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Abstract 

In modeling cell culture growth using unstructured model, two types of equations are normally used: 

logistic and Monod. However, these two equations are known for their limitations to model death 

phase of cell culture growth and to account for dead cells accumulation data accurately. In this paper, 

we present a modeling framework whereby both Logistic and Monod equations can be used in a 

single set of equations system to overcome these limitations. First, it can be shown that the increase of 

total cell population that consists of viable and dead cells follows a logistic growth pattern with its 

own intrinsic growth rate and total carrying capacity. Furthermore, a hybrid Logistic-Monod equation 

with first-order decay kinetics can be used to model viable cell growth data with decline phase 

effectively. With this paradigm, a pseudo-rate equation can be written to account for dead cells 

accumulation data using population balancing with a simple understanding that dead cell population is 

simply the difference between total and viable cells. These equations can be adjoined with substrate 

consumption and product generation rate equations to depict complete batch growth data that covers 

exponential growth and death phases. This modeling framework has been fitted successfully to fit 

batch growth data of two cell lines from published literature with complete depictions of dead cell 

accumulation and cell viability profiles. The implication of this modeling framework for chemostat 

culture performance analysis is further investigated.  
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Introduction 

In modeling cell culture growth using unstructured model, two types of equations are normally used: 

logistic and Monod (Shirsat et al., 2015). In the case of logistic growth modeling, the model is simply 

fitted to cell growth data to determine two parameters that are of biological interest: specific intrinsic 

growth rate, k (1/h) and carrying capacity of the system, Xmax. In rate form, the logistic equation is 

normally written as follow: 

𝑑𝑋

𝑑𝑡
= 𝑘𝑋 (1 −

𝑋

𝑋𝑚𝑎𝑥
) 𝑋(0) = 𝑋0 (1) 

This equation can be solved analytically to yield a logistic growth curve for cell population that leads 

to a stationary population size of Xmax.  

Meanwhile, in Monod modeling, the specific growth rate, μ (1/h) is subjected to a growth limiting 

substrate with concentration S: 

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
 (2) 

Here, μmax is the maximum specific growth rate achievable when S ≫ Ks. The parameter Ks which is 

also referred to as saturation constant can be interpreted as the concentration of the substrate at which 

the specific growth rate is half of its maximum value, μmax. However, unlike Logistic model that is 

rooted in some mechanistic principle of biological population growth, Monod model is strictly 

empirical and borne out of necessity to fit experimental data of cell growth rate versus growth-

limiting substrate concentration (Liu, 2007). Nevertheless, its utility to model microbial and cell 

population growth in various settings has been widely recognized and acknowledged by countless 

researchers (Kovárová-Kovar & Egli, 1998; Kyriakopoulos et al., 2018). Based on Monod model, the 

cell growth rate equation can be written as follow: 

𝑑𝑋

𝑑𝑡
= 𝜇𝑋 =

𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
𝑋  (3) 

Lately, there has been attempt to merge these two equations into a single expression that can describe 

specific growth rate as a function of both growth-limiting substrate and self-inhibiting factor due to 

carrying capacity of the system (Xu, 2020): 



𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥 (

𝑆

𝐾𝑆 + 𝑆
)(1 −

𝑋

𝑋𝑚𝑎𝑥
)𝑋  (4) 

Coupled with substrate consumption rate equation, analytical solution for this set of equations system 

can be derived with the aid of advanced numerical software, e.g. Matlab as was demonstrated by Xu 

(2020). With this hybrid equation, cell growth and substrate consumption will progress initially 

through substrate-limiting phase that is modeled by Monod equation and gradually shifts towards self-

inhibiting phase that is modeled by Logistic equation. 

However, even with this hybrid form, the apparent drawback of this modeling framework is its 

inability to model decline phase of cell culture growth that is normally observed in cell culture 

experiments. Moreover, the mathematical depiction of dead cells accumulation data is rarely 

considered in practice due to its perceived unimportance as well as incomplete understanding of cell 

death kinetics at cellular and macroscopic levels. This can cause problem if the model is to be used to 

produce cell viability profile which is important in assessing the overall health of cell culture growth. 

