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Abstract

In this paper, a class of finitely degenerate pseudo-parabolic equation, are studied.
By a potential well method, we obtain a threshold result for the solutions to exist
globally or to blow up in finite time for sub critical and critical initial energy. The
asymptotic behavior of the global solutions, blow-up rate, a necessary and sufficient
condition for blow-up solution, a upper bound and a lower bound for blow-up time
of local solution are also given. When the initial energy is super critical, an abstract
criterion is given for the solutions to exist globally or to blow up in finite time, in terms
of two variational numbers. These generalize some recent results obtained in [7] and
correct the proof of some results obtained by R. Xu in [25] and [26]
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1 Introduction

In this paper, we consider the the following finitely degenerate semilinear pseudo-parabolic
equation
up — Axu— Axuy = |[ulP2u, (2,t) € Q x (0,00), (1.1)
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with the boundary conditions
u(z,t) =0, (z,t) € 02 x (0,00), (1.2)

and the initial condition
u(x,0) =ug (), x € Q, (1.3)

where ) is a bounded open domain such that Q cC € is an open domain of R” with n > 2,
X = (Xy,...,X,) is a system of C* smooth vector fields defined on Q' with X; = —X7. We

- 2v
define the operator Ay = Z X ]2 is a self-adjoint operator. We assume that p € (2, —2)
y —
j=1
where v > 2 is the generalized Metivier index of X on {2. Moreover, we suppose the following
hypotheses:

[A;] 09 is C*° smooth and non-characteristic for the system of vector fields X;

[Ag] X satisfies the Hormander’s condition on Q' (see [13]), i.e., X together with their
commutators

X; =X, [ X, 0 [X;

Jk—1?

up to a certain fixed length k > @), span the tangent space at each point of €2. Here
@ > 1 is called the Hormander index of X on €2, which is defined as the smallest
positive integer for the Hérmander’s condition being satisfied.

If X satisfies the Hormander’s condition above, we call that X is finite degenerate vector
fields and the operator Ay is finitely degenerate elliptic operator. Such kinds of degenerate
operators arise from both physical applications and mathematical problems, for example,
see [14. [1§].

When X = (0,,,...,0;,) (i.e., Hormander index @ = 1), Ax is the standard Laplacian
A, then we have the pseudo-parabolic equation

(Id—A)uy — Au= f(u), (z,t) € Q x (0,00). (1.4)

The pseudo-parabolic equation has many important physical backgrounds such as the seepage
of homogeneous fluids through a fissured rock [2], the aggregation of populations [21] (where
u is the population density) and the unidirectional propagation of nonlinear dispersive long
waves [3, 24]. Equation ([1.1)) is employed in the analysis of nonstationary processes in the
area of semiconductors [I5 [16], where the term (Id —A)u, regarded as the free electron
density rate, term Aw is regarded as the linear dissipation of the free charge current and
up is a source of free electron current. Equation (|1.4]) is also named a Sobolev type model
or a Sobolev-Galpern type model [23]. In the past decades, a great deal of mathematical
effort has been devoted to the study of existence and uniqueness of solutions, regularity,
asymptotic behavior and blow-up of the solutions for such kinds of linear and nonlinear
pseudo-parabolic equations



An important special case of this model is the Benjamin-Bona-Mahony-Burgers (BBMB)
equation
Up + Uy + Uy — VlUgy — 0 Upyy = 0. (1.5)

Equation was studied by Amick et al. in [I] with v > 0, « = 1 and (z,t) € R x (0, 00),
in which the solution of with initial data in L' N H? decays to zero in L? norm as
t — oco. With v > 0, = 1 and (x,t) € Q x (0,00) the model has the form (1.5) was
also investigated earlier by Bona and Dougalis [4], where uniqueness, global existence and
continuous dependence of solutions on initial and boundary data were established and the
solutions were shown to depend continuously on v > 0 and on o > 0. The results obtained
in [I] were developed by many authors, such as by Zhang for equations of the form

m
Up — VUgy — Uggr — Uy + U Uy = 0,

where m > 0, see [2§]. In [25], Runzhang Xu and Jia Su considered the following pseudo-
parabolic equation with a power source term

ur — Au — Aug = uP (x,t) € Q x (0,7T),

where where 1 < p < cifn=1, 2;1 < p<2"ifn > 3. By using the modified potential well
method and the comparison principle, they obtained some results about the global existence
and finite time blow-up of the solutions for the above problem with initial data at high
energy level.

