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In this paper, we consider the generalized approximate boundary synchronization for
a coupled system of wave equations with Dirichlet boundary controls. We analyse
the relationship between the generalized approximate boundary synchronization and
the generalized exact boundary synchronization, give a sufficient condition to realize
the generalized approximate boundary synchronization and a necessary condition in
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1 INTRODUCTION

Based on the exact boundary synchronization for a coupled system of wave equations by Li and Rao3,4,6,7,9,11, the corresponding
generalized exact boundary synchronization was established in16,15,13,14. Since there will always be errors in applications, the
approximate boundary synchronization was then delivered in5,8, which does not demand the geometrical control condition, and
can be realized by much fewer boundary controls. The aim of this paper is to consider the generalized approximate boundary
synchronization and the corresponding generalized approximately synchronizable state.
Consider the following coupled system of wave equations with Dirichlet boundary controls:

⎧

⎪

⎨

⎪

⎩

U ′′ − ΔU + AU = 0 in (0,+∞) × Ω,
U = 0 on (0,+∞) × Γ0,
U = DH on (0,+∞) × Γ1

(1)

with the initial data
t = 0 ∶ (U,U ′) = (Û0, Û1) in Ω, (2)

in which, Ω ⊂ ℝn is a bounded domain with smooth boundary Γ = Γ0 ∪ Γ1, satisfying Γ̄0 ∩ Γ̄1 = ∅ and mes (Γ1) > 0; U =
(u(1),… , u(N))T (N > 1) denotes the state variables, coupled by a given matrix A = (aij) ∈ MN×N (ℝ); H = (ℎ(1),… , ℎ(M))T

(M ≤ N) stands for the boundary controls acting on Γ1, andD ∈ MN×M (ℝ) is the boundary control matrix of full column-rank.
Both A and D are with constant components.
Let

0 = L2(Ω), 1 = H1
0 (Ω),  = L

2
loc(0,+∞;L

2(Γ1)), (3)
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and let the dual of 1 be −1 = H−1(Ω). For a full row-rank matrix Θp ∈ M(N−p)×N (ℝ) (0 ≤ p < N), called the generalized
synchronization matrix, we define the corresponding generalized approximate boundary synchronization as follows.

Definition 1. System (1) is generalized approximately synchronizable with respect to Θp at time T > 0, if for any given initial
data (Û0, Û1) ∈ (0)N ×(−1)N , there exists a sequence {Hn} of boundary controls,Hn ∈ M with compact support in [0, T ],
such that the corresponding sequence {Un} of solutions to problem (1)–(2) satisfies

ΘpUn → 0 (n→ +∞) in C0loc([T ,+∞); (0)N−p) ∩ C1loc([T ,+∞); (−1)N−p). (4)

Similarly to the generalized exact boundary synchronization, by taking different generalized synchronization matricesΘp, we
can get many kinds of approximate boundary synchronization, such as the approximate boundary synchronization (by groups)
etc. (see the details in16).

Remark 1. Like in16, any given generalized synchronization matrix Θp with the same kernel space Ker(Θp) can be regarded
as the same generalized synchronization matrix. In fact, noting the generalized approximate boundary synchronization (4),
since Ker(Θ̃p) = Ker(Θp) is equivalent to Θ̃p = XΘp, where X is an invertible matrix, the generalized approximate boundary
synchronization with respect to Θp is actually the generalized approximate boundary synchronization with respect to Θ̃p. □

Remark 2. When p = 0, Θ0 is reversible, the generalized approximate boundary synchronization with respect to Θp of system
(1) is in fact its approximate boundary null controllability.

□

The first part of this paper (Section 2) is devoted to investigate the generalized approximate boundary synchronization. In
Section 2.1, we reconsider the approximate boundary null controllability of system (1), and show that it is equivalent to the exact
boundary null controllability of system (1) in a dense subspace of (0)N ×(−1)N . Then in Section 2.2, we give the relationship
between the generalized approximate boundary synchronization and the generalized exact boundary synchronization for system
(1). In Section 2.3, we show some properties on the number of total controls.
In the second part of this paper (Section 3), we define the generalized synchronizable state when system (1) possesses the

generalized approximate boundary synchronization, and give its properties and a sufficient condition to guarantee that the
generalized synchronizable state dose not depend on applied boundary controls.

2 GENERALIZED APPROXIMATE BOUNDARY SYNCHRONIZATION

2.1 Approximate boundary null controllability
Let =  ×  ⊆ (0)N × (0)N and let its dual space ′ be  = ′ ×′ given by

⟨(f1, f2), (g1, g2)⟩×,′×′ = (f1, g2)(0)N + (f2, g1)(0)N .

Let
 ⊆ (0)N × (0)N ⊆ 

with dense embedding, and  be a Hilbert space such that problem (1)–(2) is well-posed for (U,U ′) in  . For instance,  =
(0)N × (−1)N , while = (1)N × (0)N .

Definition 2. System (1) is approximately null controllable in  at time T > 0, if for any given initial data (Û0, Û1) ∈  , there
exists a sequence {Hn} of boundary controlsHn ∈ M with compact support in [0, T ], such that the sequence {Un} of solutions
to problem (1)–(2) satisfies

(Un, U ′
n)(T )→ (0, 0) in  , n→ +∞. (5)

Remark 3. By5, Remark 3.1, for the sequence {Un} of solutions to problem (1)–(2), its convergence (5) at t = T is equivalent to its
local convergence at t ≥ T :

(Un, U ′
n)→ (0, 0) in C0loc([T ,+∞);), n→ +∞.

□
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Consider the following backward problem
⎧

⎪

⎪

⎨

⎪

⎪

⎩

℧′′ − Δ℧ + A℧ = 0 in (0, T ) × Ω,
℧ = 0 on (0, T ) × Γ0,
℧ = DH on (0, T ) × Γ1,
t = T ∶ (℧,℧′) = (0, 0) in Ω.

(6)

Let  be the set of all the initial data (℧,℧′)(0) of problem (6) asH varies in M . From5, Lemma 3.1, we have

Lemma 1. System (1) is approximately null controllable in  if and only if ̄ =  .

Thus, we have the following relationship between the approximate and exact boundary null controllabilities.

Theorem 1. System (1) is approximately null controllable in  if and only if there exists a dense subspace 0 of  : ̄0 =  ,
such that system (1) is exactly null controllable in 0.