It is quite often that the modeler will use different models to account for different phases of cell 

culture growth, i.e., exponential growth versus death phases with switching time point determined 

from visual inspection of experimental data that is always subjected to error. However, as simple as 

this crude approach is for model formulation, it can usually lead to poor model fit, notwithstanding 

the fact that it can inadvertently cause non-smoothing of state variable profiles at the switching point 

if special precaution is not taken to ensure that the adjoined models are smooth at that particular point. 

Furthermore, this modeling approach can cause further inconvenience if sensitivity analysis is to be 

conducted on the adjoined models using derivative-based approach. 

In this contribution, we show how these two important equations in unstructured modeling arsenal can 

be used together in a single equations system to overcome these limitations. First, it can be shown that 

the growth of total cell population that consists of viable and dead cells follows a modified form of 

logistic equation with its own intrinsic growth rate, kT and total carrying capacity XT,max: 

𝑑𝑋𝑇
𝑑𝑡

= 𝑘𝑇𝑋𝑉 (1 −
𝑋𝑇

𝑋𝑇,𝑚𝑎𝑥
) 𝑋𝑇(0) = 𝑋𝑇0 (5) 



where XT is the total cell density and is simply the summation of viable XV and dead cell XD densities 

within the system. On the other hand, to account for the growth and eventual decline of viable cell 

population that depends on a growth-limiting substrate, a hybrid Logistic-Monod equations as 

proposed by Xu (2020) with the inclusion of first-order decay kinetics for cell viability degradation 

can be used as shown below: 

𝑑𝑋𝑉
𝑑𝑡

= (𝜇ℎ𝑦𝑏 − 𝐾𝑑)𝑋𝑉 𝑋𝑉(0) = 𝑋𝑉0 (6) 

where, for the sake of convenience we define 

𝜇ℎ𝑦𝑏 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
(1 −

𝑋𝑉
𝑋𝑉,𝑚𝑎𝑥

) (7) 

In this formulation, Kd (1/h) is commonly interpreted as the specific death rate of viable cells. In 

simplest term, this parameter can be treated as a constant although various ad-hoc expressions have 

been derived to account for the possible effects of inhibitory/toxic by-products and/or growth limiting 

substrates to cell viability degradation (Kyriakopoulos et al., 2018) which again are strictly empirical 

and so far, had received little experimental supports unlike Monod model.  

With this paradigm, a pseudo-rate equation can be written based on population balancing to account 

for the accumulation rate of dead cells in the system with a simple understanding that dead cell 

population is simply the difference between total and viable cells: 

𝑑𝑋𝐷
𝑑𝑡

= 𝑘𝑇𝑋𝑉 (1 −
𝑋𝑉 + 𝑋𝐷
𝑋𝑇,𝑚𝑎𝑥

) − (𝜇ℎ𝑦𝑏 − 𝐾𝑑)𝑋𝑉 𝑋𝐷(0) = 𝑋𝑑0 (8) 

For this equation to make absolute sense, dXT/dt ≥ dXV/dt as the rate of growth of viable cells cannot 

outstripped the rate of growth of total cells. This equation can be expressed in the following pseudo 

first-order kinetic form based on viable cell density: 

𝑑𝑋𝐷
𝑑𝑡

= 𝑘𝑋𝐷𝑋𝑉 (9) 

where the pseudo-rate constant kXD (1/h) can in turn be expressed as follow: 

𝑘𝑋𝐷 = 𝑘𝑇 (1 −
𝑋𝑉 + 𝑋𝐷
𝑋𝑇,𝑚𝑎𝑥

) − 𝜇ℎ𝑦𝑏 + 𝐾𝑑 (10) 

The advantage of this formulation is that it clearly expresses kXD as a function of batch culture 

condition as exemplified by XV, XD, and S.   



In most cases, a first-order decay term with respect to dead cell concentration is added to Equation (9) 

to account for lysis of dead cells that can manifest itself as a noticeable decline of total cell population 

that is normally observed nearing the end of batch culture growth: 

𝑑𝑋𝐷
𝑑𝑡

= 𝑘𝑋𝐷𝑋𝑉 − 𝐾𝑙𝑦𝑠𝑋𝐷 (11) 

where Klys (1/h) can be interpreted as the specific lysis rate of dead cells. 