There were also many profound works on the initial value problems of high order nonlinear
pseudo-parabolic equations, for example, we refer to two typical papers [§] and [29]. In [§],
Y. Cao et al. established the global existence of classical solutions and the blow-up in a
finite time for the viscous diffusion equation of higher order

Uy + kluafxxx - k?“trx - ((I) (ux))x + A (U) = 07 (l‘,t) € (O’ 1) X (07 OO) ’

with Navier boundary conditions, where k; > 0, ks > 0 and ®, A are appropriately smooth
and u (0) = uy € C'™ with 8 € (0,1). In [29], Zhao and Xuan studied the following
pseudo-parabolic equation of fourth order

Ut — QUgy — Vgt + Plgges + f(u), =0, (x,1) € R x (0,00). (1.6)

They obtained the existence of the global smooth solutions for the initial value problem of
and discussed the convergence of solutions as 3 — 0.

On the other hand, a numerous of nonlocal pseudo-parabolic (or parabolic) equations
with nonlocal terms or nonlocal boundary conditions have been widely studied in the last
few decades, we refer to [5], [6] and [9]. In [5], Bouziani studied the solvability of solutions for
the nonlinear pseudo-parabolic equation

2

otox

u — — (a(z,t) uy) — (a(z,t)uy) = f(z,t,u,uy), (z,t) € (o, B) x (0,T),

ox



subject to the nonlocal boundary condition

u(oz,t):/ju(m,t)dx,

B
with ug () = / up (x)dz = 0 . In [9], Dai and Huang considered the well-posedness and

solvability of solutions for the nonlinear pseudo-parabolic equation

U + % (CL ({L’,t) uxt) = F(Qfatyuau:c?uxx)a (il?,t) € (CY?ﬁ) X (07T)7

and the nonlocal moment boundary conditions

B B
/u(x,t)da::/ zu (x,t)dx = 0.

Our aim in this paper is to extend the potential well method due to Payne and Sattinger
in [22] to study some threshold results for the existence and nonexistence of global solutions
to Eq. . Roughly speaking, our main results can be described as follows: When the
initial energy J (ug) is less than or equal the mountain pass level d, then the solution u to
exists globally if it starts from the stable sets #  and fails to exist globally if it begins in
the unstable sets 7. We also give decay estimate for global solution, blow-up rate, blow-up
rate, upper bound, lower bound of blow-up time. Finally, we give some characterizations of
high energy initial data that lead to the non-global existence.

The plan of the paper is as follows: in Section 2] we present preliminaries. In Section [3]
we introduce the definition of weak solution and state the existence of local weak solutions
results for problem —. Sectionwill be devoted to construct the stable and unstable
sets that are invariant under the flows of —. Section [5[ and |§| presents some global
existence and nonexistence when J (ug) < d and J (up) = d. In case global solutions exist,
we also the decay properties of the solution. In case the solution blows up in finite time, we
also the blow-up rate, upper bound, lower bound of blow-up time. Finally in Section [7 we
prove the boundedness, convergence to equilibria of global solution and the characterizations
of non-global solution at high energy initial data

2 Preliminary results and notations

Associated with the system of vector fields X = (X7, ..., X,,), we can introduce the following
weighted Sobolev space:

Hy () ={ueLl*(Q): Xue L*(Q),Vjel,m}, (2.1)
which is a Hilbert space with norm
2 2 2 2 2
ullg @y = lullzz@y) + 1 Xullr2 @) = llullzz@) + Z 1 X5l 2 (0r)- (2.2)
j=1



The space Hy (€2) is defined by the closure of C2° (Q) in Hy (€), which is also a Hilbert
space.
We introduce two definitions and some known properties of Hy  (€2).

Definition 2.1 (Metivier condition, [20]). Assume that the system of vector fields X satisfies
the Hormander’s condition in ' with Hérmander index Q. Let V; (z) (1 < j < Q), spanned
by all commutators of Xi,...,X,, of length < 7, be the subspaces of the tangent space at
each x € . If y; = dim V; () is constant in a neighborhood of each z € Q C 7, then we
say that X satisfies Metivier condition on 2. The Metivier index

Q
p=> i —pi), po =0,
j=1

is also called the Hausdorff dimension or homogeneous dimension of €2 related to the subel-
liptic metric induced by X.

