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Abstract

Energetics are a key driver of animal decision-making, as survival depends on the balance

between foraging benefits and movement costs. This fundamental perspective is often missing

from habitat selection studies, which mainly describe simple correlations between space use and

environmental features. To address this gap, we present a new model, the energy selection

function (ESF), to assess how moving animals choose habitat based on energetic considerations,

thus incorporating a key aspect of evolutionary behaviour into habitat selection analysis. We

outline a workflow, from data-gathering to statistical analysis, and demonstrate the model’s

utility with a case study of polar bears. Our findings show how cost-minimization may arise in

species that inhabit environments with an unpredictable distribution of energetic gains. Because

of its close links to existing habitat selection models, the ESF is widely applicable to any study

system where energetics can be derived, and has immense potential for methodological extensions.
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1 Introduction1

Foraging and movement are core considerations in animal ecology that reflect fundamental aspects of ener-2

getic balance and optimality. Animals should distribute themselves in space so as to maximize their access to3

energetically rich resources, while minimizing the costs of travel associated with foraging (Emlen, 1966; Pyke4

et al., 1977; Pyke, 2019). Therefore, energetic balance is a critical component of optimal foraging theory,5

which assumes that foraging animals should maximize their net energy intake. Theories of how animals6

search for and distribute themselves relative to food range from random search strategies (Viswanathan7

et al., 1999; Bartumeus & Catalan, 2009) to cognitively-based movement decisions (Charnov, 1976; Pyke8

et al., 1977; Pyke, 2019). Models based on these theories are therefore inherently based on assumptions that9

animals have either no knowledge (e.g., Lévy foraging) or perfect knowledge (e.g., cognitive foraging theory)10

of their environmental surroundings and internal state (Pyke, 2015, 2019). In reality, animals’ knowledge11

will typically sit between these two extremes. To further the biological realism in modelling animal space12

use, there has been increased interest in the mechanistic processes of foraging movement (Nathan et al.,13

2008; Pyke, 2019). While these models have considered the role of memory and perception in foraging (Van14

Der Post & Semmann, 2011; Bonnell et al., 2013), attempts to estimate the direct energetic consequences of15

movement decisions are still rare. Energy-based models could provide a crucial link between movement and16

foraging ecology, uniting them under a common bioenergetic paradigm.17

Optimal foraging research often focuses on the energetic benefits of movement and space-use patterns.18

These studies describe foraging strategies in a patchy environment, and examine prey and patch selection19

based on factors such as travel time, perception, and memory (Charnov, 1976; Van Der Post & Semmann,20

2011; Bonnell et al., 2013). To assess food preference, habitat selection models often include covariates that21

represent foraging potential. These covariates are usually approximate measures of forage quality or resource22

availability (e.g., Bastille-Rousseau et al., 2020), but may not be proportional to energetic benefits. Even in23

cases with more realistic depictions of energy intake (e.g., the energetic profitability of resources combined24

with biomass; Fortin et al., 2003), the role of energetic costs is still often unquantified. Therefore, although25

these studies have been instrumental to understand resource preference, new models with realistic depictions26

of energy could be useful to fully examine the mechanisms of animal space use.27

When considered in a foraging context, energetic costs are often assumed to increase linearly with time28

and/or distance (Reynolds, 2013). In reality, the costs vary widely depending on factors such as mode29

of transport (Nathan et al., 2008; Griffen, 2018) and environmental conditions (e.g., topography, weather,30
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substrate; Crête & Larivière, 2003; Wilson et al., 2012). Energy landscapes have been developed as a method31

to evaluate environmentally-varying movement costs, which can be combined with animal movement data32

