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Abstract

1. Energetics are a key driver of animal decision-making, as survival depends on the balance between

foraging benefits and movement costs. This fundamental perspective is often missing from habitat

selection studies, which mainly describe correlations between space use and environmental features,

rather than the mechanisms behind these correlations. To address this gap, we present a new

modelling framework, the energy selection function (ESF), to assess how moving animals choose

habitat based on energetic considerations.

2. The ESF considers that the likelihood of an animal selecting a movement step depends directly

on the corresponding energetic gains and costs. The parameters of the ESF measure selection for

energetic gains and against energetic costs; when estimated jointly, these provide inferences about

foraging and movement strategies. The ESF can be implemented easily with standard conditional

logistic regression software, allowing for fast inference. We outline a workflow, from data-gathering

to statistical analysis, and use a case study of polar bears (Ursus maritimus) as an illustrative

example.

3. We show how defining gains and costs at the scale of the movement step allows us to include

detailed information about resource distribution, landscape resistance, and movement patterns.
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We demonstrate this in the polar bear case study, in which the results show how cost-minimization

may arise in species that inhabit environments with an unpredictable distribution of energetic gains.

4. The ESF combines the energetic consequences of both movement and resource selection, thus incor-

porating a key aspect of evolutionary behaviour into habitat selection analysis. Because of its close

links to existing habitat selection models, the ESF is widely applicable to any study system where

energetic gains and costs can be derived, and has immense potential for methodological extensions.

Key words: animal movement, energetics, energy landscapes, habitat selection, movement ecology, opti-

mal foraging theory, polar bear, step selection functions
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1 Introduction1

Understanding the mechanisms behind the spatial distributions of animals is a core consideration for animal2

ecology (Kays et al., 2015). Space use patterns are largely driven by the movement decisions made by3

animals whilst foraging. To increase their chances of survival, animals should distribute themselves in space4

so as to maximize their access to energetically rich resources, while minimizing the costs of travel (Pyke5

et al., 1977; Pyke, 2019). Consequently, to uncover the eco-evolutionary reasons behind observed space use6

patterns requires methods that link space use to optimal foraging decisions, via models of animal movement.7

Energy-based models could be an important tool to compare the costs of movement to the associated8

nutritional benefits. Despite long-standing interest in cost-benefit functions (Schoener, 1971), it remains a9

challenge to consider both energy expenditure and acquisition in a unified framework (Owen-Smith et al.,10

2010, but see Hooten et al. 2019). Optimal foraging research often focuses on foraging benefits, using11

approximate measures of forage quality or resource availability (e.g. Bastille-Rousseau et al., 2020), which12

may not be proportional to energetic gains. Even in cases with more realistic depictions of energy intake13

(e.g. the energetic profitability of resources combined with biomass; Fortin et al., 2003), movement costs14

are often ignored or assumed to increase linearly with time and/or distance (Reynolds, 2013). In reality,15

the costs vary widely depending on factors such as movement speed (Taylor et al., 1970), mode of transport16

(Griffen, 2018), and environmental conditions (e.g. topography, weather, substrate; Crête & Larivière, 2003;17

Wilson et al., 2012). Environmentally-varying movement costs can be quantified in a framework known as18

an energy landscape, which can incorporate factors such as air velocity for birds (Shepard et al., 2013), water19

depth for diving animals (Wilson et al., 2012), or habitat type (Pagano et al., 2020). Energy landscapes are20

useful to quantify the energetic costs of moving through heterogeneous or dynamic environments, but have21

yet to be comprehensively integrated with foraging theory.22

Habitat selection models assess how animals distribute themselves in space relative to environmental23

features, and therefore may be modified to assess the energetic contributions of movement decisions. Resource24

selection functions have been used to jointly estimate the effects of foraging resources and energetically-25

costly environmental features on large-scale space-use (Long et al., 2014). However, that approach does not26

explicitly model movement, and it therefore ignores costs incurred at the scale of the movement step (i.e.27

movement between successive recorded locations). At this scale, animals may make decisions primarily based28

on the need to maximize energy intake, minimize energy use, or balance the two (Schoener, 1971; Shepard29

et al., 2009; Cornioley et al., 2016). Although the idea of energy-based movement models is not entirely new,30
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methods remain analytically complex. For example, Hooten et al. (2019) described a movement model with31

