
Appendices

A Radius Size, R

To approximate Equation 2, we generate controls on a disc (Section 2.2). By using this approximation

method, we therefore assume that the probability density function of a step ending at y given that it started

at x over the area of the disc, is

f(y|x) =


Eq. 2 if lxy ≤ R

0 if lxy > R

(1)

Therefore, for this approximation to be accurate, the disc needs to be large enough so that the probability of

a step longer than R is very small (Figure S1). If we define the radius as R = lm×γ, where lm is the maximum

observed step length, the approximation will improve as γ increases. However, as the size of the disc becomes

larger, so does the number of controls needed for the approximation. There is no straightforward way to

assess this trade-off (i.e., the optimal size of R), but we can use importance sampling, based on where we

expect the ESF to take large values. We explore the effect of the size of R on the approximation using

simulated data, as well as comparing individual polar bear estimates approximated with different values of

γ.

Simulated Data We simulated 250 movement tracks {x1, x2, . . . , xn} of length n = 250, as described in

Section B. For each step, we generated 50 controls on a disc with a radius of the size R = lm × γ, where

γ = 0.5, 1.1, 2. We fit the ESF for each movement track. As expected, β2 was estimated with the lowest

precision with the smallest radius (γ = 0.5). It was estimated correctly when γ ≥ 1.1 (Figure S2). However,

this represents a simplistic example, where the costs are only dependent on step length and β2 = 15 is fairly

strong selection against costs (i.e., the step length distribution should quickly decay to 0).

Real Data We checked the effect of radius size on our polar bear telemetry data. We generated controls

on a disc with R1 = 1.1 × lm and R2 = 2 × lm for each individual, fit the models separately, and then

compared parameter estimates. Estimates varied up to ±0.15 for β2 (Figure S3), but followed the same

general pattern. There was no evidence of systematic bias (i.e., underestimation or overestimation), and

variation may be explained by the random generation of controls (which varied between the two trials). β1

also varied between the two radius sizes, but this is likely attributable to high uncertainty in the estimates
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Figure S1: Plot illustrating importance sampling in the ESF. Theoretically, we should sample uniformly over
the entire study area (white dots). However, the ESF should decay with distance from the start point (+),
due to the effect of step length on costs, and controls generated outside the disc will contribute very little
to the approximation (i.e., their ESF is nearly zero). Therefore, for computational convenience, we can just
sample within the disc, as long as the radius is large enough.
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Figure S2: Estimates of β1 and β2 with R = γ × lm, where lm is the maximum observed step length and
γ = 0.5, 1.1, 2. Dashed line represents the true parameter value.
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(i.e., no clear selection for gains).
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Figure S3: Individual estimates of β2 with R1 = 1.1 × lm and R2 = 2.0 × lm. Each point is an individual
polar bear and the straight line represents a 1:1 relationship.

B Simulation Study

We ran simulations to assess the performance of the ESF inference method (section 2.2). The main objective

was to recover model parameters from movement tracks simulated directly from the ESF, with known

parameter values. For all simulations, G was defined as a random covariate field and C was calculated as

the step length, both from [0, 1] and assumed to be in the same units.

Algorithm We generated n locations x1, x2, . . . , xn, with x1 selected randomly from the study area Ω.

For each iteration i = 1, . . . , n− 1, we followed these steps to generate xi+1:

1. Simulate possible endpoints {z1, z2, . . . , zK} uniformly on a disc centred on xi, with a radius R = 1.

2. Evaluate G and C at each endpoint.

3. For k ∈ 1, 2, ...K, sample xi+1 from {z1, z2, . . . , zK}, with probabilities defined by

pk =
w(xi, zk)∑K
j=1 w(xi, zj)

, (2)

where w is the ESF (equation 3 in Section 2.1).
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Scenarios First, we assessed whether the selection strength affected our ability to estimate the parameters,

and subsequently, whether certain foraging strategies may be harder to identify. For both β1 and β2, we

considered 15 as a high parameter value. We considered low parameter values to be 0 for β1 (no selection for

gains), and 5 for β2 (very weak selection against costs). We could not use 0 for β2, as the ESF simulation

algorithm would artificiality constrain the step length through the radius model. We tested different values

of β2 and found that 5 was the lowest parameter value where the size of the radius no longer affected the

simulated step lengths. We combined these parameter values to represent the following movement patterns:

i) optimal movement (high values of both parameters), ii) intake maximization (high β1, low β2), iii) cost

minimization (low β1, high β2), and iv) movement nearly free of energetic considerations (low values of both

parameters). Next, we altered the level of spatial autocorrelation in G. We simulated the study area Ω as

a 1000 × 1000 raster with a resolution of 0.25, and assigned each grid cell a random value [∼ U(0, 1)]. We

calculated the covariate field for G by using a circular moving average window with diameter ρ (measured

in grid units) to control the degree of spatial autocorrelation (Avgar et al., 2016; Michelot, 2019). We

created random rasters of G with ρ = 1, 5, 10, 25 to reflect four levels of spatially autocorrelated habitat.