(Wilson et al., 2012; Shepard et al., 2013; Gallagher et al., 2017). Environmental variables, such as air velocity33

for birds (Shepard et al., 2013), water depth for diving animals (Wilson et al., 2012), or habitat type (Pagano34

et al., 2020), may be considered in cost estimations. Since energy landscapes are based on spatiotemporal35

environmental data, these models quantify the energetic costs of moving through heterogeneous or dynamic36

environments and could be powerful if combined with foraging theory.37

To link foraging and movement, optimality models should quantify both the energetic costs and gains38

of movement decisions. Despite long-standing interest in cost-benefit functions (Schoener, 1971; Sih, 1984),39

there have been few attempts to energetically compare movement costs to the associated nutritional benefits40

(Nathan et al., 2008; Owen-Smith et al., 2010). As foraging theories are ultimately interested in energy, we41

propose using bioenergetics as a unifying currency in movement decision-making. With this approach, we42

can assess the relative contribution of energetic gains and costs to observed movements. Animals may make43

movement decisions primarily based on the need to maximize energy intake, minimize energy use, or balance44

the two (Schoener, 1971; Shepard et al., 2009; Cornioley et al., 2016). By examining energetics at the scale45

of movement steps (i.e., movements between successive recorded locations), we can link movement ecology46

to its energetic drivers, allowing us to assess support for foraging theories. We can therefore gain insights47

into how energetic trade-offs give rise to movement and space-use.48

In this paper, we introduce a method that explicitly considers movement and habitat selection in an49

energetic context. In a model we term an energy selection function (ESF), we evaluate preference for50

energetic covariates, representing energy gain and energy expenditure. We describe the methodological links51

to resource and step selection functions (RSFs, SSFs), while showing how the ESF is conceptually unique52

in its treatment of movement and habitat availability. We provide practical guidance to implement the ESF53

and define covariates, verify the inference procedure through simulations, and provide an example case study54

of polar bears (Ursus maritimus) in the Beaufort Sea, Canada.55

2 The ESF56

2.1 ESF Model Formulation57

We first present standard habitat selection models (RSFs, SSFs) from which we base the ESF. To estimate58

habitat preference, these models employ a use-availability approach, in which we contrast where the animal59
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went (i.e., what resources they used) with where they could have gone (i.e., available habitat) (Manly et al.,60

2002; Fortin et al., 2005). While RSFs assess habitat selection at the scale of the utilization distribution61

(Manly et al., 2002), SSFs are used to analyze autocorrelated animal tracking data and describe resource62

preference at the scale of the observed movement step (Fortin et al., 2005; Forester et al., 2009; Thurfjell63

et al., 2014). SSFs consider that movement constraints limit the habitat availability of an RSF, and give the64

likelihood of a movement step ending at location y given that it started at location x in the study region Ω65

as66

f(y|x) =
Φ(y|x)w(x, y)∫

z∈Ω
Φ(z|x)w(x, z)dz

. (1)67

Following Forester et al. (2009), we consider the numerator to be the SSF. The first term, Φ(y|x), is the68

resource-independent movement kernel, which describes how an animal would move in a homogeneous land-69

scape or in the absence of resource preference (Forester et al., 2009). The second term, w(x, y), is a weighting70

function and represents resource selection without movement constraints. The weighting function is typically71

defined as a log-linear model: w(x, y) = exp{β ·H(x, y)}, where β is a vector of parameters representing the72

strength of selection for H(x, y), a vector of habitat covariates. It can also include variables that correct for73

any errors in estimating Φ(y|x) (Avgar et al., 2016). Therefore, by assuming the step density to be a product74

of resource selection w(x, y) and movement Φ(y|x), SSFs consider the effect of environmental covariates on75

short-term movement decisions. The denominator of Equation 1 is a normalization constant that ensures76

the SSF likelihood is a probability density function with respect to y (Forester et al., 2009; Potts et al.,77