a binary response “recharge” function (e.g. animals may decide to move to a food patch), based on a latent32

process for the physiological state of an animal (e.g. its level of satiation or cumulative energy balance). A33

simpler, yet effective, approach could be to use a movement-based habitat selection model to answer similar34

questions in a flexible and accessible framework.35

In this paper, we introduce a method that explicitly considers movement and habitat selection in an36

energetic context. In a model we term an energy selection function (ESF), we evaluate preference for energetic37

covariates representing energy gain and energy expenditure. The ESF has methodological links to resource38

selection functions (RSFs) and step selection functions (SSFs), and maintains the practical simplicity of use,39

favouring uptake by ecologists. However, the ESF is conceptually different in defining movement and habitat40

availability through covariates that can be explicitly linked to energetic trade-offs in decision-making. To41

demonstrate our approach, we provide practical guidance to implement the ESF and define covariates, and42

showcase the ESF through an example case study of polar bears (Ursus maritimus) in the Beaufort Sea,43

Canada.44

2 The ESF45

2.1 ESF model formulation46

We present the energy selection function (ESF) as an energy-based habitat selection model, quantifying47

responses to both energy gain and expenditure. The ESF defines the likelihood of a step ending at location48

y given that it started at location x as49

f(y|x) =
w(x,y)∫

z∈Ω
w(x, z)dz

, (1)50

where Ω is the study region, the denominator is a normalization constant that ensures the ESF likelihood is51

a probability density function with respect to y (Forester et al., 2009; Potts et al., 2014), and with energy52

preference modelled as,53

w(x,y) = exp{β1G(x,y)− β2C(x,y)}. (2)54

We hereafter refer to Equation 2 as the ESF, where G(x,y) and C(x,y) refer to the energetic gain and55

energetic cost of the step, respectively (Figure 1). In Section 2.4, we explain how these energetic covariates56

can be derived from telemetry and environmental data. In this form, β1 represents the selection for energetic57
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gains G(x,y), formulated in terms of energetically beneficial resources. β2 represents the strength of selection58

against energetic costs C(x,y), formulated as habitat-specific movement costs. When evaluated together,59

these parameters provide inferences about different energy maximization strategies in optimal foraging theory,60

where higher values of either β1 or β2 represent strategies to maximize net energy. The likelihood can be61

optimised with respect to β1 and β2, over all steps, to estimate the set of parameters that maximise the62

likelihood of an animal selecting the used locations relative to the rest of the available habitat. Ultimately,63

the ESF can be viewed as a joint model of habitat selection and movement, as captured by selection for64

gains and against costs, respectively.65

Gains Costs ESF
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Figure 1: Simulated rasters of energetic gains and energetic costs, and the corresponding ESF. Energetic
gains were simulated as a random covariate field and energetic costs were defined as a product of the step
length and turning angle from the central location (+), assuming that the animal was facing up the y-axis
before turning. ESF = exp(gains − costs) to represent optimal movement. In all panels, lighter colours
represent higher values.

2.2 Comparison to other habitat selection models66

The mathematical formulation and modelling approaches of the ESF are similar to those of other common67

habitat selection models, particularly step selection functions (SSFs). Both models are used to analyse68

autocorrelated animal tracking data and describe habitat preference at the scale of the observed movement69

step. SSFs consider that movement constraints limit the habitat availability, and give the likelihood of a70

movement step ending at location y given that it started at location x in the study region Ω as71
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f(y|x) =
Φ(y|x)w(x,y)∫

z∈Ω
Φ(z|x)w(x, z)dz

. (3)72

Following Forester et al. (2009), we consider the numerator to be the SSF. The first term, Φ(y|x), is73

the resource-independent movement kernel, which describes how an animal would move in a homogeneous74

landscape or in the absence of resource preference (Forester et al., 2009). The second term, w(x,y), is a75

weighting function and represents resource selection without movement constraints. The weighting function76

is typically defined as: w(x,y) = exp{β · h(x,y)}, where β is a vector of parameters representing the77

strength of selection for h(x,y), a vector of habitat covariates. Therefore, SSFs consider the step density as78

the product of resource selection w(x,y) and movement Φ(y|x).79

The ESF can be viewed as a special case of an SSF, where w(x,y) is based on two energetic covariates, and80