Proof. By the definition of , for any given initial data (Û0, Û1) ∈ , there exists a boundary control H ∈ M with compact
support in [0, T ], such that the corresponding solution U of the original system (1) satisfies

t = T ∶ (U,U ′) = (0, 0), (7)

therefore
t ≥ T ∶ U ≡ 0, (8)

hence system (1) is exactly null controllable in .
By Lemma 1, if system (1) is approximately null controllable in  , then ̄ =  . Thus, taking 0 = , we have that ̄0 =  ,

and system (1) is exactly null controllable in 0.
On the other hand, if there exists a 0 satisfying ̄0 =  , such that system (1) is exactly null controllable in 0, namely, for

any given (℧0,℧1) ∈ 0, there exists an H ∈ M with compact support in [0, T ], such that the corresponding initial data of
problem (6) are given by (℧,℧′)(0) = (℧0,℧1).
Since ̄0 =  , for any given (Û0, Û1) ∈  , there exists a sequence {Hn} of boundary controls, Hn ∈ M with compact

support in [0, T ], such that the corresponding sequence of initial data of problem (6) satisfies

(℧n,℧′n)(0)→ (Û0, Û1) in  , n→ +∞. (9)

By well-posedness, the sequence {Un} of solutions to problem (1)–(2) with {Hn} as the sequence of boundary controls satisfies

||(Un, U ′
n)(T )|| = ||(Un, U ′

n)(T ) − (0, 0)|| ≤ c||(Û0, Û1) − (℧n,℧′n)(0)|| → 0, n→ +∞, (10)

where c > 0 is a constant. Therefore, system (1) is approximately null controllable in  .

By Lemma 1, similarly to5, Theorem 3.1, we can get the following equivalence between the approximate boundary null
controllability of system (1) and the D-observation of the corresponding adjoint system.

Lemma 2. System (1) is approximately null controllable in  = ′ at time T > 0 if and only if its adjoint problem

⎧

⎪

⎨

⎪

⎩

Φ′′ − ΔΦ + ATΦ = 0 in (0,+∞) × Ω,
Φ = 0 on (0,+∞) × Γ,
t = 0 ∶ (Φ,Φ′) = (Φ0,Φ1) in Ω

(11)

with (Φ0,Φ1) ∈ is D-observable, namely, the partial observation

DT )�Φ ≡ 0 on [0, T ] × Γ1 (12)

implies (Φ0,Φ1) ≡ (0, 0), then Φ ≡ 0.

Next, we consider the relationship for the approximate boundary null controllability in different spaces. Let 0 be a dense
subspace of  :

̄0 =  . (13)
We have
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Lemma 3. System (1) is approximately null controllable in  at time T > 0 if and only if (5) holds for system (1) with any
given initial data (Û0, Û1) ∈ 0.

Proof. We only need to prove the sufficiency. For any given (Û0, Û1) ∈  , noting (13), there exist (Û n
0 , Û

n
1 ) ∈ 0, such that

(Û n
0 , Û

n
1 )→ (Û0, Û1) in  , n→ +∞. (14)

For the initial data (Û n
0 , Û

n
1 ) corresponding to every n, by (5), there exist Hn

k ∈ M with compact support in [0, T ], such that
the corresponding solutions U n

k to system (1) satisfy

(U n
k , U

n
k
′)(T )→ (0, 0) in  , k→ +∞. (15)

Then there exists k = k(n) such that
(U n

k(n), U
n′
k(n))(T )→ (0, 0) in  , n→ +∞. (16)

Noting (14), by well-posedness, when system (1) possesses (Û0, Û1) as the initial data, taking Hn = Hn
k(n) as the boundary

controls, and denoting the corresponding solution as Un, we have

(Un, U ′
n)(T ) − (U

n
k(n), U

n′
k(n))(T )→ (0, 0) in  , n→ +∞. (17)

Noting (16), we get (5), that is, system (1) is approximately null controllable in  . The proof is complete.

Theorem 2. System (1) is approximately null controllable in (0)N ×(−1)N if and only if it is approximately null controllable
in a Hilbert space  with (0)N × (−1)N being its dense subspace.

Proof. First, assume that system (1) is approximately null controllable in (0)N × (−1)N , by Lemma 2, the adjoint problem
(11) is D-observable in (1)N × (0)N .
For the Hilbert space  with (0)N × (−1)N being its dense subspace, denote it as the dual space of a Hilbert space  :

 =  ′. By (0)N × (−1)N ⊆  , we have (1)N × (0)N ⊇  . Therefore, the adjoint problem (11) is D-observable in  .
Then, by Lemma 2, system (1) is approximately null controllable in  .
Conversely, thanks to Lemma 2, we only need to prove that theD-observability in implies theD-observability in (1)N ×

(0)N for the adjoint problem (11).
When problem (11) is D-observable in , we can define a Hilbert norm in by

||(Φ0,Φ1)||2 =

T

∫
0

∫
Γ1

|DT )�Φ|2dΓdt, (18)

which induces a closure of . From the definition of -norm, observation (12) implies ||(Φ0,Φ1)||2 = 0, then, for (Φ0,Φ1) ∈
 , observation (12) implies (Φ0,Φ1) ≡ (0, 0), then Φ ≡ 0. Thus, problem (11) is D-observable in  .
Due to the hidden regularity1 of problem (11): there exists a constant c > 0, such that

T

∫
0

∫
Γ1

|)�Φ|2dΓdt ≤ c||(Φ0,Φ1)||2(1)N×(0)N
, (19)

namely, ||(Φ0,Φ1)||2 ≤ c||(Φ0,Φ1)||2(1)N×(0)N
, then we have

(1)N × (0)N ⊆  , (20)

hence, problem (11) is D-observable in (1)N × (0)N . The proof is complete.