2014). The likelihood can be optimised with respect to β, over all steps, to estimate the set of parameters78

that maximise the likelihood of an animal selecting the used locations relative to the rest of the available79

habitat.80

We present the ESF as an energy-based habitat selection model. The mathematical formulation is similar81

to a standard SSF, and it employs many of the same modelling approaches. Broadly, the ESF can be viewed82

as a special case of SSF, where the resource independent movement kernel is uniform over the whole study83

region, and where the covariates are based on energetic currencies. The ESF defines the likelihood of a step84

ending at location y given that it started at location x as85

f(y|x) =
w(x, y)∫

z∈Ω
w(x, z)dz

, (2)86
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where Ω is the study region, and with energy preference modelled as,87

w(x, y) = exp{β1G(x, y)− β2C(x, y)}. (3)88

We hereafter refer to equation 3 as the ESF, where G(x, y) and C(x, y) refer to the energetic gain and89

energetic cost of the step, respectively. These energetic covariates replace the typical habitat covariates90

H(x, y) used in SSFs, allowing us to make inferences about the role of energy in shaping movement. In section91

2.3, we explain how energetic covariates can be derived from various types of telemetry and environmental92

data. In this form, β1 represents the selection for energetic gains G(x, y), which may be formulated in93

terms of energetically beneficial resources, whereas β2 represents the strength of selection against energetic94

costs, which may reflect avoidance of costly movements and environments. When evaluated together, these95

parameters provide inferences about different energy maximization strategies in optimal foraging theory.96

In the ESF, we do not need to include the resource-independent movement kernel Φ(y|x) as a separate97

term. Rather, since the various aspects of animal movement, such as speed and tortuosity, directly affect98

energy expenditure (Wilson et al., 2013, 2020), they are therefore accounted for in the cost term, C(x, y).99

We illustrate how movement can be incorporated into C(x, y) in Figure 1, which shows how energetic gains100

and costs contribute to the ESF. Thus, similarly to integrated step selection analysis (iSSA; Avgar et al.,101

2016), the ESF can be viewed as evaluating movement and habitat selection simultaneously.102

2.2 Implementation103

Consider a movement track {x1, x2, ..., xn} collected at regular time intervals. The ESF defines the likelihood104

of the entire track as L(β1, β2 | x1, ..., xn) =
∏n−1

i=1 f(xi+1|xi), where f(xi+1|xi) is the likelihood of a single105

step (equation 2). However, it can be computationally demanding to calculate the exact likelihood, as this106

would require evaluation of w over the entire domain of integration Ω (i.e., continuously over the whole study107

region). In practice, we can approximate this likelihood using a case-control design (Forester et al., 2009;108

Thurfjell et al., 2014). For each observed location xi (hereafter, a case), we generate a set of random locations109

(hereafter, controls) which represent a sample of the available habitat. Using Monte Carlo integration over110

the control locations {zi1, zi2, ..., ziK}, we calculate the approximate likelihood as111

L̃(β1, β2|x1, ..., xn) =

n−1∏
i=1

w(xi, xi+1)∑K
k=0 w(xi, zik)

, (4)112

where we define zi0 = xi+1.113
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In theory, we should generate control locations {zi1, zi2, ..., ziK} uniformly across the whole habitat, Ω.114

This procedure would be computationally intense, but it can be improved by noticing that the ESF (Equation115

3) will typically take small values over most of Ω. That is, the properties of energetic costs ensure that the116

ESF decays as a function of the distance to the start point of the step xi. It is therefore sufficient to evaluate117

the ESF over a neighbourhood of the start point to obtain a good approximation of the likelihood, and we118

suggest generating control locations uniformly on a disc around xi (see Appendix A for details). The radius119

R of the disc needs to be large enough such that the probability of the animal moving beyond R is negligible.120

This sampling is not a model of movement or availability, unlike SSFs where controls are distributed according121

to Φ(y|x). Here, we suggest using control locations over a disc merely for computational convenience, and122

in the ESF framework, the availability is determined by the effect of energetic costs on movement. This can123

be viewed as a special case of importance sampling, to increase the precision of the Monte Carlo integration.124