where Φ(y|x) can be viewed as an “energy-independent” movement kernel, which is uniform over the whole81

study region (i.e. it cancels out in Equation 3). We consider Φ(y|x) to be uniform based on the assumption82

that, in the absence of energetic constraints (i.e. a hypothetical animal that can move arbitrarily fast without83

expending energy), animals could travel anywhere in the study region. Here, selection against costs defines a84

movement model, as C(x,y) can account for aspects of animal movement that affect energy expenditure (e.g.85

speed and tortuosity). For a simple example, in the absence of selection for gains (β1 = 0) and if the costs are86

proportional to the step length squared, the ESF reduces to a Gaussian random walk with variance inversely87

proportional to β2 (Appendix A). Regardless of the exact cost formulation, the ESF eliminates the need88

to make any a priori assumptions about movement and availability, as they are captured by the selection89

against energetic costs. Similarly to iSSA (Avgar et al., 2016), this circumvents the notable difficulty of90

defining availability in habitat selection studies (Beyer et al., 2010), while assessing energetic processes.91

The integrated approach of the ESF can also correct for bias in habitat selection parameters when an92

animal faces energetic trade-offs. For example, in a case where the acquisition of an energy-rich resource93

requires moving through high-resistivity habitat, ignoring the increased energetic costs may lead to underes-94

timating the resource selection parameter. To address this issue, Eisaguirre et al. (2020) proposed modifying95

the movement kernel of an SSF to account more realistically for energetic costs. In contrast, the ESF offers96

an integrated solution where gains and costs are combined directly into the selection function.97
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2.3 Implementation98

Consider a set of locations of an animal {x1,x2, ...,xn}. The ESF defines the likelihood of the entire track99

as L(β1, β2 | x1, ...,xn) =
∏n−1

i=1 f(xi+1|xi), where f(xi+1|xi) is the likelihood of a single step (Equation100

1). However, it can be computationally demanding to calculate the exact likelihood, as this would require101

evaluation of w over the entire domain of integration Ω (i.e. continuously over the whole study region).102

In practice, we can approximate this likelihood using a case-control (i.e. use-availability) design (Forester103

et al., 2009; Thurfjell et al., 2014). Case-control designs contrast where the animal went (i.e. what they104

used) with where they could have gone (i..e, available habitat), and is common in habitat selection analyses.105

For each observed location xi (hereafter, a case), we generate a set of random locations (hereafter, controls)106

which represent a sample of the available habitat. Using Monte Carlo integration over the control locations107

{zi1, zi2, ...,ziK}, we calculate the approximate likelihood as108

L̃(β1, β2|x1, ...,xn) =

n−1∏
i=1

w(xi,xi+1)∑K
k=0 w(xi, zik)

, (4)109

where we define zi0 = xi+1.110

Ideally, we want to sample control locations {zi1, zi2, ...,ziK} from a uniform distribution across the whole111

habitat, Ω. However, this procedure can be computationally intense. To mitigate against this computational112

issue, we notice that the ESF (Equation 2) will typically be negligible when zij is sufficiently far from the113

starting point of the step, xi. We therefore generate control locations over a sufficiently large neighbourhood114

of the start point (i.e. a disc of radius R) to obtain a good approximation of the likelihood (Appendix B).115

This sampling is not a model of movement or availability. Rather, we use control locations over a disc merely116

for computational convenience, whereas the availability can be viewed as arising from the effect of energetic117

costs on movement, C(x,y). Replacement of Ω by a disc of radius R can be viewed as a special case of118

importance sampling, to increase the precision of the Monte Carlo integration in Equation 4.119

Given that the ESF uses the same general formulation and case-control design as SSFs, model fitting120

can be done using the same statistical techniques and software. We can estimate β1, β2 with maximum121

likelihood estimation (MLE), with regards to equation 4. MLE is fast and accessible, using numerical122

optimizers (e.g. optim in R) or existing software for conditional logistic regression (e.g. the R function123

clogit, package survival). The ESF may be appealing to practitioners, as it builds on existing models and124

can be implemented with common, accessible software and techniques. In Appendix D, we verify these125

implementation methods with a short technical simulation, which showed accurate inferences under different126
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levels of spatial autocorrelation and number of control locations used (Figure S5).127