2.2 Generalized approximate boundary synchronization
We now consider the generalized approximate boundary synchronization with respect toΘp for system (1) as (Û0, Û1) ∈ (0)N×
(−1)N . Meanwhile we will explain the relationship between the generalized approximate boundary synchronization and the
generalized exact boundary synchronization.
First, we consider the case that the coupling matrix A satisfies the following condition of Θp-compatibility:

AKer(Θp) ⊆ Ker(Θp). (21)
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Then there exists Āp ∈ M(N−p)×(N−p)(ℝ), such that
ΘpA = ĀpΘp. (22)

LetW = ΘpU . We get the following self-closed reduced system:

⎧

⎪

⎨

⎪

⎩

W ′′ − ΔW + ĀpW = 0 in (0,+∞) × Ω,
W = 0 on (0,+∞) × Γ0,
W = ΘpDH on (0,+∞) × Γ1

(23)

with the initial data (W ,W ′)(0) ∈ (0)N−p × (−1)N−p. Correspondingly, the adjoint problem of reduced system (23) is

⎧

⎪

⎨

⎪

⎩

Ψ′′ − ΔΨ + ĀTpΨ = 0 in (0,+∞) × Ω,
Ψ = 0 on (0,+∞) × Γ,
t = 0 ∶ (Ψ,Ψ′) = (Ψ0,Ψ1) in Ω

(24)

with the initial data (Ψ0,Ψ1) ∈ (1)N−p × (0)N−p. Thus, by definition and Lemma 2, we have

Theorem 3. Assume that A satisfies the condition of Θp-compatibility (21). Then system (1) is generalized approximately
synchronizable with respect to Θp at time T > 0 if and only if the reduced system (23) is approximately null controllable, and
equivalently if and only if the reduced adjoint problem (24) is ΘpD-observable, that is,

(ΘpD)T )�Ψ ≡ 0 on [0, T ] × Γ1 (25)

implies (Ψ0,Ψ1) ≡ (0, 0), then Ψ ≡ 0.

Now we consider the general case. For any given coupling matrix A, we define an extended matrix Θ̃p̃(0 ≤ p̃ ≤ p) of the
generalized synchronization matrix Θp by

Im(Θ̃Tp̃ ) = Span(Θ
T
p , A

TΘTp ,… , (AT )N−1ΘTp ). (26)

Let Θ̃p̃ be an (N − p̃) ×N full row-rank matrix, denoted by

Θ̃p̃ =
(

Θp
(xN−p+1,… , xN−p̃)T

)

. (27)

Thus A always satisfies the condition of Θ̃p̃-compatibility:

AKer(Θ̃p̃) ⊆ Ker(Θ̃p̃). (28)

Obviously, A satisfies the condition of Θp-compatibility (21) if and only if p̃ = p.
Then, W̃ = Θ̃p̃U satisfies the following extended reduced system:

⎧

⎪

⎨

⎪

⎩

W̃ ′′ − ΔW̃ + Āp̃W̃ = 0 in (0,+∞) × Ω,
W̃ = 0 on (0,+∞) × Γ0,
W̃ = D̄p̃H on (0,+∞) × Γ1

(29)

with the corresponding initial data
t = 0 ∶ (W̃ , W̃ ′) = Θ̃p̃(Û0, Û1) in Ω, (30)

in which, Āp̃ and D̄p̃ are given by
Θ̃p̃A = Āp̃Θ̃p̃, D̄p̃ = Θ̃p̃D, (31)

respectively. Similarly to the related results of generalized exact boundary synchronization in15, we have

Theorem 4. System (1) is generalized approximately synchronizable with respect to Θp if and only if it is generalized
approximately synchronizable with respect to Θ̃p̃.

Proof. Noting (27) and (4), it is easy to get the sufficiency. We need only to verify the necessity part.
By definition, for any given initial data (Û0, Û1) ∈ (0)N × (−1)N , there exists a sequence {Hn} of boundary controls,

Hn ∈ M with compact support in [0, T ], such that (4) holds. Then, multiplying the coupled wave equations given in (1) by Θp
from the left, we have

ΘpAUn → 0 (n→ +∞) in C0loc([T ,+∞); (−2)N−p) ∩ C1loc([T ,+∞); (−3)N−p).
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similarly, multiplying the coupled wave equations given in (1) by ΘpAk−1 (k = 2,… , N −1) from the left successively, we have

ΘpAkUn → 0 (n→ +∞) in C0loc([T ,+∞); (−2k)N−p) ∩ C1loc([T ,+∞); (−1−2k)N−p).

Then, by (26), for any given initial data (W̃ , W̃ ′)(0) = Θ̃p̃(Û0, Û1) ∈ (0)N−p̃ × (−1)N−p̃, we have

W̃n = Θ̃p̃Un → 0 (n→ +∞) in C0loc([T ,+∞); (−2(N−1))N−p̃) ∩ C1loc([T ,+∞); (−1−2(N−1))N−p̃).

By Remark 3, we have
(W̃n, W̃

′
n )(T )→ (0, 0) (n→ +∞) in (−2(N−1))N−p̃ × (−1−2(N−1))N−p̃.

Since 0 = (0)N−p̃ × (−1)N−p̃ is dense in  = (−2(N−1))N−p̃ × (−1−2(N−1))N−p̃, by Lemma 3, the extended reduced system
(29) is approximately null controllable in  = (−2(N−1))N−p̃ × (−1−2(N−1))N−p̃.
Thus, by Theorem 2, the extended reduced system (29) is approximately null controllable in (0)N−p̃ × (−1)N−p̃. Noting

that A satisfies the condition of Θ̃p̃-compatibility (28), by Theorem 3, system (1) is generalized approximately synchronizable
with respect to Θ̃p̃.

From the above theorem and Lemma 2, we have

Corollary 1. System (1) is generalized approximately synchronizable with respect to Θp if and only if the extended reduced
system (29) is approximately null controllable, and equivalently if and only if the corresponding reduced adjoint problem

⎧

⎪

⎨

⎪

⎩

Ψ̃′′ − ΔΨ̃ + ĀTp̃ Ψ̃ = 0 in (0,+∞) × Ω,
Ψ̃ = 0 on (0,+∞) × Γ,
t = 0 ∶ (Ψ̃, Ψ̃′) = (Ψ̃0, Ψ̃1) in Ω

(32)

with the initial data (Ψ̃0, Ψ̃1) ∈ (1)N−p̃ × (0)N−p̃ is Θ̃p̃D-observable.

This gives the following

Corollary 2. If D satisfies
rank(Θ̃p̃D) = N − p̃, (33)

namely, A,D and Θp satisfy Ker(DT ) ∩ Span(ΘTp , A
TΘTp ,… , (AT )N−1ΘTp ) = {0}, then system (1) is generalized approximately

synchronizable with respect to Θp.

