
Appendices

A A random walk as a special case of the ESF

The simple isotropic random walk (SRW) is unbiased and uncorrelated, with diffusion coefficient D, such

that the density of a step starting at x and ending at y over time interval t is normally distributed around

the start point: y ∼ N(x, σ2), where σ2 = 4Dt (Codling et al., 2008). The likelihood of a step ending at

y given that it started at x is f(y|x) = ψ(y|x, σ2), where ψ is the probability density function (PDF) of a

normal distribution of y with mean x and variance σ2.

We can write the SRW as a special case of the ESF. The ESF likelihood of a step ending at y given that

it started at x is

f(y|x) = S−1 exp[β1G(x,y)− β2C(x,y)] (1)

where S−1 is a normalization constant that ensures it is a PDF of y. To write it as an SRW, we can set

β1 = 0 to represent no effect of energetic gains and C(x,y) = (y − x)2. The likelihood then becomes

f(y|x) = S−1 exp[−β2(y − x)2], which can be rewritten as

f(y|x) = S−1 exp

[
− (y − x)2

2σ2

]
(2)

where β2 = 1
2σ2 . We recognize this as the PDF of a bivariate normal distribution with variance σ2, mean x,

and S = 2πσ2. This shows that an ESF with no gains and C(x,y) = (y − x)2 (i.e. costs formulated as the

step length squared) is equivalent to an SRW model.

B Radius size, R

To approximate Equation 2, we generate controls on a disc (Section 2.3). By using this approximation

method, we therefore assume that the probability density function of a step ending at y given that it started

at x over the area of the disc, is

f(y|x) =


exp{β1G(x,y)− β2C(x,y)} if lxy ≤ R

0 if lxy > R

(3)

Therefore, for this approximation to be accurate, the disc needs to be large enough so that the probability of

a step longer than R is very small (Figure S1). If we define the radius as R = lm×γ, where lm is the maximum
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observed step length, the approximation will improve as γ increases. However, as the size of the disc becomes

larger, so does the number of controls needed for the approximation. There is no straightforward way to

assess this trade-off (i.e. the optimal size of R), but we can use importance sampling, based on where we

expect the ESF to take large values. We explore the effect of the size of R on the approximation using

simulated data, as well as comparing individual bear estimates approximated with different values of γ.
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Figure S1: Plot illustrating importance sampling in the ESF. Ideally, we wish to sample uniformly over the
entire study area (white dots). However, the ESF will decay with distance from the start point (+), due to
the effect of step length on costs, and controls generated outside the disc will contribute very little to the
approximation (i.e. their ESF is nearly zero). Therefore, for computational convenience, we can just sample
within the disc, as long as the radius is large enough.

Simulated data We simulated 250 movement tracks {x1,x2, . . . ,xn} of length n = 250, as described in

Section D. For each step, we generated 50 controls on a disc with a radius of the size R = lm × γ, where

γ = 0.5, 1.1, 2. We fit the ESF for each movement track. As expected, β2 was estimated with the lowest

precision with the smallest radius (γ = 0.5). It was estimated correctly when γ ≥ 1.1 (Figure S2). However,

this represents a simplistic example, where the costs are only dependent on step length and β2 = 15 is fairly

strong selection against costs (i.e. the step length distribution should quickly decay to 0).

Real data We checked the effect of radius size on our polar bear telemetry data. We generated controls

on a disc with R1 = 1.1 × lm and R2 = 2 × lm for each individual, fit the models separately, and then
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Figure S2: Estimates of β1 and β2 with R = γ × lm, where lm is the maximum observed step length and
γ = 0.5, 1.1, 2. Dashed line represents the true parameter value.

compared parameter estimates. Estimates varied up to ±0.15 for β2 (Figure S3), but followed the same

general pattern. There was no evidence of systematic bias (i.e. underestimation or overestimation), and

variation may be explained by the random generation of controls (which varied between the two trials). β1

also varied between the two radius sizes, but this is likely attributable to high uncertainty in the estimates