In principle, the control locations do not need to follow a uniform distribution (e.g., they could be normally125

distributed around the start point x) but, in such a case, the probability density function of that distribution126

would need to be included as a correction in the denominator of Equation 4.127

Given that the ESF uses the same general formulation and case-control design as SSFs, model fitting128

can be done using the same statistical techniques and software. We can estimate β1, β2 with maximum129

likelihood estimation (MLE), with regards to equation 4. MLE is fast and accessible, using numerical130

optimizers (e.g., optim in R) or existing software for conditional logistic regression (e.g., the R function131

clogit, package survival). The ESF may be appealing to practitioners, as it builds on existing models and132

can be implemented with common, accessible software and techniques. In Appendix B, we verify these133

implementation methods with a short technical simulation, which showed accurate inferences under different134

levels of spatial autocorrelation and number of control locations used (Figure S4).135

2.3 Defining the Energetic Covariates136

The ESF is applicable to any system where there is adequate energetic data, and the covariates must be137

formulated specifically to each study. G (gains) and C (costs) should be in energetic terms (i.e., proportional),138

although not necessarily in standard units (e.g., kJ). Here, we focus on foraging resources and movement,139

but the approach can be extended if other environmental factors (e.g., temperature, weather) are important140

to energy gain or expenditure. We provide general recommendations, but in practice, covariate definitions141

should be largely based on available ecological knowledge and data of the study system.142

Energetic gains mainly arise from the consumption of energetically beneficial resources, whose distribution143
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can be derived from environmental data (e.g., NVDI, prey or vegetation biomass; Fortin et al., 2003; Pilfold144

et al., 2014). Metrics should contain relevant information to represent consumable and digestible biomass,145

and more than one resource can be incorporated into G if they are weighted based on their energetic146

contribution. Further, resources may be combined with movement data, in cases with strong empirical147

or hypothesized relationships between foraging potential and movement speed (Figure S5). Under this148

formulation, we can evaluate selection for foraging resources as an energetic currency, rather than preference149

for individual resources.150

Energetic costs should be formulated primarily in terms of movement (tortuosity speed; Taylor et al.,151

1970; Wilson et al., 2013), which can be quantified from geographical positioning system (GPS) location152

data. To inform the costs of movement steps, GPS metrics can be combined with captive studies (e.g.,153

treadmills; Bidder et al., 2017) and field measures that more directly measure energy expenditure and154

behaviour (e.g., doubly-labelled water, heart rate, dynamic body acceleration (DBA); Butler et al., 2004;155

Pagano & Williams, 2019; Wilson et al., 2020). The cost of movement is also affected by habitat factors,156

such as substrate penetrability (soft vs. hard; Crête & Larivière, 2003), slope (Halsey, 2016), and resistivity157

(e.g., wind and water currents; Chapman et al., 2011; Shepard et al., 2013). Therefore, habitat features and158

movement data can be combined into a synthetic model of energy expenditure (see Section 3, Figure S5) or159

correlated to estimate the energetic costs of control steps.160

3 Case Study161

Polar bears are sea ice-obligate apex carnivores that forage on fat-rich prey, such as ringed seals (Pusa hispida)162

and bearded seals (Erignathus barbatus) (Pilfold et al., 2012). Polar bear abundance, distribution, and body163

condition are associated with the spatial and temporal distribution of their prey (Pilfold et al., 2014; Galicia164

et al., 2020), as well as the sea ice habitat configuration (Lunn et al., 2016; McCall et al., 2016). Energy gain165

is highest in the spring when bears enter a hyperphagic period (Pilfold et al., 2012), before fasting for several166

months (Stirling & Øritsland, 1995). Therefore, polar bears have limited time to store enough energy to167

survive and reproduce (Stirling & Øritsland, 1995), and must balance the high-energy returns of their prey168

against energetic costs. Polar bears have energetically expensive locomotion (Hurst et al., 1982a; Pagano169

et al., 2018) that is affected by habitat dynamics, including sea ice drift (Durner et al., 2017; Klappstein170

et al., 2020) and fragmentation (Blanchet et al., 2020). To reach or remain in preferred habitat, polar bears171

may oppose the moving sea ice and expend more energy to cover the same geographic distance (Mauritzen172
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et al., 2003; Auger-Méthé et al., 2016; Durner et al., 2017). Further, when sea ice cover is low, polar bears173

are more likely to swim (Pilfold et al., 2016; Lone et al., 2018), which has been estimated to be five times174

more energetically expensive than walking (Griffen, 2018). These spatiotemporal interactions suggest that175

energetic considerations may be important in governing polar bear movement and habitat selection.176