The Metivier’s condition is an important condition on the study of finitely degenerate
elliptic operator. However, there exist a lot of vector fields which do not satisfy the Metivier’s
condition, for example, Grushin type vector fields. Thus, we need to introduce the following

Definition 2.2 (Generalized Metivier index, [11]). In Definition [2.1], set

Q
(@) =35 (s (2) = s (2), 1o = 0, (2.3)

where p; () is the dimension of V; (z) for z € Q. Then, for Q@ CC ', we define

v =max u(x). (2.4)
EISY)
as the generalized Metivier index of €2, which is also called non-isotropic dimension of €2
related to X. Here p(x) is also called pointwise homogeneous dimension or non-isotropic
dimension at z. Observe that v = p if the Metivier’s condition is satisfied.

Lemma 2.1 (Weighted Poincaré inequality, [10]). Assume that the system of vector fields X
satisfies Hormander’s condition on 2, 0S) is C* smooth and non-characteristic for X. Then
the first eigenvalue \y of the operator —Ax is strictly positive and one has

2 2

A1 ||U||L2(Q) < ||XU”L2(Q) , Vo € H)l(,o (€2). (2.5)

By Lemma 2.1} we can use || Xvl| 2y = Z HvaHiQ(Q) as a equivalent norm of the
j=1

space Hy ().
Lemma 2.2. Assume that the system of vector fields X satisfies Hormander’s condition on on
Q, 0 is C° smooth and non-characteristic for X. Then the Dirichlet eigenvalue problem

{—Axu = \u, x € €,

2.6
u=0, x € (2:6)



has a sequence of discrete eigenvalues 0 < A\ < Ag < -+ < A\ < +++, and lim A\, = oo.
n—o0

Moreover, the corresponding eigenfunctions {w;} constitute an orthogonal basis of the Sobolev
space Hy o (Q) or an orthonormal basis of L? ().

Lemma 2.3 (Weighted Sobolev embedding theorem). Assume that the system of vector fields
X satisfies Hormander’s condition on on Y with Hormander index Q > 1, 08 is C*° smooth
and non-characteristic for X. Then for any u € C™ (Q), we have

lll e oy < € (X0l oy + el oy )

v
where C' is a positive constant, p* = P
V —_—

Metivier index of X on Q.

Remark 2.1. For 1 < p < v, 1 < g < p*, similar to the classical Sobolev compactly embed-
ding, we can deduce that the embedding Wy? (Q) < L7 () is compact.

forpe[l,v), v =>2n+Q —1>2 is generalized
p

3 Local well-posedness of weak solutions

Definition 3.1 (Weak solution). A function u is called a weak solution of problem (|1.1])-(1.3])
on (0,7) if and only if the function u belongs to the following functional space

Wr={ueL®(0,T;Hx () :u € L*(0,T; Hx, () } (3.1)
satisfies ([1.1)) in the distribution sense, i.e.,
(u' (t) ’U>H§(,o(ﬂ) + (Xu(t), Xv) 12 = = (Ju ()" "u 2 ),U>L2(Q), Vo € Hy (), (3.2)
and the initial condition
u (0) = uy, (3.3)
where (-, ) 72q) (- '>H§<,o(9) mean the inner product in L? (2) and H} ().
Remark 3.1. Since u € Wy, we have u € C ([0,T]; Hy ( (€2)) and therefore (3.3) make sense.

By Faedo—Galerkin method and contraction mapping principle, we obtain the following
result.

2v
Theorem 3.1. Let |[A4], |[As]| and p € | 2, —) hold. Then for each Hx o (), there ezists

Ty > 0 such that the Problem - 1.3) possess a unique solution uw € Wr,.