2.4 Defining the energetic covariates128

The ESF is applicable to any system where there is adequate energetic data, and the covariates must be129

formulated specifically to each study. Gains, G, and costs, C, need to be defined in units of energy (which130

could be standard units such as kJ or any other convenient unit), based on ecological and physical principles.131

Here, we focus on the energetic gains of foraging and costs of movement, but the approach can be extended132

if other environmental factors (e.g. temperature, weather) are important to energy gain or expenditure.133

In fact, we may not always be able to or even want to include all aspects of energetics, particularly when134

they are not important for inferences (e.g. when they are consistent between individuals and/or are not135

dependent on habitat). These covariates should be formulated carefully, as the inferences from the ESF136

necessarily depend on the quality of the estimated energetic variables. Definitions of G and C rely on137

carefully evaluating complex interactions between movement and habitat, and mischaracterization may lead138

to parameter estimates that do not truly represent energy selection.139

Energetic gains mainly arise from the consumption of energetically beneficial resources, whose distribution140

can be derived from environmental data (e.g. NVDI, prey or vegetation biomass; Fortin et al., 2003; Pilfold141

et al., 2014). Metrics will contain relevant information to represent consumable and digestible biomass, and142

more than one resource can be incorporated into G if they are weighted based on their energetic contribution.143

Furthermore, resources may be combined with movement data, in cases with strong empirical or hypothesized144

relationships between foraging potential and movement speed (Figure S4). Under this formulation, we can145

evaluate selection for foraging resources under a common energetic currency, rather than preference for146

individual resources.147

Energetic costs will typically be formulated primarily in terms of movement (tortuosity and speed; Taylor148

et al., 1970; Wilson et al., 2013), which can be quantified from geographical positioning system (GPS)149

location data. To inform the costs of movement steps, GPS metrics can be combined with captive studies150

(e.g. treadmills; Bidder et al., 2017) and field measures that more directly measure energy expenditure and151

behaviour (e.g. doubly-labelled water, heart rate, dynamic body acceleration (DBA); Pagano & Williams,152

2019; Wilson et al., 2020). The cost of movement is also affected by habitat factors, such as substrate153

penetrability (soft vs. hard; Crête & Larivière, 2003), slope (Halsey, 2016), and resistivity (e.g. wind and154

water currents; Shepard et al., 2013). Therefore, habitat features and movement data can be combined into155

a synthetic model of energy expenditure (see Section 3, Figure S4) or correlated to estimate the energetic156
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costs of control steps.157

3 Case study158

In this section, we present a case study of polar bears as an illustrative example of the ESF framework, in159

which we detail the process to define the energetic covariates and draw inferences. Polar bears are apex160

predators that forage on fat-rich prey (primarily seals) and inhabit highly dynamic sea ice environments.161

They have pronounced seasonal patterns of energy acquisition (i.e. hyperphagia in the spring followed by a162

hypopahgic period; Pilfold et al., 2012), as well as high energy expenditure associated with locomotion (Hurst163

et al., 1982a). Additionally, movement costs can be highly affected by the local sea ice conditions, such as ice164

concentration and drift speed (Durner et al., 2017; Griffen, 2018). Although these spatiotemporal interactions165

indicate that energetics may largely influence polar bear movement and space use, these mechanisms have166

yet to be analysed in a framework that considers selection of gains and costs. In this case study, we applied167

the ESF to solitary adult (> 5 years old) GPS-collared female polar bears in the Canadian Beaufort Sea.168

We used tracking data at a 4-hour resolution from the spring period of 2007-2011 (Figures 2; see Appendix169

E.1 for details of the study area, data acquisition, and data processing). We estimated energetic gains from170

an energetically-weighted RSF of seal kills, and develop a cost model for use with GPS telemetry data.171

Therefore, we consider polar bear energetics at the scale of movement-based habitat selection.172

3.1 Energetic gains G173

Polar bears forage primarily on ringed seals (Pusa hispida) and bearded seals (Erignathus barbatus), par-174

ticularly during a hyperphagic period from mid-April to June (Pilfold et al., 2012). Therefore, we derived175

energetic gains from an RSF model of forage quality that covered our study (2007 – 2011) from Pilfold176

et al. (2014). This RSF modelled locations of seals killed by polar bears, weighted by biomass, relative to177

habitat characteristics (see Pilfold et al., 2014). Because the RSF incorporated both seal kill biomass and178

abundance, we assumed the RSF value to be proportional to energetic return. We extended the temporal179

and spatial extent of the original rasters, but not beyond the original range of habitat characteristics and180

season (Figure 2). For March – June of each year, we created daily rasters which encompassed approximately181