The energetics of free-ranging polar bears have yet to be analyzed in a framework that considers selection177

of gains and costs. Movement and habitat selection studies of polar bears often consider environmental178

conditions with energetic implications without formulating the covariates into an energetic currency (e.g.,179

McCall et al., 2016; Johnson & Derocher, 2020) and/or only including the effect of a single covariate (e.g.,180

Durner et al., 2017; Klappstein et al., 2020). When energetics have been more comprehensively considered,181

they have been coarsely estimated (e.g., dynamic energy budgets in Molnár et al., 2011) or limited to energetic182

costs (Blanchet et al., 2020; Pagano et al., 2020). In this case study, we apply the ESF to polar bears in183

the Beaufort Sea, which has fast ice drift and variable ice concentration (Carmack & Macdonald, 2002).184

We estimate energetic gains from an energetically-weighted RSF of seal kills, and develop a cost model for185

use with GPS telemetry data. Therefore, we consider polar bear energetics at the scale of movement-based186

habitat selection.187

3.1 Methods188

3.1.1 Data Processing189

We analyzed 4-hour resolution telemetry data from 23 GPS-collared solitary adult (> 5 years old) female190

polar bears from 2007-2011 in the Canadian Beaufort Sea (Figures 2, S6; Appendix D). We calculated body191

mass from axillary girth and body length measurements (Thiemann et al., 2011). We omitted GPS locations192

from dropped collars or deceased bears, following Togunov et al. (2020). We defined a movement burst as a193

sequence of locations with no gaps > 24 hours and only kept bursts with ≥ 10 locations. We calculated step194

length as the Euclidean distance between projected GPS locations (NAD83 UTM Zone 9N, EPSG:3156),195

and removed unrealistic locations where the step speed was > 5.4 km/h (Whiteman et al., 2015). Then,196

we imputed missing locations of each burst with a continuous-time correlated random walk model (Johnson197

et al., 2008), implemented in momentuHMM (McClintock & Michelot, 2018). We interpolated relevant198

environmental variables (described below) with bilinear interpolation (Figure 2), using the raster package.199
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3.1.2 Energetic Gains G200

We derived energetic gains from an RSF model of forage quality from Pilfold et al. (2014). The RSF modelled201

locations of seals killed by polar bears, weighted by biomass, relative to habitat characteristics (see Pilfold202

et al., 2014). Because the RSF incorporated both seal kill biomass and abundance, we assumed the RSF value203

to be proportional to energetic return. We extended both the temporal and spatial extent of the original204

rasters, but not beyond the original range of habitat characteristics and season (Figure 2). We created205

daily rasters which encompassed approximately 100km off-shore along the coast of Alaska and Canada (from206

approximately 160◦W to 115◦W), including the Amundsen Gulf and regions adjacent to Banks Island from207

March-June of 2007-2011. The resolution of the rasters was 6.25km and RSF values were zero in locations208

where sea ice was absent.209

3.1.3 Energetic Costs C210

We formulated costs based on the movement costs of captive polar bears, combined with environmental211

covariates to better represent field conditions (Figure 3). Telemetry locations arise from a combination of212

active bear movement and passive displacement caused by ice drift (Mauritzen et al., 2003; Auger-Méthé213

et al., 2016; Durner et al., 2017). Therefore, we define a step as the active bear movement between telemetry214

locations, corrected for ice drift following Klappstein et al. (2020), using drift data from the National Snow215

and Ice Data Center (Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors; Tschudi et al., 2019).216