(i.e. no clear selection for gains).
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Figure S3: Individual estimates of β2 with R1 = 1.1 × lm and R2 = 2.0 × lm. Each point is an individual
polar bear and the straight line represents a 1:1 relationship.
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C Examples of gains and costs formulations

Habitat Speed Gains
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Figure S4: Example energetic gain G (a) and energetic cost C (b) formulations. In all panels, higher values
are lighter in colour. In both (a) and (b), the third panel is a product of the first two panels, which represent
movement and habitat components. In (a), energetic gains are composed of an energetically beneficial habitat
covariate (e.g. forage biomass) scaled to the speed travelled. In this case, the effect of movement speed is
gamma distributed (k = 2, θ = 2.2) about the start point to represent decreased foraging potential at low
and high speeds. In (b) the energetic costs are defined by the distance and turning angle from the start point
(+; assuming movement up the y-axis), combined with a habitat covariate in which higher values increase
energy expenditure.
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D Simulation study

We ran simulations to assess the performance of the ESF inference method under different scenarios (i.e. to

test the accuracy of the approximation; Section 2.3). The main objective was to recover model parameters

from movement tracks simulated directly from the ESF, with known parameter values. For all simulations,

G was defined as a random covariate field and C was calculated as the step length, both from [0, 1] and

assumed to be in the same units.

Algorithm We generated n locations {x1,x2, . . . ,xn}, with x1 selected randomly from the study area Ω.

For each iteration i = 1, . . . , n− 1, we followed these steps to generate xi+1:

1. Simulate possible endpoints {z1, z2, . . . ,zK} uniformly on a disc centred on xi, with a radius R = 1 and

K = 10, 000. We chose a very large value of K to ensure any bias was the result of the approximation,

rather than the simulation itself.

2. Evaluate G and C at each endpoint.

3. For k ∈ 1, 2, ...K, sample xi+1 from {z1, z2, . . . ,zK}, with probabilities defined by

pk =
w(xi, zk)∑K
j=1 w(xi, zj)

, (4)

where w is the ESF (Equation 2 of the main text).

Scenarios First, we assessed whether the selection strength affected our ability to estimate the parameters,

and subsequently, whether certain foraging strategies may be harder to identify. For both β1 and β2, we

considered 15 as a high parameter value. We considered low parameter values to be 0 for β1 (no selection for

gains), and 5 for β2 (very weak selection against costs). We could not use 0 for β2, as the ESF simulation

algorithm would artificiality constrain the step length through the radius model. We tested different values

of β2 and found that 5 was the lowest parameter value where the size of the radius no longer affected the

simulated step lengths. We combined these parameter values to represent the following movement patterns:

i) optimal movement (high values of both parameters), ii) intake maximization (high β1, low β2), iii) cost

minimization (low β1, high β2), and iv) movement nearly free of energetic considerations (low values of both

parameters). Next, we altered the level of spatial autocorrelation in G. We simulated the study area Ω as

a 1000 × 1000 raster with a resolution of 0.25, and assigned each grid cell a random value [∼ U(0, 1)]. We
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calculated the covariate field for G by using a circular moving average window with diameter ρ (measured

in grid units) to control the degree of spatial autocorrelation (Avgar et al., 2016; Michelot, 2019). We

created random rasters of G with ρ = 1, 5, 10, 25 to reflect four levels of spatially autocorrelated habitat.

For each of the 16 scenarios (parameter sets and spatial autocorrelation), we generated 250 movement tracks

{x1,x2, . . . ,xn} of length n = 250. For each track, we tested the inference method using 20 and 200 control

locations in the Monte Carlo integration procedure (Section 2.3). All parameters were estimated using MLE.