100km off-shore along the coast of Alaska and Canada (from approximately 160◦W to 115◦W), including the182

Amundsen Gulf and regions adjacent to Banks Island. The resolution of the rasters was 6.25km and RSF183

values were zero in locations where sea ice was absent.184
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(a) (b)

Figure 2: Illustration of energetic gains in polar bear case study. (a) Map of study area overlaid with an
example seal biomass RSF (Pilfold et al., 2014). (b) Schematic representation of energetic gain evaluation
for a step from x to y, using bilinear interpolation at y based on the four adjacent cells (black dots).

3.2 Energetic costs C185

We formulated costs based on the movement costs of captive polar bears, combined with environmental186

covariates to better represent field conditions (Figure 3). Telemetry locations arise from a combination of187

active bear movement and passive displacement caused by ice drift. Therefore, we define a step as the active188

bear movement between telemetry locations, corrected for ice drift following Klappstein et al. (2020), using189

drift data from the National Snow and Ice Data Center (Polar Pathfinder Daily 25km EASE-Grid Sea Ice190

Motion Vectors; Tschudi et al., 2019). At each step, a bear can either be swimming or walking on sea191

ice, which have distinct energetic costs (e.g. Griffen, 2018; Pagano et al., 2018). Using aquatic sensor data192

from Lone et al. (2018), we modelled the relationship between the proportion of time in water and sea ice193

concentration as a generalized additive model (GAM) in the mgcv R package (Wood, 2017). Using this194

curve, we estimated proportion of time spent in water for each polar bear step, which we assumed to be the195

same as the proportion of the distance travelled. Lastly, we modelled the relationship between travel speed196

and energy expenditure, using combined estimates from five treadmill studies (Øritsland & Jonker, 1976;197

Hurst et al., 1982a,b; Watts et al., 1991; Pagano et al., 2018). These data included resting metabolic rates198

(i.e. basic maintenance costs) and accounted for the weight of the bear. We modelled energy expenditure199
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as a function of walking speed as a GAM with a gamma response distribution and a positive monotonic200

constraint in the R package scam (Pya & Wood, 2015). When the bear was assumed to be walking, the201

cost was derived directly from this curve, and when the bear was swimming, we multiplied this cost by five202

to represent the higher energy expenditure (Griffen, 2018). Importantly, our modelling approach estimated203

similar daily costs as those obtained from doubly-labelled water (Figure S9).204

3.3 Fitting the ESF205

We eliminated locations that were outside the spatiotemporal extent of prey data availability (Figures 3,206

S6). We generated 20 control locations on a disc around each observed location, with radius R = 1.1× lm,207

where lm is the maximum step length of all observed locations (see Appendix B for justification of R). We208

calculated energetic gains and costs of each step as described above, using environmental covariate values209

at each end location. We omitted steps from analysis when there were > 10 control locations without an210

energetic gain estimate (i.e. outside the raster extent) and accounted for this in the ESF likelihood. We fit211

the ESF with the numerical optimizer optim separately for each individual bear. We calculated confidence212

intervals (CIs) based on the approximate standard errors of the maximum likelihood estimates, obtained213

from the inverse of the Hessian matrix given by optim.214

3.4 Results215

We analysed 7, 861 GPS locations from 23 GPS-collared adult female polar bears (locations per individual:216

80 − 968). Energetic gains at each step (including controls) ranged from 0 to 27.9 (arbitrary units) and217

energetic costs ranged from 3.27 to 161 MJ. The median β1 estimate was −0.01 (range −0.29, 0.83), with218

four estimates with CIs that did not overlap zero (Figure 4). Of these, three bears appeared to select for219

energetic gains (β1 ± 95% CI = 0.83± 0.82; 0.32± 0.20; 0.28± 0.17) and only one bear appeared to select220

against energetic gains (β1 ± 95% CI = −0.29±0.20). Conversely, all β2 estimates showed a selection against221

costs, with a median of 0.57 (range 0.32, 0.97), and no CIs overlapped zero. We also compared the ESF to222

a null model (given as the simple random walk in Appendix A) and found that the ESF fit better than the223

null for all but three individuals (Appendix E.3).224

3.5 Discussion of the polar bear case study225

In this case study, we found a strong pattern of selection against energetic costs in all individuals, but226

only four showed selection for (n = 3) or against (n = 1) energetic gains, suggesting that these might be227
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(a)