At each step, a bear can either be swimming or walking on sea ice, which have distinct energetic costs (e.g.,217

Hurst et al., 1982a; Griffen, 2018; Pagano et al., 2018). Using aquatic sensor data from Lone et al. (2018), we218

modelled the relationship between the proportion of time in water and sea ice concentration as a generalized219

additive model (GAM) in the mgcv package (Wood, 2017). Using this curve, we estimated proportion of220

time spent in water for each polar bear step, which we assumed to be the same as the proportion of the221

distance travelled (Figures 3, S7). Lastly, we modelled the relationship between travel speed and energy222

expenditure, using combined estimates from five treadmill studies (Øritsland & Jonker, 1976; Hurst et al.,223

1982a,b; Watts et al., 1991; Pagano et al., 2018). We modelled energy expenditure as a function of walking224

speed as a GAM with a gamma response distribution and a positive monotonic constraint in the R package225

scam (Figures 3, S8; Pya & Wood, 2015; Pya, 2019). When the bear was assumed to be walking, the cost226

was derived directly from this curve, and when the bear was swimming, we multiplied this cost by five to227

represent the higher energy expenditure (Griffen, 2018). Importantly, our modelling approach estimated228

similar daily costs as those obtained from doubly-labelled water (Figure S9).229
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3.1.4 Fitting the ESF230

We eliminated locations that were outside the spatiotemporal extent of prey data availability (Figures 3,231

S6). We generated 20 control locations on a disc around each observed location, with radius R = 1.1× lm,232

where lm is the maximum step length of all observed locations (see Appendix A for justification of R). We233

calculated energetic gains and costs of each step as described above, using environmental covariate values234

at each end location. We omitted steps from analysis when there were > 10 control locations without an235

energetic gain estimate (i.e., outside the raster extent). We fit the ESF with the numerical optimizer optim236

separately for each individual bear. We calculated confidence intervals (CIs) based on the approximate237

standard errors of the maximum likelihood estimates, obtained from the inverse of the Hessian matrix given238

by optim.239

3.2 Results240

We analyzed 7, 861 GPS locations (locations per individual: 80−968). Energetic gains at each step (including241

controls) ranged from 0 to 27.9 (units unknown) and energetic costs ranged from 3.27 to 161 MJ. The median242

β1 estimate was −0.01 (range −0.29, 0.83), with four estimates with CIs that did not overlap zero (Figure243

4). Of these, three bears appeared to select for energetic gains (β1 ± 95% CI = 0.83 ± 0.82; 0.32 ± 0.20;244

0.28 ± 0.17) and only one bear appeared to select against energetic gains (β1 ± 95% CI = −0.29 ± 0.20).245

Conversely, all β2 estimates showed a selection against costs, with a median of 0.57 (range 0.32, 0.97), and246

no CIs overlapped zero for any of the 23 individuals.247

3.3 Discussion of the Polar Bear Case Study248

In this case study, we found a strong pattern of selection against energetic costs in all individuals, but only249

four showed selection for (n = 3) or against (n = 1) energetic gains. Since only 4 of 23 estimates showed an250

effect of gains, it is possible that these could be false positives (Type I error). However, effects may have251

been hard to detect if the grain size and spatial autocorrelation of our covariate data were too high for the252

temporal scale and spatial domain size of the telemetry data (Boyce et al., 2003; Boyce, 2006; Northrup et al.,253

2013). This could result in low variation between case and control locations, particularly if the tracking data254

is not at a biologically relevant resolution. Future studies should assess the effect of scale on polar bear255

energy selection. Further, our uncertainty estimates do not consider the error in our covariate data (Pilfold256

et al., 2014; Tschudi et al., 2019; Togunov et al., 2020), which may affect modelling outcomes (Van Niel &257
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Austin, 2007). However, error propagation is not standard in habitat selection studies, as methods remain258

analytically complex and uncertainty in environmental data is often unknown (Molto et al., 2013).259