Equations (6) and (9) (or (11)) can be adjoined with suitable substrate consumption and product 

generation rate equations to give a complete depiction of cell culture growth profiles that includes 

decline phase of viable cells, dead cells accumulation, and cell viability profiles. The definition of cell 

viability is simply given as follow: 

Cell viability: CV =
𝑋𝑉

𝑋𝑉 + 𝑋𝐷
× 100 (12) 

        

Case studies 

To demonstrate the capability of this modeling framework to fit and depict complete time course 

profiles of batch culture growth, experimental datasets of batch culture growth of two cell lines that 

produce important proteins will be used as sample cases in this study: 1) IgG-secreting murine 

hybridoma cell (Gao, Gorenflo, Scharer, & Budman, 2007) and 2) AGE1.HN.AAT cell for the 

production of Alpha-1 antitrypsin (AAT) (Ramos, Rath, Genzel, Sandig, & Reichl, 2020). These cell 

lines have been subjected to frequent modeling studies using structured modeling approach as can be 

seen from the works of Baughman, Huang, Sharfstein, and Martin (2010) and Selişteanu, Șendrescu, 

Georgeanu, and Roman (2015) for murine hybridoma cell and Ramos et al. (2020) for 

AGE1.HN.AAT cell. To the best of our knowledge, this is the first instance whereby these cell lines 

will be subjected to unstructured modeling analysis using our proposed modeling framework. The 

objective here is to see whether this approach can be used to model full time course profile of batch 

culture growth, from exponential growth to death phase, especially for viable and dead cells using 

only a single set of equations system. This capability can go a long way in producing a simple and yet 

effective generic mathematical model that can be used in process control for production-scale 

bioreactor system.    



For IgG-secreting murine hybridoma cell, the corresponding concentration datasets are selected to fit 

the model equations: viable cells (XV), dead cells (XD), glutamine (which is the growth-limiting 

substrate, S), biomass (which is the growth-associated product, PG), and secreted antibody, a non-

growth associated product produced by the cells (PNG). On the other hand, for AGE1.HN.AAT cell, 

the corresponding concentration datasets are selected to fit the proposed model: viable cells (XV), dead 

cells (XD), glucose (S), and AAT (PG). Apart from Equation (6) to depict viable cell growth for both 

cell lines, Table 1 lists the complete modeling equations for other state variables for both cell lines. Of 

particular interest is the use of Equations (9) and (11) to depict dead cells accumulation rate for 

murine hybridoma and AGE1.HN.AAT cell culture growths, respectively. This selection is primarily 

guided by the model estimation result (see Results and discussion below) that indicates the non-

identifiability of Klys parameter for murine hybridoma cell growth i.e., small value and large 

uncertainty following statistical inferencing. Additionally, a first-order decay term is included to 

account for chemical decomposition of glutamine to ammonia (Ozturk & Palsson, 1990) for murine 

hybridoma cell with decomposition rate constant kdS (1/h). 

 

Table 1 List of model equations for batch culture growth modeling and estimation 

Component Murine hybridoma AGE1.HN.AAT  

Dead cells: Equation (9) Equation (11)  

Growth-limiting 

substrate: 

𝑑𝑆

𝑑𝑡
= −

𝜇ℎ𝑦𝑏

𝑌𝑋𝑣 𝑆⁄
𝑋𝑉 − 𝑘𝑑𝑆𝑆 

𝑑𝑆

𝑑𝑡
= −

𝜇ℎ𝑦𝑏

𝑌𝑋𝑣 𝑆⁄
𝑋𝑉 Equation (13a and b) 

Growth-associated 

product: 

𝑑𝑃𝐺
𝑑𝑡

= 𝜇ℎ𝑦𝑏𝑌𝑃𝐺/𝑋𝑉𝑋𝑉 Equation (14) 

Non-growth  

associated product: 

𝑑𝑃𝑁𝐺
𝑑𝑡

= 𝐾𝑃𝑁𝐺𝑋𝑉 - Equation (15) 

 

Numerical methods 

In this work, the parameter estimation problem is solved using least-squares estimation strategy for 

differential equation model (Englezos & Kalogerakis, 2001). To ensure stability in the numerical 

solution, the corresponding ordinary differential equations (ODE) system is completely parameterized 

using orthogonal collocation method on finite elements to transform the dynamic estimation problem 



into a nonlinear programming (NLP) problem that can be solved using large-scale NLP solver. In this 

work, we used IPOPT (Wächter & Biegler, 2006), a robust solver for large-scale NLP to solve the 

corresponding optimization problem. Due to its high-dimensional and nonlinear nature, multiple local 

solutions might exist that can produce suboptimal parameter estimation results. Therefore, to 

circumvent this problem, multi-start strategy is adopted whereby multiple initial guesses of the 

unknown parameters are generated using Latin hypercube sampling and the NLP problem is solved 

for each of these initial parameters guesses. The result of the best NLP run is then selected to 

represent the model estimation result. The complete implementation of this parameter estimation 

strategy can be referred from the corresponding source code of Python programs that were posted in 