Proof. By Theorem 3 and the Holmgren uniqueness theorem12, system (1) is generalized approximately synchronizable with
respect to Θ̃p̃, then by Theorem 4 we get the conclusion.

Furthermore, we give the following relationship between the approximate and exact generalized boundary synchronizations.

Theorem 5. System (1) is generalized approximately synchronizable with respect to Θp if and only if there exists a dense
subspace 0 of (0)N × (−1)N :

̄0 = (0)N × (−1)N , (34)
such that system (1) is generalized exactly synchronizable with respect to Θp in 0.

Proof. By Theorem 4, the generalized approximate boundary synchronization with respect to Θp of system (1) is equivalent to
that with respect to Θ̃p̃, and then equivalent to the approximate boundary null controllability of the extended reduced system
(29) in (0)N−p̃×(−1)N−p̃. By Theorem 1, this is equivalent to the exact boundary null controllability of the extended reduced
system (29) in a dense subspace :

̄ = (0)N−p̃ × (−1)N−p̃.
According to16, this is equivalent to the generalized exact boundary synchronization with respect to Θ̃p̃ of system (1) in

0 = {U ∈ (0)N × (−1)N ∶ Θ̃p̃U ∈ },

then equivalent to the generalized exact boundary synchronization with respect to Θp of system (1) in 0. Since ̄0 = {U ∈
(0)N × (−1)N ∶ Θ̃p̃U ∈ ̄} = (0)N × (−1)N , (34) holds. The proof is complete.
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Corollary 3. If system (1) is generalized approximately synchronizable with respect to Θp, then either A satisfies the condition
of Θp-compatibility (21), or there exists a full row-rank extended matrix of Θp:

Θ̃p−1 =
(

Θp
xT

)

(35)

such that system (1) is generalized approximately synchronizable with respect to Θ̃p−1, in which xT is an N-dimensional row
vector.

Proof. By Theorem 5, system (1) possesses the generalized exact boundary synchronization with respect to Θp in a dense
subspace 0 of (0)N × (−1)N , hence for any given initial data (Û0, Û1) ∈ 0, there exists a boundary controlH ∈ M with
compact support in [0, T ], such that the solution U to problem (1)–(2) satisfies

t ≥ T ∶ ΘpU ≡ 0. (36)

If A does not satisfy the condition of Θp-compatibility (21), then, similarly to16, there exists an extended matrix Θ̃p−1 as (35),
such that

t ≥ T ∶ Θ̃p−1U ≡ 0, (37)
namely system (1) possesses the generalized exact boundary synchronization with respect to Θ̃p−1 in 0. Then by Theorem 5,
we get the conclusion.

Remark 4. Similarly to the generalized exact boundary synchronization, if system (1) is not generalized approximately synchro-
nizable by (p − 1) groups, then A must satisfy the condition of Θp-compatibility (21), provided that system (1) is generalized
approximately synchronizable with respect to Θp. □

2.3 Number of total controls
For system (1), the boundary controls H act not only directly on some state variables on the boundary through the boundary
control matrix D, but also indirectly on the rest state variables in the domain through the coupling matrix A. According to the
following Lemma 4, rank(D,AD,… , AN−1D) can be regarded as the number of total controls acting on system (1), which
stands for the total number of state variables influenced by boundary controls H both directly through the boundary control
matrix D and indirectly through the coupling matrix A.

Proposition 1.
rank(D,AD,… , AN−1D) = N − p (38)

is equivalent to that the maximum dimension of AT -invariant subspaces included in Ker(DT ) is equal to p, and also equivalent
to that there exists an invertible matrix X such that

A∗ = XAX−1 =

(

Ā∗p l∗

b∗ Ã∗p

)

, D∗ = XD =
(

D̄∗

d∗

)

, (39)

where Ā∗p ∈ M(N−p)×(N−p)(ℝ), Ã∗p ∈ Mp×p(ℝ), l∗, b∗T ∈ M(N−p)×p(ℝ), D̄∗ ∈ M(N−p)×M (ℝ), d∗ ∈ Mp×M (ℝ), and

b∗ = 0, d∗ = 0, (40)

satisfies
rank(D̄∗, Ā∗pD̄

∗,… , Ā∗N−p−1p D̄∗) = N − p. (41)
Here, condition (40) means that the final p rows (�1,… , �p)T of X satisfy

(�1,… , �p)TA = Ã∗p(�1,… , �p)T and (�1,… , �p)TD = 0, (42)

namely, Span{�1,… , �p} is an AT -invariant subspace included in Ker(DT ).

Proof. If (38) holds, then there exists an invertible matrix X such that the last p rows of X(D,AD,… , AN−1D) are all zeros.
Hence A∗ and D∗ given by (39) satisfy

(D∗, A∗D∗,… , A∗N−1D∗) = X(D,AD,… , AN−1D), (43)



8 Y. Y. WANG

the last p rows of which are also all zeros, therefore d∗ = 0 and the last p rows of

A∗D∗ =
(

Ā∗pD̄
∗

b∗D̄∗

)

, A∗2D∗ =

(

Ā∗2p D̄
∗

b∗Ā∗pD̄
∗

)

,… , A∗N−1D∗ =

(

Ā∗N−1p D̄∗

b∗Ā∗N−2p D̄∗

)

(44)

are all zeros, namely,
b∗(D̄∗, Ā∗pD̄

∗,… , Ā∗N−2p D̄∗) = 0. (45)
Since the last p rows of (43) are all zeros:

X(D,AD,… , AN−1D) =
(

D̄∗ Ā∗pD̄
∗ … Ā∗N−1p D̄∗

0 0 … 0

)

, (46)

noting (38), we have
rank(D̄∗, Ā∗pD̄

∗,… , Ā∗N−p−1p D̄∗) = rank(X(D,AD,… , AN−1D))
= rank(D,AD,… , AN−1D) = N − p,

(47)

then by (45) we get b∗ = 0.
Conversely, if there exists an invertible matrix X such that A∗ and D∗ given by (39) satisfy (40) and (41), then we have (43)

and (46), therefore by (47) we get (38). The proof is complete.

Now we explain that the number of total controls rank(D,AD,… , AN−1D) is indeed the total number of state variables
influenced by boundary controls.