For each of the 16 scenarios (parameter sets and spatial autocorrelation), we generated 250 movement tracks

{x1, x2, . . . , xn} of length n = 250. For each track, we tested the inference method using 20 and 200 control

locations in the Monte Carlo integration procedure (Section 2.2). All parameters were estimated using MLE.

Results In most cases, the parameters were estimated accurately, although β2 was generally estimated

more precisely than β1 (Figure S4). The median (min, max) difference between estimated and known

parameter values was −0.04 (−65, 27) for β1 and 0.04 (−4.8, 4.7) for β2. Spatial autocorrelation in G had

a noticeable effect on the precision of β1 estimates, but not β2. When β1 was high, there was a pattern

of decreased precision with increased autocorrelation. When β1 was low, precision was lowest when spatial

autocorrelation was very low (ρ = 1) and very high (ρ = 50). Spatial autocorrelation is a documented issue

in resource selection analyses, which can lead to biased parameter estimates (Northrup et al., 2013). In

SSFs and ESFs, high spatial autocorrelation decreases the range of the covariate space that may be explored

for each movement step, which may decrease the ability to infer selection, particularly when the number of

control locations is low (Northrup et al., 2013). However, in our simulations, the number of control locations

used in Monte Carlo integration had negligible effects on the precision or accuracy of parameter estimations.

Therefore, in most cases, 20 control locations should be adequate to approximate the likelihood, although

we still recommend caution when working with highly spatially autocorrelated environmental covariates.
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Figure S4: Parameter estimates from the simulations, under 32 different scenarios. Tracks were simulated
either of four sets of parameters: “high-high” (β1 = 15, β2 = 15), “high-low” (β1 = 15, β2 = 5), “low-high”
(β1 = 0, β2 = 15), and “low-low” (β1 = 0, β2 = 5). ρ refers to the level of spatial autocorrelation in the
energetic gain covariate G, and nc is the number of controls used in Monte Carlo integration. Dashed line
is the true parameter value.
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C Defining Energetic Covariates

Habitat Speed Gains
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Figure S5: Example energetic gain G (a) and energetic cost C (b) formulations. In all panels, higher values
are lighter in colour. In both (a) and (b), the third panel is a product of the first two panels, which represent
movement and habitat components. In (a), energetic gains are composed of an energetically beneficial habitat
covariate (e.g., forage biomass) scaled to the speed travelled. In this case, the effect of movement speed is
gamma distributed (k = 2, θ = 2.2) about the start point to represent decreased foraging potential at low
and high speeds. In (b) the energetic costs are defined by the distance and turning angle from the start point
(+; assuming movement up the y-axis), combined with a habitat covariate in which higher values increase
energy expenditure.
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D Case Study

D.1 Study Area and Field Sampling

Field sampling was done in Beaufort Sea, Canada (Figure S6). Sea ice in the area is mostly annual, with

a flaw lead that separates near-shore areas of stable landfast ice and off-shore drifting pack ice (Carmack

& Macdonald, 2002). The lead widens in spring and forms an active sea ice zone with high productivity

(Pilfold et al., 2014), before most ice disappears by mid-summer (Stern & Laidre, 2016). Sea ice drift is

characterized by the clockwise Beaufort Gyre, which is strengthening with climate change (Hutchings &

Rigor, 2012; Petty et al., 2016), and increasing the energetic expenditure of polar bears in the area (Durner

et al., 2017).

Following standard capture procedures (Stirling et al., 1989), polar bears were sighted and immobilized

in April-May of 2007-2011. Bears were fitted with GPS collars (Telonics, Mesa, AZ) set to a collect locations

at a 4-hour resolution (relayed via the Argos satellite system; CLS America, Lanham, MD), and programmed

to release after 1-2 years. The age of each bear was determined by analysing cementum growth layers of an

extracted vestigial premolar (Calvert & Ramsay, 1998), and sex was determined in the field. Capture and

handling was approved by the University of Alberta BioSciences Animal Care and Use Committee following

guidelines from the Canadian Council on Animal Care.
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Figure S6: Study area in the Beaufort Sea, Canada. Circle points are polar bear collar deployment locations,
and contour lines show the density of satellite telemetry data for all individuals (once regularised and limited
to the spatiotemporal extent of the energetic gains raster).
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D.2 Polar Bear Cost Modelling
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Figure S7: Estimated proportion of time spent in water relative to ice concentration, modelled with a
generalized additive model (GAM). Data from Lone et al. (2018). Shaded area represents the standard error
of the model fit.
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Figure S8: Relationship between polar bear walking speed (km/h) and energy expenditure (oxygen consump-
tion; mL O2/g/hr) from six reference studies. Solid line is the predicted relationship from a monotonically
constrained generalized additive model (gamma distribution, logit link function). Shaded area represents
the standard error of the model fit.
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Figure S9: Relationship between mean daily movement speed (km/h) and daily energy expenditure (kJ/kg)
for individuals with more than 25 days of locations with 6 locations (blue line) compared to the estimated
relationship from doubly-labelled water (Pagano & Williams, 2019).
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