GitHub1. In that programs, we used CasADi (Andersson, Gillis, Horn, Rawlings, & Diehl, 2019) 

which is an open-source tool for algorithmic differentiation as the intermediary between problem 

formulation codes in Python and IPOPT solver. The capability of CasADi to perform local sensitivity 

analysis for ODE model using third-party ODE solution package SUNDIALS (Hindmarsh et al., 

2005) is further exploited for post-statistical inferencing of the fitted model parameters. 

 

Results and discussion 

The results of the parameter estimation using the proposed modeling framework for both cell culture 

growths data are shown in Table 2 together with their 95% confidence intervals as determined using 

student-t distribution statistics. For murine hybridoma cell, due to the non-identifiability of Klys 

parameter in the model estimation, the phenomenon of dead cells lysis was considered not significant 

and the use of Equation (9) is sufficient to account for dead cells accumulation data. It is worth to 

mention that through experimental investigation, Goergen, Marc, and Engasser (1993) also found out 

that dead cell lysis was apparently not significant for murine hybridoma cell in a normal culture 

environment. The validity of this parameter estimation results is further proven with model 

simulations that indicates the ability of the fitted models to reproduce satisfactorily the corresponding 

experimental profiles as shown in Figures 1 and 2 for murine hybridoma cell and Figure 3 for 

AGE1.HN.AAT cell. The ability of this modeling framework to predict the decline phase of viable 

 
1 https://github.com/nazrifuad2020/modified-logistic-monod-fit 

https://github.com/nazrifuad2020/modified-logistic-monod-fit


cell concentration as well as dead cells concentration and cells viability profiles is clearly apparent for 

both cell culture growths. These results clearly give credibility to this modeling framework to 

simulate all phases of batch culture growth using only a single set of equations system. Figure 4 

shows the dynamic profiling of kXD parameter for both cell culture growths as calculated using 

Equation (10) that shows distinct behavior of the corresponding parameter evolution across both cell 

lines.    

Using the fitted models, we can carry out further model-based studies such as sensitivity analysis to 

ascertain the sensitivity of state profile of interest to model parameters. For instance, using a 

derivative-based approach i.e., forward sensitivity analysis, we can determine the impact of model 

parameters to dead cell accumulation profile as shown in Figures 5 for both cell culture growths. 

From these results, we can see that even though the sensitivities of the corresponding state profile to 

model parameters were quite different across both cell lines, however, one thing is clear from this 

result is that the effect of Monod saturation constant, KS is quite significant to both dead cell 

accumulation profiles according to the fitted models.  

 

  

  



Table 2 Estimated model parameters with their 95% confidence intervals 

Parameter grouping Parameter (unit) 
Murine hybridoma  AGE1.HN.AAT 

Value 95% confidence interval  Value 95% confidence interval 

Total cell growth 

(Modified Logistic) 

kT (1/h) 0.103 (0.0731 , 0.144)  0.0327 (0.0298 , 0.0358) 

XT,max (×106 cells/mL) 1.00 (0.941 , 1.07)  4.54 (4.19 , 4.91) 

Viable cell growth 

(Logistic-Monod) 

μmax (1/h) 0.139 (0.115 , 0.167)  0.0383 (0.0337 , 0.0436) 

KS (M) 1.42×10-4 (1.88×10-5 , 1.07×10-3)  3.11×10-3 (8.63×10-4 , 0.0112) 

XV,max (×106 cells/mL) 1.14 (0.870 , 1.49)  7.01 (5.03 , 9.78) 

Cell death and lysis 
Kd (1/h) 0.0290 (0.0214 , 0.0391)  7.23×10-3 (5.26×10-3 , 9.93×10-3) 

Klys (1/h) - -  -  0.0221 (0.0108 , 0.0452) 

Yield parameters 

(substrate and products) 