Lemma 4. Under assumption (38), there exists an invertible linear transformation such that system (1) under this transformation
has only (N − p) state variables depending on boundary controls, while the other p state variables are independent of boundary
controls.

Proof. By Proposition 1, there exists an invertible matrix X such that (39)–(41) hold. Let

U ∗ = XU = (u∗(1),… , u∗(N))T . (48)

Multiplying problem (1)–(2) by X from the left, we get

⎧

⎪

⎨

⎪

⎩

U ∗′′ − ΔU ∗ + A∗U ∗ = 0 in (0,+∞) × Ω,
U ∗ = 0 on (0,+∞) × Γ0,
U ∗ = D∗H on (0,+∞) × Γ1

(49)

with the corresponding initial data
t = 0 ∶ (U ∗, U∗′) = X(Û0, Û1) in Ω. (50)

By (40), the last p components û∗p = (u
∗(N−p+1),… , u∗(N))T of U ∗ satisfy the following self-closed system

{

û∗′′p − Δû∗p + Ã
∗
p û
∗
p = 0 in (0,+∞) × Ω,

û∗p = 0 on (0,+∞) × Γ,
(51)

which is purely determined by the corresponding initial data, and independent of boundary controlsH ; while, the former (N−p)
components û∗N−p = (u

∗(1),… , u∗(N−p))T satisfy

⎧

⎪

⎨

⎪

⎩

û∗′′N−p − Δû
∗
N−p + Ā

∗
p û
∗
N−p + l

∗û∗p = 0 in (0,+∞) × Ω,
û∗N−p = 0 on (0,+∞) × Γ0,
û∗N−p = D̄

∗H on (0,+∞) × Γ1.
(52)

For any given initial data (50), noting that û∗p is independent of boundary controls, the difference v = û∗(N−p)1 − û
∗
(N−p)2 =

(v(1),… , v(N−p))T of û∗(N−p)1 and û
∗
(N−p)2, corresponding to different boundary controlsH1 andH2, respectively, satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v′′ − Δv + Ā∗pv = 0 in (0,+∞) × Ω,
v = 0 on (0,+∞) × Γ0,
v = D̄∗ℎ on (0,+∞) × Γ1,
t = 0 ∶ (v, v′) = (0, 0) in Ω,

(53)
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in which ℎ = H1 −H2 is anM dimensional non-zero vector function.
Then we need only to verify that for each component v(i) (i = 1,… , N − p) of v, there exists a non-zero vector function ℎ

such that
v(i) ≢ 0.

Let ℎ be smooth enough and satisfy the compatibility conditions of all orders with the zero initial data when (t, x) ∈ {0}×Γ1
for problem (53). By well-posedness, the corresponding solution v to problem (53) is smooth enough up to the boundary. Denote
□v = v′′ − Δv. Noting the coupled wave equations given in (53) and the boundary condition

v = D̄∗ℎ

on the boundary Γ1, we have
−□v = Ā∗pD̄

∗ℎ
on the boundary Γ1. Applying the operator □ on the coupled wave equations given in (53), we get

□2v = (Ā∗p)
2D̄∗ℎ

on the boundary Γ1. Similarly, we have
(−1)k□kv = (Ā∗p)

kD̄∗ℎ, k = 3, 4,…
on the boundary Γ1. Hence, for the i-th component v(i) (i = 1,… , N − p) of v, we get

(−1)k□kv(i) = ((Ā∗p)
kD̄∗)iℎ, k = 0, 1,… (54)

on the boundary Γ1, in which ((Ā∗p)
kD̄∗)i stands for the i-th row of the matrix (Ā∗p)

kD̄∗.
Noting (41), each row of the matrix (D̄∗, Ā∗pD̄

∗,… , (Ā∗p)
N−p−1D̄∗) is a non-zero vector, thus, for i = 1,… , N − p, we may

assume that in its i-th row ((D̄∗)i, (Ā∗pD̄
∗)i,… , ((Ā∗p)

N−p−1D̄∗)i), we have

((Ā∗p)
�iD̄∗)i ≠ (0,… , 0),

where 0 ≤ �i ≤ N − p − 1. Hence, by (54), for each component v(i) (i = 1,… , N − p) of v, there exists a non-zero vector
function ℎ such that

(−1)�i□�iv(i) = ((Ā∗p)
�iD̄∗)iℎ ≢ 0,

then v(i) ≢ 0. Therefore, all the components of û∗N−p depend on boundary controlsH . The proof is complete.

Theorem 6. If system (1) is generalized approximately synchronizable with respect to Θp, then we have the following lower-
bound estimate for the number of total controls:

rank(D,AD,… , AN−1D) ≥ N − p. (55)

Proof. Taking an invertible square matrix

X̃ =
(

Θp
x̂Tp

)

,

let U ∗ = X̃U . The former (N − p) components û∗N−p = ΘpU satisfy (4). Clearly, under any invertible linear transformation, U ∗

has at least (N − p) components depending on applied boundary controls H , thus the same is true for U : under any invertible
linear transformation, U has at least (N − p) components depending on applied boundary controlsH . Therefore, by Lemma 4,
we have (55). In fact, if (55) fails, we may write rank(D,AD,… , AN−1D) = N − r < N − p. By Lemma 4, there exists an
invertible linear transformation X such that U ∗ = XU has only (N − r) components depending onH . NotingN − r < N − p,
this leads to a contradiction.

We have still a stronger conclusion as follows.

Theorem 7. If system (1) is generalized approximately synchronizable with respect to Θp, then

rank(Θ̃p̃(D,AD,… , AN−1D)) = N − p̃, (56)

in which, Θ̃p̃ is an extended matrix of Θp, given by (26), and p̃ = N − dim Im(Θ̃Tp̃ ). In particular, we have

rank(Θp(D,AD,… , AN−1D)) = N − p. (57)
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Proof. Since system (1) is generalized approximately synchronizable with respect to Θp, by Corollary 1, the extended
reduced system (29) is approximately null controllable, namely, generalized approximately synchronizable with respect to the
corresponding Θ0. Then by Lemma 4, we have

rank(D̄p̃, Āp̃D̄p̃,… , ĀN−p̃+1p̃ D̄p̃) = N − p̃, (58)

where Āp̃ and D̄p̃ satisfy (31), hence Θ̃p̃(D,AD,… , AN−1D) = (D̄p̃, Āp̃D̄p̃,… , ĀN−1p̃ D̄p̃). Therefore we have (56), then by (27),
we have also (57).