Definition 3.2 (Maximal existence time). Let u be a weak solution of (L.I)-(L.3). We define
the maximal existence time T, of u as follows:

1. If u exists for all ¢ € [0,00) then To, =

2. If there exists ty € (0, 00) such that u exists for ¢ € [0,%,), but doesn’t exist at ¢t = ¢,
then T, = t,.



Definition 3.3 (Finite time blow-up). Let u be a weak solution of (L.1)-(L.3). We call that u

blows up in finite time if the maximal existence time T is finite and  lim [|Xw (2)||2(q) = o0
T

and that T, is the blow-up time.

4 Stationary problem and potential wells
Stationary solutions of problem ([1.1))-(|1.3)) solve the nonlinear elliptic problem

{—AXU = [ul’u in Q (4.1)

u=0 on 0.

Problem (4.1)) may be tackled with critical-point theory. We consider the potential energy
functional J : H o (€2) — R and Nehari functional I : H} , (€2) — R defined by

1 1
J(u) =3 1 X ull 72 ) — p [l o0 - (4.2)
and
2
I (u) = | Xullz2iq) — llullfrq) - (4.3)

It is clear that the functional J and I are belong to C' (Hy, (22),R) and

p—2 I (u
70) = 222 Xl - T (4.4

We put

(%
S U P

—_— (4.5)
ueHY ((2)\{0} ||XU||L2

In addition, since (v —2)p < 2v, the embedding Hy o () < LP(Q) is compact and the
supremum in is attained. In such case, the functional J satisfies the Palais—Smale
condition and therefore (4.1)) admits at least a nonnegative solution whose energy can be
characterized by

d= inf sup J (Au). (4.6)

u€HY o(2\{0} Ae(0,00)
Notice that the critical points of J are (weak) solutions of (4.1)) and by the Moser iteration
scheme and elliptic regularity, any weak solution of (4.1)) is in fact a smooth classical solution.

Clearly, (4.1)) also admits a negative mountain pass solution.
Let u € Hy o (€2) \ {0} and consider the fibrering map j : (0,00) — R, defined by

: A 2 AP
J(A)=J (M) = ) ||XU||L2(Q) D ||u||LP(Q (4.7)

Then we have the following lemma.



Lemma 4.1. Let u € Hy () \ {0}. Then we possess

1. lim j(A\) =0 and lim j(\) = —oo;
A—00

A—0t

2. There is a unique N\, = A\, (u) > 0 such that j' (\.) = 0;

3. j is increasing on (0, \,), decreasing on (A, 00) and attains its mazimum at \.;

4. T (Au) >0 forall X € (0,\,), I (Au) >0 for all A € (A, 00) and I (A\u)=0.
Proof of Lemma[f.4 For u € Hy () \ {0}, by the definition of j, we have

: A2 2 AP
JA) =T () = F [ Xullpag = — llullZs o) - (4.8)

It is clear that Alim+j()\) = 0 and /\lim j(A) = —oo hold due to [lul|;,q) # 0. Now, by
—0 —00

straightforward calculation, we obtain

7 =AM Xl a0 = Xl =0 A=A = — |[XullZ:: IIUIILP” o) > 0. (49)

So there is a unique A\, = A, (u) > 0 such that ;' (\,) = 0. Furthermore, j is increasing on
(0, ), decreasing on (A., 00) and attains its maximum at A,. On the other hand, we have

I () = 2 || Xullzag) = A ullfoggy = A7 (A) - (4.10)
So I (Au) > 0 for all A € (0,\,), I (Au) > 0 for all A € (A, 00) and I (A\,u) = 0. Lemma [4.1]
is proved. O
Lemma 4.2. Let S, = sup i HLp . The following statements hold:

u€HY (2)\{0} ||XU||L2
110 < [ Xul o) < Sy 772 then I (u) > 0;
2. If I'(u) <0 then || Xul| ) > Sp "7
S Af I(u) =0 and u # 0 then || Xul[;2q) > S, 772,
Proof of Lemma[]-3. For every Hy (), we have
I () = [1Xullja) = lullZo) = I Xullz2@) — S5 1 Xullz g - (4.11)
This follows

L IO < [[Xull 2 < S, 772 then I (u) > 0;



2. Assume that I (u) < 0. From (4.11]), we get
1= SV || Xull}. ) <0 <= [[Xullp2q) > S, v

3. If I (u) = 0 and u # 0 then from (4.11)), we obtain

p—2

-2 -
1= SP I Xullfeq) < 0= I Xull o) 2 S 7 -

Lemma is proved. [
All nontrivial stationary solutions belong to the so-called Nehari manifold defined by
N ={ue Hxy(Q)\{0}:1(u)=0}. (4.12)

By virtue of Lemma [4.1] it is clear that .4 is not empty and it is easy to show that each
half line starting from the origin Hy  (Q) intersects exactly once the manifold .4 and that
A separates the two unbounded sets

Ne={ue Hxy(Q):I(u)>0}U{0}, A ={ue Hxy(Q):1(u)<0}. (4.13)

The next lemma gives the variational characterization of d.