YXv/S (106 cells/mmol) 1.62×103 (676 , 3.86×103)  180 (156 , 209) 

YPG/Xv
a,b 7.58×10-3 (5.87×10-3 , 9.79×10-3)  21.2 (18.4 , 24.4) 

KPNG (mmol/106 cells/h) 3.96×10-9 (3.58×10-9 , 4.38×10-9)  - -  - 

Chemical decomposition kDS (1/h) 0.0192 (9.65×10-3 , 0.0382)  - -  - 

aFor murine hybridoma cell, the yield unit for biomass product is mmol/106 cells  

bFor AGE.HN.AAT, the yield unit for AAT product is μg/106 cells 

 

 

 

 

 



 

 

Figure 1 Comparison of model simulation with experimental data for viable cells, dead cells, 

glutamine, biomass, secreted antibody, and cells viability: murine hybridoma 

 



 

Figure 2 Comparison of simulation result and experimental data for total cells concentration: murine 

hybridoma 

 



 

Figure 3 Comparison of model simulation with experimental data for viable cells, dead cells, glucose, 

AAT, cells viability, and total cell concentration: AGE1.HN.AAT   



 

(a) 

 

(b) 

 
Figure 4 Dynamic profiling of pseudo-rate constant for dead cells generation, kXD 



(a) (b) 

Figure 5 Sensitivities of dead cell accumulation profile to model parameters 

  



Chemostat culture performance 

The implication of the proposed modeling framework for continuous culture (chemostat) performance 

analysis is further investigated. Table 3 lists the modeling equations for chemostat culture based on 

the proposed modeling framework for viable cell, dead cell, growth-limiting substrate, and product 

concentrations, i.e., XV, XD, S, and P respectively. Parameter D is the dilution rate (1/h) and is defined 

as the ratio of inlet volumetric flowrate to volume of cell culture medium. These equations can be 

solved analytically as shown by Xu (2020) or numerically to yield steady-state relationships of 

chemostat culture variables to dilution rate, D until washout point. These relationships are shown for 

both cell lines in Figure 6 for cell concentrations (viable, dead, and total), cell viability, and pseudo-

rate constant for dead cells generation, kXD. Additionally, the dependence of substrate and product 

concentrations (as well as its production rate) to dilution rate are shown in Figure 7 for both cell lines. 

Generally, there exists a specific value of dilution rate that gives highest viable cell concentration in 

both chemostat cultures although this value does not necessarily correspond to peak cell viability (see 

Figure 6). However, for murine hybridoma cell (see Figure 6 (a)), this peak value occurs at low 

dilution rate, at the region that is also characterized by high sensitivity to variations in D. Moreover, 

due to the absence of dead cells lysis phenomenon, this low dilution rate region is also characterized 

by high dead cell concentrations. As IgG production is non-growth associated, its peak production 

rate also occurs at this peak viable cell concentration as shown in Figure 7 (a). This situation brings 

forth the issues of sensitivity, controllability, and reliability into consideration whenever the objective 

of maximum production rate is to be pursued for this continuous culture system. On the other hand, 

for AGE1.HN.AAT cell, the region of low dilution rate is characterized by low total cells 

concentration due to the postulated dead cells lysis phenomenon (see Figure 6 (b)). As shown in 

Figure 7 (b), the peak production rate of AAT, which is growth-associated seems to occur near the 

peak cell viability that occurs at higher dilution rate than peak viable cell concentration (see Figure 6 

(a)). Finally, as shown in Figure 6, the dependence of pseudo-rate constant, kXD to dilution rate for 

murine hybridoma cell is more complex than AGE1.HN.AAT cell which exhibits minimum value 

near the peak cell viability. 

  



Table 3 List of model equations for chemostat culture 

Component Murine hybridoma AGE1.HN.AAT  

Viable cells: 𝜇ℎ𝑦𝑏 − 𝐾𝑑 − 𝐷 = 0 Equation (16) 

Dead cells: 𝑘𝑋𝐷𝑋𝑉 −𝐷𝑋𝐷 = 0 𝑘𝑋𝐷𝑋𝑉 − 𝐾𝑙𝑦𝑠𝑋𝐷 − 𝐷𝑋𝐷 = 0 Equation (17a and b) 