Remark 5. To be generalized approximately synchronizable with respect to Θp for system (1), Theorem 7 shows that (56) is
a necessary condition. However, it can be also a sufficient condition in certain special cases where (58) is sufficient for the
extended reduced system (29) to be approximately null controllable (see examples in8,10). □

Remark 6. From (56), the generalized approximate boundary synchronization with respect to Θp of system (1) implies that the
number of total controls rank(D,AD,… , AN−1D) ≥ N − p̃ ≥ N − p might be greater than (N − p). Therefore, under the
minimal number (N −p) of total controls, we have p̃ = p, namely, A satisfies the condition of Θp-compatibility (21) (A stronger
result can be seen in Lemma 6 below). □

3 GENERALIZED APPROXIMATELY SYNCHRONIZABLE STATES

The aim of this section is to define and study the generalized approximately synchronizable states when system (1) possesses
the generalized approximate boundary synchronization with respect to Θp.

3.1 Definition of generalized approximately synchronizable states
Let {�1,… , �p} be a basis of Ker(Θp):

Ker(Θp) = Span{�1,… , �p}. (59)
{�1,… , �p} is called the generalized synchronization basis, and p the grouping number. Now we define the generalized approx-
imate boundary synchronization with respect to {�1,… , �p} for system (1), then we will show that it is equivalent to the
generalized approximate boundary synchronization with respect to Θp.

Definition 3. System (1) is generalized approximately synchronizable with respect to {�1,… , �p} at time T > 0, if for any
given initial data (Û0, Û1) ∈ (0)N × (−1)N , there exist a sequence {Hn} of boundary controls, Hn ∈ M with com-
pact support in [0, T ], and a sequence {ũn} of p-dimensional vector functions ũn = (ũ(1)n ,… , ũ(p)n )T ∈ C0loc([T ,+∞); (0)p) ∩
C1loc([T ,+∞); (−1)p), such that the corresponding sequence {Un} of solutions to problem (1)–(2) satisfies

Un − (�1,… , �p)ũn → 0 (n→ +∞) in C0loc([T ,+∞); (0)N ) ∩ C1loc([T ,+∞); (−1)N ), (60)

where {ũn} is called the sequence of generalized approximately synchronizable states.

Remark 7. For any given initial data and the sequence {Hn} of applied boundary controls, the sequence {ũn} of generalized
approximately synchronizable states defined by (60) is unique in the sense of neglecting a vanishing sequence. In fact, if there
is another sequence { ̃̃un} satisfying (60):

Un − (�1,… , �p) ̃̃un → 0 (n→ +∞) in C0loc([T ,+∞); (0)N ) ∩ C1loc([T ,+∞); (−1)N ), (61)

then by (60) and (61), we have

(�1,… , �p)( ̃̃un − ũn)→ 0 (n→ +∞) in C0loc([T ,+∞); (0)N ) ∩ C1loc([T ,+∞); (−1)N ).

Noting that �1,… , �p are linearly independent, we have
̃̃un − ũn → 0 (n→ +∞) in C0loc([T ,+∞); (0)p) ∩ C1loc([T ,+∞); (−1)p). (62)

Conversely, if the sequence { ̃̃un} satisfies (62), then by (60) we have that { ̃̃un} satisfies (61). Thus, any one of the sequences of
generalized approximately synchronizable states can be taken as a representative in discussion. □
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Definition 4. Assume that system (1) possesses the generalized approximate boundary synchronization (60) with respect to
{�1,… , �p}. Assume furthermore that there exist a p-dimensional vector function u∗ = (u

(1)
∗ ,… , u(p)∗ )T ∈ C0loc([T ,+∞); (0)p)∩

C1loc([T ,+∞); (−1)p), and a sequence {Hn} of boundary controls, Hn ∈ M with compact support in [0, T ], such that the
corresponding sequence {Un} of solutions to problem (1)–(2) satisfies

Un → (�1,… , �p)u∗ (n→ +∞) in C0loc([T ,+∞); (0)N ) ∩ C1loc([T ,+∞); (−1)N ), (63)

then system (1) is called to be generalized approximately synchronizable with respect to {�1,… , �p} at time T > 0 in the pinning
sense, and u∗ is called the generalized approximately synchronizable state.

3.2 Properties of generalized approximately synchronizable states
In this subsection, we will show that the generalized approximate boundary synchronizations (4) defined byΘp and (60) defined
by {�1,… , �p} are equivalent, and describe the relationship among the generalized approximate boundary synchronization,
the approximate boundary null controllability and the sequence of generalized approximately synchronizable states. Moreover,
we will give a governing system for the sequence of generalized approximately synchronizable states, whose corresponding
solutions are just the sequence {ũn} of generalized approximately synchronizable states given in (60). Therefore we can utilize
this governing system to study the sequence {ũn} of generalized approximately synchronizable states as well as the generalized
approximately synchronizable state u∗ in the pinning sense.
According to15, by means of Θp we can take an invertible transformation

X =
(

Θp
(y1,… , yp)T

)

, (64)

in which {y1,… , yp} and {�1,… , �p} are bi-orthonormal:

(y1,… , yp)T (�1,… , �p) = Ip, (65)

where Ip is an identity matrix of order p. Under this transformation (called the generalized synchronization transformation), the
state variable U of system (1) turns into

Ũ = XU =
(

W
V

)

, (66)

where
W = ΘpU, V = (y1,… , yp)TU, (67)

in whichW is called the null controllable part, while V is called the synchronizable state part.

Lemma 5. The generalized approximate boundary synchronization (4) is equivalent to

Wn → 0 (n→ +∞) in C0loc([T ,+∞); (0)N−p) ∩ C1loc([T ,+∞); (−1)N−p), (68)

and also equivalent to

Un − (�1,… , �p)Vn → 0 (n→ +∞) in C0loc([T ,+∞); (0)N ) ∩ C1loc([T ,+∞); (−1)N ), (69)

whereWn = ΘpUn and Vn = (y1,… , yp)TUn.