Lemma 4.3. The following statement holds:
d==——5,"" = inf J(u)>0. (4.14)

Proof of Lemmal[4.3. From the definition of d, we have

d = inf sup J (Au) = inf J (Au)

ueHy o (2\{0} Ae(0,00) u€HY (2)\{0}

p—2 28
= inf ||XUI| o lull 2

well (@\(0} 2P L Lo

p_2 —fz

— 5, 2.

2p P

Next, we prove that d = in/fV J (u). From the definition of .47, it follows from Lemma
(TASH
that for any u € H , (Q) we have A\,u € 4. As a result, we have

sup J (Au) = J (M) = inf J (u),

A€(0,00) ueN

or
d= inf sup J(Au)> inf J(u). 415
uEHy 5 ()\{0} e (0,00) ( ) ~ e ( ) ( )



On the other hand, if u € 4 then we find that (using Lemma the only critical point in
(0,00) of the mapping j is A, = 1. Therefore,

J(u)=JM\u)= sup J(Au) > inf sup J (Au) =d.

AE(0,00) ueH o (\{0} Ae(0,00)
or
ulélj/ J(u) = d. (4.16)
Combining (4.15)) and (4.16]), the result of Lemma [4.3|is obtained. O

5 Low energy initial data

This section is devoted to the behaviors of the solution of problem — under the
condition that J (ug) < d. We will give a threshold result for the solutions to exist globally
or to blow up in finite time.

We consider the (open) sublevels of .J

J*={ueHyy(Q):J(u) <a}, (@deR), (5.1)
and we introduce the stable set # and the unstable set % defined by
W =JNAN, U =J"NAN. (5.2)

Note that by Definition the weak solution u satisfies the following energy equality

/0 ()3, s+ J (u(8) = J (uo) , ¥t € [0, Toc) (5.3)

Next, by using the potential wells above we can obtain the following invariance for some sets

under the flow of (1.1))-(/1.3)).
Lemma 5.1. The sets # and % are invariant under the semiflow of (1.1f)-(L.3)).

Proof of Lemma [5.1. The proof can be shown by using contradiction method in a similar
manner to Lions [19]. So we here omit them. O

2v
]/ JE—
exists globally provided uy € W . Furthermore, we have the following estimates

Theorem 5.1. Let |[A4], [A2]| and p € (2, 2> hold. Then weak solution u to ((1.1)-(1.3))

o 8 g < ol 30 (—8) ¥ € [0,00), (5.4)
where -

10



Proof of Theorem[5.1. By Lemma [5.1] we have I (u(t)) > 0 for all ¢t € [0,7). From
definition of J, we obtain

4> T (w) > 7 (w(0) > 22 |Xu Ol vt € [0,00). (5.5

Therefore, by virtue of ([5.5)), the Continuation Principle yields T,, =

From (4.11)) and (j5.5)), we have
1) > (1= 571X 0532 ) 150 (1) g > &l (Ol @, v € [0.00).

By using u as a test function to equation (|1.1)), we obtain

55}HU@W2;dm:=—J(UﬁDfE—HHu@N@;&mthG[QOQ-
Then, solving the ordinary differential inequality yields
ot ()1, 0y < Mol oy 30 (—i8) , ¥t € [0, 00)
This completes the proof of Theorem [5.1] O

Next remark shows that global solutions of ([1.1])-(|1.3)) have small time oscillations while
blow-up solutions have large time oscillations. For blow-up case, see Theorem [5.5]