Results In most cases, the parameters were estimated accurately, although β2 was generally estimated

more precisely than β1 (Figure S5). The median (min, max) difference between estimated and known

parameter values was −0.04 (−65, 27) for β1 and 0.04 (−4.8, 4.7) for β2. Spatial autocorrelation in G had

a noticeable effect on the precision of β1 estimates, but not β2. When β1 was high, there was a pattern

of decreased precision with increased autocorrelation. When β1 was low, precision was lowest when spatial

autocorrelation was very low (ρ = 1) and very high (ρ = 50). Spatial autocorrelation is a documented issue

in resource selection analyses, which can lead to biased parameter estimates (Northrup et al., 2013). In

SSFs and ESFs, high spatial autocorrelation decreases the range of the covariate space that may be explored

for each movement step, which may decrease the ability to infer selection, particularly when the number of

control locations is low (Northrup et al., 2013). However, in our simulations, the number of control locations

used in Monte Carlo integration had negligible effects on the precision or accuracy of parameter estimations.

Therefore, in most cases, 20 control locations should be adequate to approximate the likelihood, although

we still recommend caution when working with highly spatially autocorrelated environmental covariates. As

noted in Fortin et al. (2005), more controls may also be necessary when covariates are rare.

6



●●

●

●

●

●

●
●

●
●
●●

●

●

●●●●
●●
●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●●

●

●

●●●●●

●

●
●
●

●
● ●●●● ●●●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●●

●

●

●

●
●
●

●●
● ●

●●
●

●

● ●

●

●●●

●●

●

●
●●●●

● ●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●
●

●

● ● ●●●●●●●●

●●

● ●●● ●●●

●

● ●●

●

●

●●●● ● ●●

●
● ●●

●
● ●●●

●
●

●
●●●●●●●●

●

●● ●●

●

●●●

●

●●●
●
●●● ●

●

●
●
●●●●●●●●●

●

●● ●●

●

●
●●●●●●●

●

●●●● ●

●

●

●●●
●
●● ●

●

●●●●
●
● ●

●
●●●●
●
●● ●

●

●●●
●
●● ●

●

hi
gh

−
hi

gh

β 2

hi
gh

−
lo

w

β 2

lo
w

−
hi

gh

β 2

lo
w

−
lo

w

β 2

hi
gh

−
hi

gh

β 1

hi
gh

−
lo

w

β 1

lo
w

−
hi

gh

β 1

lo
w

−
lo

w

β 1

1 5 10 50 1 5 10 50

1 5 10 50 1 5 10 50

1 5 10 50 1 5 10 50

1 5 10 50 1 5 10 50

−10

0

10

20

30

40

−20

−10

0

10

20

30

−10

0

10

20

30

40

−20

−10

0

10

20

30

0

20

40

60

80

−10

0

10

20

30

40

−20

−10

0

10

20

−20

−10

0

10

20

ρ

nc

20
200

Figure S5: Parameter estimates from the simulations, under 32 different scenarios. Tracks were simulated
either of four sets of parameters: “high-high” (β1 = 15, β2 = 15), “high-low” (β1 = 15, β2 = 5), “low-high”
(β1 = 0, β2 = 15), and “low-low” (β1 = 0, β2 = 5). ρ refers to the level of spatial autocorrelation in the
energetic gain covariate G, and nc is the number of controls used in Monte Carlo integration. Dashed line
is the true parameter value.
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E Case study

E.1 Study Area and Field Sampling

Field sampling was done in Beaufort Sea, Canada (Figure S6). Sea ice in the area is mostly annual, with

a flaw lead that separates near-shore areas of stable landfast ice and off-shore drifting pack ice (Carmack

& Macdonald, 2002). The lead widens in spring and forms an active sea ice zone with high productivity

(Pilfold et al., 2014), before most ice disappears by mid-summer (Stern & Laidre, 2016). Sea ice drift is

characterized by the clockwise Beaufort Gyre, which is strengthening with climate change (Hutchings &

Rigor, 2012; Petty et al., 2016), and increasing the energetic expenditure of polar bears in the area (Durner

et al., 2017). Following standard capture procedures (Stirling et al., 1989), polar bears were sighted and

immobilized in April-May of 2007-2011. Bears were fitted with GPS collars (Telonics, Mesa, AZ) set to a

collect locations at a 4-hour resolution (relayed via the Argos satellite system; CLS America, Lanham, MD),

and programmed to release after 1-2 years. The age of each bear was determined by analysing cementum

growth layers of an extracted vestigial premolar (Calvert & Ramsay, 1998), and sex was determined in the

field. Capture and handling was approved by the University of Alberta BioSciences Animal Care and Use

Committee following guidelines from the Canadian Council on Animal Care.