(b)

(c)

Figure 3: Schematic illustration of energetic cost evaluation in the polar bear case study, for an observed
step starting at x and ending at y. (a) Arrows represent the observed movement step (black; GPS), ice drift
(blue dashed; ice), and actual bear movement (grey dashed; calculated as GPS - ice). Ice concentration (%)
is estimated at y with bilinear interpolation. (b) Modelled relationship between ice concentration and the
proportion of the step spent swimming from Lone et al. (2018). We use the estimated ice % from (a) to
estimate the proportion of the bear step spent swimming and walking. (c) Modelled relationship between
polar bear movement speed (km/h) and energetic cost (kJ/kg/h) from several treadmill studies. Using the
bear speed and weight, we calculate Cs for the step. Cs,swim and Cs,walk are Cs multiplied by the proportion
of time in each behaviour. The total energy expenditure of the step C(x,y) is the sum of Cs,swim multiplied
by 5 (to represent the higher costs of swimming) and Cs,walk.
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Figure 4: Estimated β1 (selection for gains) and β2 (selection against costs) coefficients of lone adult female
polar bears (N = 23). Error bars are 95% CIs.

false positives (type I error). However, effects may have been hard to detect if the grain size and spatial228

autocorrelation of our covariate data were too high for the temporal scale and spatial domain size of the229

telemetry data (Boyce et al., 2003; Boyce, 2006; Northrup et al., 2013). These mismatches could result in230

low variation between case and control locations, particularly if the tracking data is not at a biologically231

relevant resolution. Future studies could assess the effect of scale on polar bear energy selection. Further,232

our uncertainty estimates do not consider the error in our covariate data (Pilfold et al., 2014; Tschudi et al.,233

2019; Togunov et al., 2020), which may affect modelling outcomes (Van Niel & Austin, 2007). For example,234

we defined gains from an RSF model, which is only an estimation of the true prey availability. However,235

accounting for covariate error is not standard in habitat selection studies, as methods remain analytically236

complex and uncertainty in environmental data is often unknown.237

Our results suggest that most solitary female polar bears in the Beaufort Sea employed a cost-minimization238

strategy. Cost-minimization could arise due to high predictability of energy expenditure, based on internal239

factors and mechanical movement constraints, while energy-maximization would require polar bears to have240

knowledge of the unpredictable seal distribution (Ramsay & Stirling, 1986). At the landscape level, polar241

bear distribution correlates positively to seal kill biomass (Pilfold et al., 2014), but we did not observe this at242

the scale of the movement step, which may be reflective of local variability in the probability of killing a seal.243
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Further, our model assumes that energy selection is constant through time and across behaviours, although244

selection for gains is likely variable over the study period. Polar bears do not enter the main foraging period245

until mid-April (Pilfold et al., 2012) and continue to gain weight into the summer months (Galicia et al.,246

2020). From March to May, solitary females may also pair with males for mating, during which they forage247

less frequently and are sequestered from ideal habitats for up to 18 days at a time (Derocher et al., 2010;248

Stirling et al., 2016). Additionally, polar bear movements may be influenced by site fidelity (Mauritzen et al.,249

2001), in which recurrent space-use patterns dominate short-term selection for energetic gains. If selection250

for gains is affected by competing behaviours, it may be that only individuals with exceptionally strong251

selection may be identified. These hypotheses could be tested in future research, which may require a more252

nuanced model formulation, while addressing annual, seasonal, demographic, and spatial variation in energy253

selection.254

An alternative to the ESF would be an SSF with energetically-relevant covariates and a resource-255

independent movement kernel Φ(y|x) derived from the polar bear tracking data. Energetic gains could256

be incorporated directly (i.e. as the seal RSF), but it is unclear how one would account for movement costs257

in that framework. One possibility may be to include ice concentration (or time swimming) as a covariate to258

capture the avoidance of energetically-costly open water areas. In that case, costs would be split between the259

movement kernel Φ(y|x) (e.g. avoidance of long steps) and the weighting function w(x,y) (e.g. avoidance260

of open water), preventing the estimation of their combined effect. Therefore, the joint dependence of costs261

on speed and habitat (Figure 3) would be lost. Sea ice movement poses an additional challenge for applying262

a standard SSF, as a movement kernel based on the GPS tracks would include ice drift and not be a good263

description of the bears’ movement. In the ESF, there is no need to specify a movement kernel prior to264

model fitting, and the effects of ice drift and ice concentration can be included directly in the energetic cost265

covariate.266

4 Discussion267

Evaluating the energetic basis of animal movement and habitat selection remains a topical issue in ecology268