Remark 5.1. From (5.3]), we have ¢t — J (u (t)) is decreasing; since it is also bounded from
below by Lemma we know that tlim J(u(t)) = L for some L € (—o0,J (ug)). Exactly,
—00

we have L € [0, J (up)). If L < 0 then exists ¢, > 0 such that J (u (t.)) < 0. It leads to the
solution blows up in finite time, see Theorem [5.4] Again by (5.3)), we obtain

/0 1/ ()37 (@ ds = J (ug) — L < oo

This fact implies u, € L* (0, oo; H)l(,o Q).
Furthermore, for any k& > 0, by the Fubini theorem, Holder inequality, we obtain

t+k
/|u(a:,t—|—k:)—u(z,t)|d:v:/ / u' (x,s)ds|d </ ds/|u x,s)|dz
0 ol
t+k ,
VR [ 1 (900

M\/ / o ()11 s
— VIOV ( CIERE)

This fact implies for any k& > 0, we have tlim Ju(t+k) —u@) g =0
—00

11



We next prove the instability of u starting from the unstable sets % which consists of
both non-positive and positive initial energy. More precisely, one has the following theorem.

2
Theorem 5.2. Let |[A1]], |[A2)| and p € <2, _1/2> hold. If ug € % then the weak solution of
]/ j—

the problem (L.1))-(1.3)) blows up at finite time and the lifespan Ty of the solution u satisfies
the following estimates

2
1 7 < 4(p—1) HUOHH}(’O(Q)
(p—2)Sp ”uo”?—[;(’()(g) pp —2)° (d — J (up))

Proof of Theorem[5.2. By contradiction, we assume that 7., = co. The main tool in proving
the blow-up result is the concavity method (introduced by Levine [17]) where the basis idea
of the method is to construct a positive defined functional M of the solution by the energy
inequality and show that M™% is concave function of time variable. For this purpose, with
To > 0, 8 > 0 and 7 > 0 specified later, we define the auxiliary functional M : [0,7] — R
by

(5.6)

t
MO = [ ey, ds+ (T =0l + 56+ 7)* (5.7

By direct computation, we achieve that

t
M) =2 [ (0 (5) (D oy + 2804 7). 5.9
0 :
and

M (1) = 2 (1) (1)) gy oy + 26 = 26— 21 (u (1)) (5.9

From (5.7) and (5.§)), we have M (t) > 372 for all t € [0,Tp] and M’ (0) = 2637 > 0.
From (5.8, thanks to Cauchy-Schwartz inequality, we obtain

1 t 2
17 @F < | [ 000 a0y gands + 50+ 7)
< | [ Oy s+ ate 02| | [ @l a5+
<M [ 1 Gy o s 5] (5.10)
Combine —, we get
M 021 0) = B 0 2200 ) [0 8- T@(®) = [ 10 Gy 05| 610
By Lemma and , we achieve

1) = [ (), ds > p(d= T (w). (5.12)

12



Choose € (O, W], and lead to
<MNQM@y—§M%m2>QVMﬂQRL (5.13)

By direct computation, from (5.13)), we achieve that

2

py M'(0) 1-2 o
M) > (1--) MR (o Ve [0,Ty]. 5.14
0> |(1-5) e ) 0.7 (5.14)
||U0||2 ! 2
If we choose T € ﬂ, o | and T} € b 5 ,00 |, we will have
(p—2)8 (P =2) 87 = |[uollpz. ()
2
T M™% (0) o 2M(0) To ||UOHH)1(!O(Q) + pr? c (0.7
o)X (p-2)M(0) (p—-2)f7 o
2 M2 (0)

From (5.14), we get lim M (t) = oo. This is a contradiction with the fact that the solution
t—T

is global and it shows that the solution blows up at finite time.
To derive the upper bound for 7., we know that

Too||u0||21 + 872 2
Ty < Txol® — T < BT
(p—2)p7

LV (B,7) €O,  (5.15)

2
(p—2)B1 — HuOHH}(’O(Q)

where )
p(d—J(ug)) ol o)

O=<{(B,7)eR*:0<B< p— =25

<7 <00

Furthermore, we have

2
5 2“1‘0”2}(70(9) ,
B2 (P=2)8 B 4 ||U0||H)1(70(Q)

(p—2) BT — lluolfy o 2@ 25wl o) 2 (278
HxalD e~ luollay @

4(p—1) ||U0||12L1;(70(Q)
2 : (5.16)

p(p —2)"(d = J (uo))