Growth-limiting substrate: 𝐷(𝑆𝑓 − 𝑆) −
𝜇ℎ𝑦𝑏

𝑌𝑋𝑣 𝑆⁄
𝑋𝑉 − 𝑘𝑑𝑆𝑆 = 0 𝐷(𝑆𝑓 − 𝑆) −

𝜇ℎ𝑦𝑏

𝑌𝑋𝑣 𝑆⁄
𝑋𝑉 = 0 Equation (18a and b) 

Growth-associated product: 𝐷(𝑃𝐺,𝑓 − 𝑃𝐺) + 𝜇ℎ𝑦𝑏𝑌𝑃𝐺/𝑋𝑉𝑋𝑉 = 0 Equation (19) 

Non-growth associated product: 𝐷(𝑃𝑁𝐺,𝑓 − 𝑃𝑁𝐺) + 𝐾𝑃𝑁𝐺𝑋𝑉 = 0 - Equation (20) 

 

  



 

(a) 

 

(b) 

 
Figure 6 Steady-state relationships of chemostat culture variables to dilution rate until washout point: Cell concentrations (viable, dead, and total), cell 

viability, and pseudo-rate constant, kXD 

  



 

(a) 

 

(b) 

 
Figure 7 Steady-state relationships of chemostat culture variables to dilution rate until washout point: Substrate concentration, product concentration, and 

production rate 

 

 



Conclusions 

A modeling framework that incorporates both modified Logistic and Monod equations in a single 

equations system has been proposed to overcome the limitations of both modeling equations when 

applied separately to simulate cell culture growth in the presence of dead cells accumulation data. 

Using batch culture growth data of two cell lines as case studies, the effectiveness of this modeling 

framework to depict time-course profiles of important culture state variables that include dead cells 

accumulation and cell viability was successfully demonstrated. Using this modeling framework, the 

impact of model parameter perturbations to dead cell accumulation profile can be further investigated 

using derivative-based sensitivity analysis. Our analysis indicates that for the two cell lines under 

consideration, the dead cell accumulation profile is quite sensitive to Monod saturation constant of the 

growth-limiting substrate. Furthermore, using this modeling framework, more informative assessment 

of chemostat culture performance can be carried out. Here, we may discover the influence of dead cell 

accumulation and its lysis (or lack of it) on the performance of continuous culture system that can aid 

us in choosing more suitable region to operate our bioreactor in continuous production mode.    
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Appendix A 

The modified Logistic equation for total cells population, i.e., Equation (5) can be derived from the 

following set of coupled ordinary differential equations: 

𝑑𝑋𝑇
𝑑𝑡

= 𝛼𝑆𝑋𝑉 (A1) 

𝑑𝑆

𝑑𝑡
= −𝛽𝛼𝑆𝑋𝑉 (A2) 

where XT is total cell density that is summation of viable XV and dead cell XD cell densities. S is the 

concentration of growth-limiting substrate. Parameters a and b refer, respectively to the rate of growth 

of viable cells per substrate concentration and amount of substrate needed to produce new cells. As 

Equations (A1) and (A2) only differ by a constant, the relationship between the derivatives can be 

expressed as follow: 

𝛽
𝑑𝑋𝑇
𝑑𝑡

= −
𝑑𝑆

𝑑𝑡
 (A3) 

Integrating Equation (A3) yield: 

𝑆 = 𝑆0 − 𝛽(𝑋𝑇 − 𝑋𝑇0) (A4) 

Substituting Equation (A4) into Equation (A1) further yields: 

𝑑𝑋𝑇
𝑑𝑡

= 𝛼𝑋𝑉(𝑆0 − 𝛽𝑋𝑇 + 𝛽𝑋𝑇0) (A5) 

Factoring the above equation then yields: 

𝑑𝑋𝑇
𝑑𝑡

= 𝛼𝛽 (
𝑆0
𝛽
+ 𝑋𝑇0)𝑋𝑉 (1 −

𝑋𝑇
𝑆0
𝛽
+ 𝑋𝑇0

) (A6) 

By identifying  

𝑘𝑇 = 𝛼(𝑆0 + 𝛽𝑋𝑇0) (A7) 

𝑋𝑇,𝑚𝑎𝑥 =
𝑆0
𝛽
+ 𝑋𝑇0 (A8) 

we recover the modified form of Logistic equation for total cells population growth as shown by 

Equation (5) in the manuscript.  
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