Our results suggest that most solitary female polar bears in the Beaufort Sea employ a cost-minimization260

strategy. Cost-minimization could arise due to high predictability of energy expenditure, based on internal261

factors and mechanical movement constraints, while energy-maximization would require polar bears to have262

knowledge of the unpredictable seal distribution (Ramsay & Stirling, 1986; Ferguson et al., 1999). At the263

landscape level, polar bear distribution correlates positively to seal kill biomass (Pilfold et al., 2014), but264

we did not observe this at the scale of the movement step, which may be reflective of local variability in the265

probability of killing a seal. Further, our model assumes that energy selection is consistent through time266

and across behaviours, although selection for gains is likely variable over the study period. Polar bears do267

not enter the main foraging period until mid-April (Pilfold et al., 2012) and continue to gain weight into the268

summer months (Galicia et al., 2020). From March to May, solitary females may also pair with males for269

mating, during which they forage less frequently and are sequestered from ideal habitats for up to 18 days at270

a time (Derocher et al., 2010; Stirling et al., 2016). Additionally, polar bear movements may be influenced271

by site fidelity (Mauritzen et al., 2001), in which recurrent space-use patterns dominate short-term selection272

for energetic gains. If selection for gains is affected by competing behaviours, it may be that only individuals273

with exceptionally strong selection may be identified. These hypotheses should be tested in future research,274

which may require a more nuanced model formulation, while addressing annual, seasonal, demographic, and275

spatial variation in energy selection.276

4 Discussion and Conclusions277

Evaluating the energetic basis of animal movement and habitat selection remains a topical issue in ecology278

(Eisaguirre et al., 2020; Pagano et al., 2020; Williams et al., 2020). Our new model to estimate the energy279

preferences of animals is similar to recent approaches to combine movement and habitat (Avgar et al., 2016;280

Michelot et al., 2019), but the ESF uniquely integrates both factors into energetic covariates. Therefore,281

our approach explicitly accounts for energetics in the selection process. This contrasts with similar work by282

Eisaguirre et al. (2020), which incorporated costs into the availability kernel (so as to ascertain the selection283

for resources once such costs had been accounted for). In their work, the effect of energetics on movement was284

treated as a nuisance parameter, rather than the goal of inference. We applied the ESF to lone female polar285

bears and found that cost-minimization was the most common energetic strategy, which helps explain their286
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movement in dynamic habitats. We consider this model an important step in uncovering the contribution287

of energy in observed space use patterns.288

The inferences we can make from the ESF necessarily depend on the quality of the estimated energetic289

variables. Definitions of G and C rely on carefully evaluating complex interactions between movement290

and habitat, and mischaracterization may lead to parameter estimates that do not truly represent energy291

selection. Although it may not always be possible, defining G and C in the same units would facilitate292

comparison of β1 and β2 (i.e., relative strength of selection) to uncover energetic trade-offs. However, even293

when the covariates are expressed in different units, we can still make comparisons between individuals or294

other temporal or demographic factors, as illustrated in Section 3.295

Inherently, step selection analyses are sensitive to the spatial and temporal scale of the telemetry and296

covariate data (Munden et al., 2020). In the ESF, the spatial scale of the energetic covariates should be297

fine enough that it is possible to observe preference at the scale of the observed movement steps. When298

covariate data is coarse or spatially autocorrelated, contrast between case and control locations may be low299

and provide little evidence of selection (Northrup et al., 2013). Another feature of step selection models is300

that the temporal resolution of the tracking data determines the scale at which the animal’s behaviour is301

examined (Bastille-Rousseau et al., 2018). For example, selection for foraging resources at the scale of the302

landscape (as in Section 3) or energy accumulation over a long period (e.g., in the case of kill sites) may303

not be apparent at the scale of fine-resolution movement steps. The interpretation of the ESF parameters304

is therefore tied to the time interval of observation, and lack of evidence for selection at the movement step305

may not translate to a biologically relevant time-scale. Thoughtful programming of telemetry devices, high-306

frequency data, and continuous-time analogues of SSFs may prove useful to overcome these scale dependencies307