Combine (5.15) and ([5.16]), we obtain
4(p = 1) Juollz, o

. xo@® g (5.17)

< 3 =15
p(p = 2)"(d = J (uo))

13



Finally, we seek a lower bound for the blow-up time T, for the solution u. We put
1
W (1) = 5 () - V€ [0, T (5.18)

and note that lim W (¢) = co. We have

t—To

V(1) = (0 (8),u () gy o) = w1y = 1Xu (Ol 720
< Sy I1Xu Oy < S5 lu Ol @) < 52T (1))

(M|

(5.19)

By direct calculation, from (5.19)), we obtain

. 1 toy (8) 1 1 /||U(t)||il§(’0(n) _Bd (5 20)
= — >AS = S 2dsS. .
Sp Jo (20 (s))2 25 Jj

2
| uO'lH}(’()(Q)

Let t — T, we have the lower bound for T, as follow

1 o P 1 )
T > — / s 2ds = =T, (5.21)
25 I (r—2)Sp HUOH?{;(O(Q)

uoll} H1 (@)
This completes the proof of Theorem [5.2] n

Theorem [5.2] give us one sufficient condition for the existence of blow-up solution. Now,
we give one necessary condition for the existence of blow-up for solution of problem (|1.1))-

3.
Theorem 5.3. Let |[A4]], [A2

2v
and p € (2 —) hold. If the solution of problem (1.1 .

blows up in finite time then lim J (u(t)) = —oc.
=T

Proof of Theorem[5.3. Notice first that, for every ¢ > 0, there holds

2
[ g s = 3 ([ 1 Ol s

> = (10 0y )~ ol o) (522

Hence, by (5.3, we obtain

1 2
T () < J (o) = 5 (1 Oy oy~ Iollry o) -
Since lim [lu(t)||z (o) = o0, we conclude that lim J(u(t)) = —oc. Theorem is
t—To X0 t—To
proved. O

14



Remark 5.2. As a byproduct of our proof it is clear that T,, < oo if and only if lim J (u(t)) =

t—T>
—00. In particular, the blow up has a full characterization in terms of (negative) energy blow

up.
The next results gives the blow-up rate of solution.

2v

Theorem 5.4. Let|[A,]} |[As]{ and p € (2, m) hold. If J (ug) < 0 then the weak solution of

the problem (1.1)-(1.3) blows up at finite time and the lifespan Ty, of the solution u satisfies
the following estimates

2
1 T < ||u0||H)1(’O(Q)
(p=2) 5 [luollfy (o) p(p—2)J (u)

(5.23)

and

2

2 2— — 2=p
I (O, o > 2[w0ll%7 ) + 2 (0 = 2) 7 (o) lwollgh oy t] ™7 W€ 0. 7). (5:29)

Proof of Theorem[5.]. By contradiction, we assume that T, = oco. To prove the blowup
result for this case we borrow some techniques from [10]. Set

H(t)=—-J(u(t), Vte[0,00). (5.25)
It is clear that H (0) > 0. Moreover, it follows from (/5.3)) that
H' (t) = |l (1)1 7y, (o) = 0, Vit € [0,00).

which implies that H (t) > H (0) > 0 for all £ € [0,00). Recalling (5.18)) and (5.19), we
obtain, for any ¢ € [0, 00), that

V() =1 () = Xu O ~pT ) ZpH O, (6526)

which, combined with Cauchy-Schwarz inequality, yields

1 2 2
() H (t) = 5 lu" O oy 1w Ol 0

> 20 (), u () o = 51V (0)

From ([5.27)), it follows that

Therefore,

0< HO) U0 <HOUE0) < v motp-—2 4 (v 50 0). (29



Integrating (5.28)) over [0,¢], we arrive at

» 2
2

HOU O s PEHL () g (0)] ,

or equivalently
p(p—2)
2

Recalling that p > 2, (5.29)) can not hold for all ¢ > 0. Therefore, there must exist a finite
time 7., < oo such that lim W (¢) = oo, i.e. u blows up in finite time. Moreover, it can be

0< U5t (1) S U3HL(0) — H(0) U2 (0)¢t, Vt € [0,00). (5.29)

t—Tx
inferred from (5.29)) that
, 2
vieto) 2w ol e
Tk Agoywto) pe-2H0)  pl—2)J(w)
and
_ _ =5
u Ol oy > 2[5 i+ 20— 2) T 00 ol o] 7 ¥ € 0.T20)
This completes the proof of Theorem [5.4] O

Finally, we show that (in case of blow-up) the H ;(€2) norm of u, diverges at a higher
rate when compared with the H}QO (€2) norms of the solution u.

