Baum,
A., Fulton, B. O., Wloga, E., Copin, R., Pascal, K. E., Russo, V.,
Giordano, S., Lanza, K., Negron, N., Ni, M., Wei, Y., Atwal, G. S.,
Murphy, A. J., Stahl, N., Yancopoulos, G. D., & Kyratsous, C. A.
(2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid
mutational escape seen with individual antibodies. Science (New
York, N.Y.), 369(6506), 1014–1018.
https://doi.org/10.1126/science.abd0831
Bolisetty, P., Tremml, G., Xu, S., & Khetan, A. (2020). Enabling speed
to clinic for monoclonal antibody programs using a pool of clones for
IND-enabling toxicity studies. mAbs, 12(1), 1763727.
https://doi.org/10.1080/19420862.2020.1763727
Brouwer, P., Caniels, T. G., van
der Straten, K., Snitselaar, J. L., Aldon, Y., Bangaru, S., Torres, J.
L., Okba, N., Claireaux, M., Kerster, G., Bentlage, A., van Haaren, M.
M., Guerra, D., Burger, J. A., Schermer, E. E., Verheul, K. D., van der
Velde, N., van der Kooi, A., van Schooten, J., van
Breemen, M. J., … van Gils, M. J. (2020). Potent neutralizing
antibodies from COVID-19 patients define multiple targets of
vulnerability. Science (New York, N.Y.), 369(6504),
643–650. https://doi.org/10.1126/science.abc5902
russel, A., Brack, K., Muth, E., Zirwes, R., Cheval, J., Hebert, C.,
Charpin, J. M., Marinaci, A., Flan, B., Ruppach, H., Beurdeley, P., &
Eloit, M. (2019). Use of a new RNA next generation sequencing approach
for the specific detection of virus infection in
cells. Biologicals : journal of the International Association of
Biological Standardization, 59, 29–36.
https://doi.org/10.1016/j.biologicals.2019.03.008
Cao, Y., Su, B., Guo, X., Sun, W.,
Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., Chai, X.,
He, R., Li, X., Lv, Q., Zhu, H., Deng, W., Xu, Y., Wang, Y., Qiao, L.,
… Xie, X. S. (2020). Potent Neutralizing Antibodies against SARS-CoV-2
Identified by High-Throughput Single-Cell Sequencing of Convalescent
Patients’ B Cells. Cell, 182(1), 73-e16.
https://doi.org/10.1016/j.cell.2020.05.025
Fan, L., Rizzi, G., Bierilo, K., Tian, J., Yee, J. C., Russell, R., &
Das, T. K. (2017). Comparative study of therapeutic antibody candidates
derived from mini-pool and clonal cell lines. Biotechnology
progress, 33(6), 1456–1462. https://doi.org/10.1002/btpr.2477
Gao, Q., Bao, L., Mao, H., Wang,
L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge,
X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., Li,
J., … Qin, C. (2020). Development of an inactivated vaccine
candidate for SARS-CoV-2. Science (New York,
N.Y.), 369(6499), 77–81.
https://doi.org/10.1126/science.abc1932
Hansen, J., Baum, A., Pascal, K.
E., Russo, V., Giordano, S., Wloga, E., Fulton, B. O., Yan, Y., Koon,
K., Patel, K., Chung, K. M., Hermann, A., Ullman, E., Cruz, J., Rafique,
A., Huang, T., Fairhurst, J., Libertiny, C., Malbec, M., Lee, W. Y.,
… Kyratsous, C. A. (2020). Studies in humanized mice and
convalescent humans yield a SARS-CoV-2 antibody cocktail. Science
(New York, N.Y.), 369(6506), 1010–1014.