USA
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Beaufort Sea Banks

Island

Amundsen Gulf

66°N
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Figure S6: Study area in the Beaufort Sea, Canada. Circle points are polar bear collar deployment locations,
and contour lines show the density of satellite telemetry data for all individuals (once regularised and limited
to the spatiotemporal extent of the energetic gains raster).
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E.2 Polar bear cost modelling

In this appendix, we present high-resolution complements to Figure 3 of the main text (Figures S7, S8), as

well as a comparison of our cost model to doubly labelled water (Figure S9). In figure S9, we compared

the estimated movement costs from our cost model (described in Section 3.2) with estimates of energy

expenditure from doubly labelled water (Pagano & Williams, 2019). We estimated mean daily movement

speeds and energy expenditure for adult female polar bears with > 6 locations per day for ≥ 25 days. We

used linear regression to estimate the relationship between mean bear speed and daily energetic costs and

compared this to the same relationship modelled in Pagano & Williams (2019). Our modelled costs were

closely related to those from field DLW measurements, although slightly underestimated (Figure S9).
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Figure S7: Estimated proportion of time spent in water relative to ice concentration, modelled with a
generalized additive model (GAM). Data from Lone et al. (2018). Shaded area represents the standard error
of the model fit.
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Figure S8: Relationship between polar bear walking speed (km/h) and energy expenditure (oxygen consump-
tion; mL O2/g/hr) from six reference studies. Solid line is the predicted relationship from a monotonically
constrained generalized additive model (gamma distribution, logit link function). Shaded area represents
the standard error of the model fit.
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Figure S9: Relationship between mean daily movement speed (km/h) and daily energy expenditure (kJ/kg)
for individuals with more than 25 days of locations with 6 locations (blue line) compared to the estimated
relationship from doubly-labelled water (dashed line; Pagano & Williams, 2019).
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E.3 Comparison to a simple random walk model

Model Fitting We compared the ESF to a null model, given by the simple random walk (SRW) described

in Appendix A. Following Sections 2.2 and 4.1, we fit the SRW separately for each individual using optim.

Costs were defined as l2, where l is the ice drift-corrected bear step length (km). We compared models using

AIC scores, where AIC = 2 × nllk + 2v where nllk is the negative log-likelihood and v is the number of

parameters in each model (vESF = 2 and vSRW = 1).

Results SRW costs ranged from 0− 509 km2 and ESF costs ranged from 3.3− 161 MJ. Since costs are in

different units between models, β2 estimates are on different scales (Figure S10). However, this does not affect

the likelihood or AIC scores. The ESF was a better fitting model in almost all cases: AICESF < AICSRW for

20 out of 23 individuals (Figure S11). Based on guidelines from Burnham & Anderson (2002), there was little

to no support for the competing model (∆AIC > 6) in all but one case (bearID = E; AICESF = −326.3,

AICSRW = −325.5). All but 3 cases had ∆AIC > 10, which indicates essentially no support for the

competing model (Burnham & Anderson, 2002).

β2 nllk AIC

0.4 0.6 0.8 1.0 −2000 −1500 −1000 −500 −4000 −3000 −2000 −1000

−4000

−3000

−2000

−1000

−2000

−1500

−1000

−500

0.02

0.04

0.06

 ESF

S
R

W
 

Figure S10: Parameter (β2) estimates, negative log-likelihoods (nllk) and AIC scores for the ESF and SRW.
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Figure S11: Comparison of AIC scores for bears with lower AICESF (black dots; ∆AIC = AICSRW −
AICESF ) and lower AICSRW (red dots; ∆AIC = AICESF − AICSRW ). The dashed line is at 2, which is
a threshold to indicate considerable support for the model.
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