl〉Bl(z) = ba1,··· ,am−1(a)ba1,··· ,am−1(z)ka(z).(5.59)
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For this aim we use mathematical induction. First we verify the case m = 2. Using the
reproducing kernel property of ka, there follows

ka − 〈ka, B1〉B1(z) =
1

1− az
−B1(a)B1(z)

=
1

1− az
− α

1− a1z
, with α =

1− |a1|2

1− a1a
,

=
a− a1

1− a1a

z − a1

1− a1z

1

1− az
= ba1(a)ba1(z)ka(z).

Assume that (5.59) holds for a general m− 1. Under the inductive hypothesis, we have

ka(z)−
m−1∑
l=1

〈ka, Bl〉Bl(z) = [ka(z)−
m−2∑
l=1

〈ka, Bl〉Bl(z)]− 〈ka, Bm−1〉Bm−1(z)

= ba1,··· ,am−2(a)ba1,··· ,am−2(z)ka(z)− 〈ka, Bm−1〉Bm−1(z)

= ba1,··· ,am−2(a)ba1,··· ,am−2(z)ka(z)−Bm−1(a)Bm−1(z)

= ba1,··· ,am−2(a)ba1,··· ,am−2(z)

[
ka(z)− 1− |am−1|2

(1− am−1a)(1− am−1z)

]
= ba1,··· ,am−1(a)ba1,··· ,am−1(z)ka(z).

We hence proved (5.59). Next we deal with multiplicity of parameters. Now we are with

the new inductive hypothesis that the Gram-Schmidt orthonormalization of {k̃a1 , · · · , k̃am−1}
is the (m− 1)-TM system {B1, · · · , Bm−1}. First assume that am is different from all the
preceding ak, k = 1, · · · ,m − 1. In (5.59) let a = am. By taking the norm on the both
sides of (5.59) and invoking the orthonormality of the TM system we have

‖kam(z)−
m−1∑
l=1

〈kam , Bl〉Bl(z)‖ = e−icmba1,··· ,am−1(am)
1√

1− |am|2
,

where cm is a real number depending on a1, · · · , am−1, am, and precisely,

eicm =
|ba1,··· ,am−1(am)|
ba1,··· ,am−1(am)

.

We thus conclude that

kam(z)−
∑m−1

l=1 〈kam , Bl〉Bl(z)

‖kam(z)−
∑m−1

l=1 〈kam , Bl〉Bl(z)‖
= eicmba1,··· ,am−1(z)eam(z).(5.60)

Note that here we are with the case l(m) = 1 and kam = k̃am . Next we consider the case
l(m) > 1, and we are to show

k̃am(z)−
∑m−1

l=1 〈k̃am , Bl〉Bl(z)

‖k̃am(z)−
∑m−1

l=1 〈k̃am , Bl〉Bl(z)‖
= eicmφa1,··· ,am−1(z)eam(z).(5.61)
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For b being sufficiently close to am in D we have up to the (l(m)− 1)-order power series
expansion in the variable b :

kb(z) =

l(m)−1∑
l=0

1

l!

[(
∂

∂a

)l
ka(z)

]
a=am

(b− am)l + o((b− am)(l(m)−1)

= T (z) +
1

(l(m)− 1)!
k̃am(z)(b− am)l(m)−1 + o((b− am)(l(m)−1),

where

T (z) =

l(m)−2∑
l=0

1

l!

[(
∂

∂a

)l
ka(z)

]
a=am

(b− am)l.

Now, according to the inductive hypothesis, B1, · · · , Bm−1 involve the derivatives of the
reproducing kernel up to the (l(m) − 2)-order, and hence T is in the linear span of
B1, · · · , Bm−1. As a consequence,

T (z)−
m−1∑
k=1

〈T,Bk〉Bk = 0.(5.62)

Inserting the left-hand-side of (5.62) into (5.60), where am is replaced by b with b → am
horizontally (meaning that Im(b) = Im(am)), and from the right hand side, while dividing
both the denominator and numerator part of the left hand side quotient by (b−am)l(m)−1 >
0, we have

kb(z)−T (z)

(b−am)l(m)−1 −
∑m−1

l=1 〈
kb−T

(b−am)l(m)−1 , Bl〉Bl(z)

‖ kb−T
(b−am)l(m)−1 −

∑m−1
l=1 〈

kb−T
(b−am)l(m)−1 , Bl〉Bl(z)‖

= eicmφa1,··· ,am−1(z)kb(z).

Letting b− am ↓ 0 and noticing that the Taylor series remainder is

kb − T = k̃am(z)(b− am)l(m)−1 + o(b− am)l(m)−1,

we obtain the desired relation (5.61). The proof is complete.
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