https://doi.org/10.1126/science.abd0827
He, L., Winterrowd, C., Kadura,
I., & Frye, C. (2012). Transgene copy number distribution profiles in
recombinant CHO cell lines revealed by single cell
analyses. Biotechnology and bioengineering, 109(7),
1713–1722. https://doi.org/10.1002/bit.24428
Hu, Z., Hsu, W., Pynn, A., Ng, D.,
Quicho, D., Adem, Y., Kwong, Z., Mauger, B., Joly, J., Snedecor, B.,
Laird, M. W., Andersen, D. C., & Shen, A. (2017). A strategy to
accelerate protein production from a pool of clones in Chinese hamster
ovary cells for toxicology studies. Biotechnology
progress, 33(6), 1449–1455. https://doi.org/10.1002/btpr.2467
Ju,
B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S.,
Zhou, B., Song, S., Tang, X., Yu, J., Lan, J., Yuan, J., Wang, H., Zhao,
J., Zhang, S., Wang, Y., Shi, X., Liu, L., … Zhang, L. (2020).
Human neutralizing antibodies elicited by SARS-CoV-2
infection. Nature, 584(7819), 115–119.
https://doi.org/10.1038/s41586-020-2380-z
Kelley B. (2020). Developing
therapeutic monoclonal antibodies at pandemic pace. Nature
biotechnology, 38(5), 540–545.
https://doi.org/10.1038/s41587-020-0512-5
Khan, A. S., Benetti, L., Blumel,
J., Deforce, D., Egan, W. M., Knezevic, I., Krause, P. R., Mallet, L.,
Mayer, D., Minor, P. D., Neels, P., & Wang, G. (2018). Report of the
international conference on next generation sequencing for adventitious
virus detection in biologicals. Biologicals : journal of the
International Association of Biological Standardization, 55,
1–16. https://doi.org/10.1016/j.biologicals.2018.08.002
Khan, A. S., Vacante, D. A., Cassart, J. P., Ng, S. H., Lambert, C.,
Charlebois, R. L., & King, K. E. (2016). Advanced Virus Detection
Technologies Interest Group (AVDTIG): Efforts on High Throughput
Sequencing (HTS) for Virus Detection. PDA journal of
pharmaceutical science and technology, 70(6), 591–595.
https://doi.org/10.5731/pdajpst.2016.007161
Kunert, R., & Reinhart, D.
(2016). Advances in recombinant antibody manufacturing. Applied
microbiology and biotechnology, 100(8), 3451–3461.
https://doi.org/10.1007/s00253-016-7388-9
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi,
X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2
spike receptor-binding domain bound to the ACE2
receptor. Nature, 581(7807), 215–220.
https://doi.org/10.1038/s41586-020-2180-5
Li, F., Vijayasankaran, N., Shen,
A. Y., Kiss, R., & Amanullah, A. (2010). Cell culture processes for
monoclonal antibody production. mAbs, 2(5), 466–479.
https://doi.org/10.4161/mabs.2.5.12720
Munro, T. P., Le, K., Le, H., Zhang, L., Stevens, J., Soice, N.,
Benchaar, S. A., Hong, R. W., & Goudar, C. T. (2017). Accelerating
patient access to novel biologics using stable pool-derived product for
non-clinical studies and single clone-derived product for clinical
studies. Biotechnology progress, 33(6), 1476–1482.
https://doi.org/10.1002/btpr.2572
Nyon, M. P., Du, L., Tseng, C. K.,
Seid, C. A., Pollet, J., Naceanceno, K. S., Agrawal, A., Algaissi, A.,
Peng, B. H., Tai, W., Jiang, S., Bottazzi, M. E., Strych, U., & Hotez,
P. J. (2018). Engineering a stable CHO cell line for the expression of a
MERS-coronavirus vaccine antigen. Vaccine, 36(14),
1853–1862. https://doi.org/10.1016/j.vaccine.2018.02.065
Pinto, D., Park, Y. J., Beltramello, M., Walls, A. C., Tortorici, M. A.,
Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., Peter, A.,
Guarino, B., Spreafico, R., Cameroni, E., Case, J. B., Chen, R. E.,
Havenar-Daughton, C., Snell, G., Telenti, A., Virgin, H. W., …
Corti, D. (2020). Cross-neutralization of SARS-CoV-2 by a human
monoclonal SARS-CoV antibody. Nature, 583(7815), 290–295.