Proof. Obviously, under the generalized synchronization transformation, the generalized approximate boundary synchronization
(4) is just (68). Then by (66), we have

Ũn −
(

0
Vn

)

→ 0 (n→ +∞) in C0loc([T ,+∞); (0)N ) ∩ C1loc([T ,+∞); (−1)N ). (70)

By (66),U = X−1Ũ . It follows from the bi-orthonormal relation (65) that the last p columns ofX−1 must be (�1,… , �p), namely,
X−1 can be written as X−1 = (x1,… , xN−p, �1,… , �p), hence

X−1
(

0
Vn

)

= (�1,… , �p)Vn.

Multiplying (70) by X−1 from the left, we get (69). On the other hand, multiplying (69) by Θp from the left and noting (59), we
have (4).
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Noting that (69) is just the generalized approximate boundary synchronization with respect to {�1,… , �p} given by (60), we
have

Theorem 8. The generalized approximate boundary synchronizations (4) and (60) are equivalent, in which Θp and {�1,… , �p}
satisfy (59).

From (69), the sequence {ũn} of generalized approximately synchronizable states given in (60) can be chosen as {Vn}, then
we have

Theorem 9. Under the generalized synchronization transformation (66), the generalized approximate boundary synchronization
with respect to Θp for system (1) is equivalent to the approximate boundary null controllability for the former (N − p) variables
W of the transformed Ũ , while the left p variables V correspond to the sequence of generalized approximately synchronizable
states.

Under the generalized synchronization transformation (66), the state variables Ũ satisfy
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ũ ′′ − ΔŨ + ÃŨ = 0 in (0,+∞) × Ω,
Ũ = 0 on (0,+∞) × Γ0,
Ũ = XDH on (0,+∞) × Γ1,
t = 0 ∶ (Ũ , Ũ ′) = X(Û0, Û1) in Ω,

(71)

in which
Ã = XAX−1 =

(

Āp Z1
ZT
2 Ãp

)

, (72)

where Āp and Ãp are square matrices of order (N − p) and p, respectively.
Splitting problem (71) into sub-problems corresponding to the null controllable partW and the synchronizable state part V ,

the original problem (1)–(2) can be decomposed to the following two sub-problems:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

W ′′ − ΔW + ĀpW = −Z1V in (0,+∞) × Ω,
W = 0 on (0,+∞) × Γ0,
W = ΘpDH on (0,+∞) × Γ1,
t = 0 ∶ (W ,W ′) = Θp(Û0, Û1) in Ω

(73)

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

V ′′ − ΔV + ÃpV = −ZT
2W in (0,+∞) × Ω,

V = 0 on (0,+∞) × Γ0,
V = (y1,… , yp)TDH on (0,+∞) × Γ1,
t = 0 ∶ (V , V ′) = (y1,… , yp)T (Û0, Û1) in Ω

(74)

under the generalized synchronization transformation.
If A satisfies the condition of Θp-compatibility (21), then in problem (73) for the null controllable part W , Z1 = 0 and Āp

satisfies (22), hence problem (73) turns into the aforementioned reduced problem (23). As to problem (74) for the synchronizable
state part V , Ãp satisfies

A(�1,… , �p) = (�1,… , �p)Ãp. (75)
Thus we have

Theorem 10. Assume that A satisfies the condition of Θp-compatibility (21), and that system (1) is generalized approxi-
mately synchronizable with respect toΘp. Then there exists a sequence {ũn} of generalized approximately synchronizable states
satisfying (60), in which ũn satisfies

{

ũ′′n − Δũn + Ãpũn = 0 in (T ,+∞) × Ω,
ũn = 0 on (T ,+∞) × Γ,

(76)

and Ãp is given by (75).Moreover, for each ũn, the attainable set of its values (ũn, ũ′n)(T ) at t = T is the whole space (0)p×(−1)p

as the initial data (Û0, Û1) varies in (0)N × (−1)N .
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Proof. First we prove that there exists (ũn, ũ′n)(T ) = (ũnT , ũ′nT ), such that the sequence {ũn} of solutions to the corresponding
problem (76) is actually the sequence of generalized approximately synchronizable states satisfying (60). By Remark 7 and
Lemma 5, we need only to show that ũn obtained by system (76) with the value (ũnT , ũ′nT ) given at t = T satisfies

ũn − Vn → 0 (n→ +∞) in C0loc([T ,+∞); (0)p) ∩ C1loc([T ,+∞); (−1)p) (77)

with Vn given in (69). Since Vn = (y1,… , yp)TUn satisfies

⎧

⎪

⎨

⎪

⎩

V ′′
n − ΔVn + ÃpVn = −Z

T
2Wn in (T ,+∞) × Ω,

Vn = 0 on (T ,+∞) × Γ,
t = T ∶ (Vn, V ′

n ) = (VnT , V
′
nT ) in Ω,

(78)

taking (ũn, ũ′n)(T ) = (VnT , V
′
nT ), the corresponding problem (76) has the same initial and boundary conditions as problem (78).

By well-posedness, for any given T1 > T , there exists a constant c1 > 0, such that

‖(ũn, ũ′n) − (Vn, V
′
n )‖(t)(1)p×(0)p ≤ c1‖Wn‖L2([T ,T1];(0)N−p), (79)

then by (68) we get (77).
Now we show that, for each ũn, the attainable set of (ũn, ũ′n)(T ) is the whole space (0)p × (−1)p. For any given (ûT , û′T ) ∈

(0)p × (−1)p, taking (ũn, ũ′n)(T ) = (ûT , û
′
T ), and solving problem (76) backward on the time interval [0, T ] with homogeneous

Dirichlet boundary condition, we get (ũn, ũ′n)(0) = (û0, û1). Let the initial data of U be (Û0, Û1) = (�1,… , �p)(û0, û1), and let
the boundary control be H ≡ 0. Since A satisfies the condition of Θp-compatibility (21), (75) holds. Multiplying problem
(76) by (�1,… , �p) from the left, we get that U = (�1,… , �p)ũn is the solution to system (1) with the initial data (Û0, Û1) =
(�1,… , �p)(û0, û1), and it actually realizes the generalized exact boundary synchronization with respect to Θp for system (1)
and then the generalized approximate boundary synchronization, while, ũn is actually the corresponding generalized exactly
synchronizable state and then the generalized approximately synchronizable state, satisfying (ũn, ũ′n)(T ) = (ûT , û

′
T ).

WhenA does not satisfy the condition ofΘp-compatibility (21), similarly to16, applying Theorem 4 and noting thatA satisfies
the condition of Θ̃p̃-compatibility (28), we can obtain corresponding results through the extended matrix Θ̃p̃ defined by (26).