(e.g., Munden et al., 2020). We hope this study will motivate the collection of more precise data, suited308

to understand the energetic mechanisms behind animal space use (see Williams et al., 2020, for a review of309

available technologies).310

The ESF has great potential for methodological extensions, due to its close theoretical and practical links311

to existing methods (SSFs and iSSA). We could add separate terms to the model, such as movement metrics312

(similar to iSSA; Avgar et al., 2016) or terms with no energetic interpretation. This may prove useful to313

account for movement when it cannot be included in G and C and to assess energetic trade-offs. SSFs have314

also been used to estimate long-term patterns of space use through simulations (Avgar et al., 2016; Signer315

et al., 2017). Similarly, it may be possible to generate movement tracks from a fitted ESF to predict the long-316

term spatial distribution of animals as the result of short-term energy selection. Another possible extension317
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would be to consider a state-switching ESF model, where an unobserved behavioural state determines the318

selection parameters for energetic gains and costs. This would allow us to assess behaviour-specific energy319

selection, and could be written as a hidden Markov model, similarly to the state-switching SSF model of320

Nicosia et al. (2017). Ultimately, the ESF is a widely applicable and flexible method to combine energy,321

movement, and habitat selection.322
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hypothesis. Methods in Ecology and Evolution, 6, 1–16.

Pyke, G. H. (2019). Animal movements - an optimal foraging theory approach. In: Encyclopedia of Animal
Behavior, vol. 2, 2nd edn. Elsevier. ISBN 9780128132517, pp. 149–156.

Pyke, G. H., Pulliam, H. R. & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and
tests. The Quarterly Review of Biology, 52, 137–154.

Ramsay, M. A. & Stirling, I. (1986). On the mating system of polar bears. Canadian Journal of Zoology,
64, 2142–2151.

Reynolds, A. (2013). Beyond Optimal Searching: Recent Developments in the Modelling of Animal Move-
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Figure 1: Simulated rasters of energetic gains and energetic costs, and the corresponding ESF. Energetic
gains were simulated as a random covariate field and energetic costs were defined as a product of the step
length and turning angle from the central location (+), assuming that the animal was facing up the y-axis
before turning. ESF = exp(gains − costs) to represent optimal movement. In all panels, lighter colours
represent higher values.

(a) (b)

Figure 2: Illustration of energetic gains in polar bear case study. (a) Map of study area overlaid with an
example seal biomass RSF (Pilfold et al., 2014). (b) Schematic representation of energetic gain evaluation
for a step from x to y, using bilinear interpolation at y based on the four adjacent cells (black dots).
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Figure 3: Schematic illustration of energetic cost evaluation in the polar bear case study, for an observed
step starting at x and ending at y. (a) Arrows represent the observed movement step (black; GPS), ice drift
(blue dashed; ice), and actual bear movement (grey dashed; calculated as GPS - ice). Ice concentration (%)
is estimated at y with bilinear interpolation. (b) Modelled relationship between ice concentration and the
proportion of the step spent swimming (Lone et al., 2018, ; see Figure S7 for high resolution version). We use
the estimated ice % from (a) to estimate the proportion of the bear step spent swimming and walking. (c)
Modelled relationship between polar bear movement speed (km/h) and energetic cost (kJ/kg/h) from several
treadmill studies (Figure S8 for high resolution version). Using the bear speed and weight, we calculate Cs

for the step. Cs,swim and Cs,walk are Cs multiplied by the proportion of time in each behaviour. The total
energy expenditure of the step C(x, y) is the sum of Cs,swim multiplied by 5 (to represent the higher costs
of swimming) and Cs,walk.
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Figure 4: Estimated β1 (selection for gains) and β2 (selection against costs) coefficients of lone adult female
polar bears (N = 23). Error bars are 95% CIs.
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