(Hooten et al., 2019; Eisaguirre et al., 2020; Williams et al., 2020). Our new model to estimate the energy269

preferences of animals is similar to recent approaches to combine movement and habitat (Avgar et al., 2016;270

Michelot et al., 2019), but the ESF uniquely integrates both factors into energetic covariates. Eisaguirre271

et al. (2020) also used an energetic approach to incorporate costs into the SSF availability kernel to ascertain272
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the selection for resources once such costs had been accounted for. However, the ESF explicitly accounts for273

gains and costs in the selection process, thereby considering energetic mechanisms to be the goal of inference.274

We consider our model an important step in understanding the contribution of energy in observed space use275

patterns.276

Inherently, step selection analyses are sensitive to the spatial and temporal scale of the telemetry and277

covariate data (Munden et al., 2021). In the ESF, the spatial scale of the energetic covariates needs to be278

fine enough that it is possible to observe preference at the scale of the observed movement steps. When279

covariate data is coarse or spatially autocorrelated, contrast between case and control locations may be low280

and provide little evidence of selection (Northrup et al., 2013). Another feature of step selection models is281

that the temporal resolution of the tracking data determines the scale at which the animal’s behaviour is282

examined (Bastille-Rousseau et al., 2018). For example, selection for foraging resources at the scale of the283

landscape (as in Section 3) or energy accumulation over a long period (e.g. in the case of kill sites) may284

not be apparent at the scale of fine-resolution movement steps. The interpretation of the ESF parameters285

is therefore tied to the time interval of observation, and lack of evidence for selection at the movement step286

may not translate to a biologically relevant time-scale. Thoughtful selection of intervals between telemetry287

locations and continuous-time analogues of SSFs may prove useful to overcome these scale dependencies.288

High frequency data (e.g. once per second) can also overcome this, as one can infer the turning points the289

animals make and then look at the selection for each turn (Munden et al., 2021). We hope this study will290

motivate the collection of more precise data, suited to understand the energetic mechanisms behind animal291

space use (see Williams et al., 2020, for a review of available technologies).292

In the SSF framework, an alternative to using the ESF would be to use a standard movement kernel293

Φ(y|x) (e.g. based on empirical distributions of step lengths and turning angles; Fortin et al., 2005), and294

include covariates that have energetic importance in the weighting function w(x,y). This formulation would295

separate the energetic contributions of the movement and habitat, which the ESF combines through a296

common currency to facilitate energy-based inferences. As illustrated in Section 3, the energetic covariates297

can be linked to movement and habitat through complex non-linear relationships, which would be difficult to298

include in an SSF. An integrated energetic approach may be particularly important for species that inhabit299

a moving environment. In this case, Φ(y|x) is not an inaccurate depiction of voluntary movement or energy300

expenditure, but the effect of a mobile substrate can easily be incorporated into C(x,y). Lastly, since the301

ESF is a movement-based model, its inferences differ from previous work linking energetics to RSFs that302

cannot directly incorporate the costs of locomotion (e.g. Long et al., 2014).303
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The ESF has great potential for methodological extensions, due to its close theoretical and practical links304

to existing methods (SSFs and iSSA). For example, we could consider a state-switching ESF model, where an305

unobserved behavioural state determines the selection parameters for energetic gains and costs. This would306

allow us to assess behaviour-specific energy selection, and could be written as a hidden Markov model,307

similarly to the state-switching SSF model of Nicosia et al. (2017). It may also be possible to incorporate308

energetic state (i.e. level of satiation) to better reflect the physiological demands and constraints of gaining309

energy (i.e. recharge dynamics; Hooten et al., 2019). Ultimately, the ESF is a widely applicable and flexible310

method to combine energy, movement, and habitat selection.311
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