3.3 Determination of generalized approximately synchronizable state
In general, the generalized approximately synchronizable states depend on applied boundary controls, even if the generalized
approximate boundary synchronization of system (1) has the pinning sense. In what follows, under the assumption that system
(1) possesses the generalized approximate boundary synchronization, we consider the situation that the synchronizable state part
V is independent of applied boundary controls. Then by Theorem 9, there exists a sequence {ũn} of generalized approximately
synchronizable states with ũn ≡ V , hence there exists a generalized approximately synchronizable state u∗ = V . Thus, in
this case, the generalized approximate boundary synchronization is in the pinning sense and the generalized approximately
synchronizable state u∗ does not depend on applied boundary controls.

Lemma 6. Assume that system (1) is generalized approximately synchronizable with respect to Θp under the minimal number
(38) of total controls, then
(i) A must satisfy the following condition of Θp-strong compatibility:

{

Ker(Θp) = Span{�1,… , �p} is A-invariant,
there exists Span{y1,… , yp} which is AT -invariant and bio-orthonomal to Span{�1,… , �p} ,

(80)

and
Ker(DT ) ⊇ Span{y1,… , yp}. (81)

(ii) Problem (74) of the synchronizable state part V = (y1,… , yp)TU becomes the following self-closed problem with
homogeneous boundary condition:

⎧

⎪

⎨

⎪

⎩

V ′′ − ΔV + ÃpV = 0 in (0,+∞) × Ω,
V = 0 on (0,+∞) × Γ,
t = 0 ∶ (V , V ′) = (y1,… , yp)T (Û0, Û1) in Ω,

(82)
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whose solution is completely determined by the initial data and independent of the sequence {Hn} of applied boundary controls.
Hence, system (1) is generalized approximately synchronizable with respect to Θp in the pinning sense, and the generalized
approximately synchronizable state

u∗ = V (t ≥ T ) (83)
does not depend on the sequence {Hn} of applied boundary controls.

Proof. By Proposition 1, (42) holds under the minimal number (38) of total controls, then there exists an AT -invariant subspace
Span{y1,… , yp} ⊆ Ker(DT ). Thus, problem (74) of the corresponding synchronizable state part V = (y1,… , yp)TU turns into
problem (82) with homogeneous boundary condition, whose solution is independent of the sequence {Hn} of applied boundary
controls.
Since system (1) possesses the generalized approximate boundary synchronization (4), i.e. (60), multiplying (60) by

(y1,… , yp)T from the left, we get

V − (y1,… , yp)T (�1,… , �p)un → 0 in C0loc([T ,+∞); (0)p) ∩ C1loc([T ,+∞); (−1)p)

as n→ +∞, then for any given initial data (Û0, Û1) we have

(y1,… , yp)T (�1,… , �p)un → V in C0loc([T ,+∞); (0)p) ∩ C1loc([T ,+∞); (−1)p)

as n → +∞. Noting that y1,… , yp are linearly independent, the attainable set of the solution V to problem (82) is the whole
space C0loc([T ,+∞); (0)p) ∩ C1loc([T ,+∞); (−1)p) as (Û0, Û1) varies in (0)N × (−1)N . Therefore, (y1,… , yp)T (�1,… , �p)
must be invertible. Without loss of generality, assume

(y1,… , yp)T (�1,… , �p) = Ip,

otherwise we can take (y1,… , yp)T as ((y1,… , yp)T (�1,… , �p))−1(y1,… , yp)T . Thus, there exists a generalized approximately
synchronizable state u∗ = V satisfying the generalized approximate boundary synchronization (63) in the pinning sense.
It remains to prove the Θp-compatibility (21). In fact, taking n → +∞ in the sequence {Un} of solutions to system (1) at

t = T , and noting the coupled wave equations given in (82), we have

(A(�1,… , �p) − (�1,… , �p)Ãp)V (T ) = 0.

Since V (T ) varies in the whole space (0)p, we have A(�1,… , �p) = (�1,… , �p)Ãp, namely, A satisfies the condition of Θp-
compatibility (21).

Remark 8. The generalized approximate boundary synchronization with respect toΘp can be actually realized under the minimal
number (38) of total controls. For this purpose, we need only that the coupling matrix A satisfies the condition of Θp-strong

compatibility (80), namely, Z1 = Z2 = 0 in (72), and the boundary control matrix D = X−1
(

ΘpD
0

)

satisfies rank(ΘpD) =

N − p, in which the invertible matrix X is given by (64). □

Theorem 11. Assume that system (1) is generalized approximately synchronizable with respect to Θp.
(i) If the synchronizable state part (74) does not depend on applied boundary controls, then A should satisfy the condition of

Θp-strong compatibility (80), and D satisfies (81).
(ii) IfA satisfies the condition ofΘp-strong compatibility (80), andD satisfies (81), then the generalized approximate boundary

synchronization with respect to Θp is in the pinning sense, and the generalized approximately synchronizable state u∗ satisfies
(83).

Proof. If the synchronizable state part (74) is independent of applied boundary controls, then by Lemma 4, the number of total
controls rank(D,AD,… , AN−1D) ≤ N − p. By Theorem 6, we have (55), hence by Lemma 6 we get the conclusion (i).
The converse result (ii) holds obviously.

Corollary 4. Assume that A satisfies the condition of Θp-strong compatibility (80). If system (1) is generalized approximately
synchronizable with respect to Θp for boundary control matrix D, then for the following boundary control matrix

D̂ = D − (�1,… , �p)(y1,… , yp)TD, (84)

system (1) is generalized approximately synchronizable with respect to Θp in the pinning sense, and the generalized approxi-
mately synchronizable state u∗ satisfies (83), then is independent of the sequence of applied boundary controls.
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Proof. Noting that D̂ satisfies
(y1,… , yp)T D̂ = 0, ΘpD̂ = ΘpD, (85)

for this adjusted boundary control matrix D̂,W = ΘpU still satisfies the original reduced system (23). By Theorem 3, if system
(1) is generalized approximately synchronizable for boundary control matrix D, the reduced system (23) is approximately null
controllable, hence system (1) is still generalized approximately synchronizable for the adjusted boundary control matrix D̂.
Thus by Theorem 11 we get the conclusion.
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