https://doi.org/10.1038/s41586-020-2349-y
Plavsic, M., Shick, K., Bergmann,
K. F., & Mallet, L. (2016). Vesivirus 2117: Cell line infectivity range
and effectiveness of amplification of a potential adventitious agent in
cell culture used for biological production. Biologicals : journal
of the International Association of Biological
Standardization, 44(6), 540–545.
https://doi.org/10.1016/j.biologicals.2016.08.001
Rajendra, Y., Balasubramanian, S.,
McCracken, N. A., Norris, D. L., Lian, Z., Schmitt, M. G., Frye, C. C.,
& Barnard, G. C. (2017). Evaluation of piggyBac-mediated CHO pools to
enable material generation to support GLP toxicology
studies. Biotechnology progress, 33(6), 1436–1448.
https://doi.org/10.1002/btpr.2495
Richards, B., Cao, S., Plavsic, M., Pomponio, R., Davies, C.,
Mattaliano, R., Madden, S., Klinger, K., & Palermo, A. (2014).
Detection of adventitious agents using next-generation
sequencing. PDA journal of pharmaceutical science and
technology, 68(6), 651–660.
https://doi.org/10.5731/pdajpst.2014.01025
Rogers, T. F., Zhao, F., Huang,
D., Beutler, N., Burns, A., He, W. T., Limbo, O., Smith, C., Song, G.,
Woehl, J., Yang, L., Abbott, R. K., Callaghan, S., Garcia, E., Hurtado,
J., Parren, M., Peng, L., Ramirez, S., Ricketts, J., Ricciardi, M. J.,
… Burton, D. R. (2020). Isolation of potent SARS-CoV-2
neutralizing antibodies and protection from disease in a small animal
model. Science (New York, N.Y.), 369(6506), 956–963.
https://doi.org/10.1126/science.abc7520
Scarcelli, J. J., Shang, T. Q.,
Iskra, T., Allen, M. J., & Zhang, L. (2017). Strategic deployment of
CHO expression platforms to deliver Pfizer’s Monoclonal Antibody
Portfolio. Biotechnology progress, 33(6), 1463–1467.
https://doi.org/10.1002/btpr.2493
Sempowski, G. D., Saunders, K. O., Acharya, P., Wiehe, K. J., & Haynes,
B. F. (2020). Pandemic Preparedness: Developing Vaccines and Therapeutic
Antibodies For COVID-19. Cell, 181(7), 1458–1463.
https://doi.org/10.1016/j.cell.2020.05.041
Shi, R., Shan, C., Duan, X., Chen,
Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., Gao, G., Hu,
X., Zhang, Y., Tong, Z., Huang, W., Liu, W. J., Wu, G., Zhang, B., Wang,
L., Qi, J., … Yan, J. (2020). A human neutralizing antibody
targets the receptor-binding site of
SARS-CoV-2. Nature, 584(7819), 120–124.
https://doi.org/10.1038/s41586-020-2381-y
Wang, C. J., Feng, S. F., &
Duncan, P. (2014). Defining a sample preparation workflow for advanced
virus detection and understanding sensitivity by next-generation
sequencing. PDA journal of pharmaceutical science and
technology, 68(6), 579–588.
https://doi.org/10.5731/pdajpst.2014.01010
Wang, Q., Zhang, Y., Wu, L., Niu,
S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang,
Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis
of SARS-CoV-2 Entry by Using Human ACE2. Cell, 181(4),
894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
Wright, C., Alves, C., Kshirsagar, R., Pieracci, J., & Estes, S.
(2017). Leveraging a CHO cell line toolkit to accelerate biotherapeutics
into the clinic. Biotechnology progress, 33(6),
1468–1475. https://doi.org/10.1002/btpr.2548
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L.,
Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of
SARS-CoV-2 main protease provides a basis for design of improved
α-ketoamide inhibitors. Science (New York,
N.Y.), 368(6489), 409–412.
https://doi.org/10.1126/science.abb3405