2
and p € (2, y——VQ) hold. If the solution of problem -

Theorem 5.5. Let |[A;]], [A2

blows up in finite time then
M Ol o
liminf ——————
=T [lu (Ol o)

Proof of Theorem[5.5 From (5.19), thanks to Cauchy-Schwartz inequality, for € > 0, we
obtain

1 2
W'@)::(u'@)7U(ﬂ>Hgdn)<§€Hu(ﬂHi;p«n*—ZgHU'@JHHkpaD- (5.30)
Combine ((5.3)) and (5.30)), we get
P — 2 € 1 2
J(uo) = J (u(t)) = BT 1Xu () 720y — » [u (t)||§{)1(,0(9) " Ipe 1" Ol 0
p—2—2e(1+53) 1 2
> L2222 ) () — o I Ol
or equivalently
1" Oz (o —2-2(1+ 82 J
T30 ® 5 4pe |2 cU+%) _ JW) | ety (5.31)

1Xu (8)Iz2 0 2p 1Xu (6)]72(0)

16



Choose € > 0 such that p —2 — 2¢ (1 + 522) > 0, we obtain

/ 2
S 1o Ol @)

inf ———0" > 9 [p—2-2(1+52)] >0.
Sl || Xu (1) 720 [ (1+52)

This completes the proof of Theorem [5.5] O

Remark 5.3 (Sharp Condition for J (ug) < d). Let

—

2
Aqll [As]f and p € (2,y—_yz> hold.

Assume that ug € Hy o () and J (ug) < d. If I (ug) > 0, problem (L.I))-(1.3) admits a global
weak solution; if I (ug) < 0, all solutions to problem ([1.1f)-(1.3]) blow up in finite time.

6 Critical energy initial data

For the critical case J (ug) = d, the invariance of #  cannot be proved in general. By using
the method of approximation, we can still prove the global existence of weak solutions.

Theorem 6.1. Let [[A;], [[A2

—

2
and p € (2—”2> hold. If J(uo) = d and I(ug) > 0,
]/_

then problem (1.1)-(1.3) admits a global weak solution v € L™ (O,T;H_;O (Q)) with u; €
L*(0,T;Hx o () and u(t) € # = # UOW for allt € [0,00). Moreover, if I (u(t)) > 0.
Moreover,

1. If I(u(t)) > 0 for all [0,00) then u does not vanish and there exist constants Cy > 0
and Cy > 0 such that

||u (t)HH;l(,o(Q) < Crexp (—Caqt), Vt € [0,00).

2. If I (ug) > 0 and there exists t, € (0,00) such that I (u(t.)) =0 then u(t) =0 for all
t € [ty, 00).

3. If I (ug) =0 then u (t) = ugy for allt € [0, 00).

Proof of Theorem [6.1]. First J (ug) = d implies that uy # 0. Let ug, = Apnug where A, =

1— - for all m € N. Consider the initial conditions
m

u(x,0) = ugm, x € Q, (6.1)

and the corresponding problem (1.1)-(1.2)) and (6.1)). Noticing that I (ug) > 0, by Lemma
m, we can deduce that there exists a unique A\, = A, (ug) = 1 such that I (A\ug) = 0. Then

from A, < 1 < A, we get I (ugy) > 0 and J (up,) < d for all m € N. From Theorem

b.1] it follows that for each m problem (L.1)), (L.2), (6.1) admits a global weak solution

17



Uy € L (0,00; Hy o () with w, € L* (0,00; Hy o (Q)) and w,, (t) € # for t € [0,00)
satisfying

(ul, (t) ,U>H)1(,0( ) T (Xum (1), Xv) = = {Jtm ()"t (t) ,v), Vv € Hy,(9), (6.2)
and .
[ W g o 57 1 (0) = I () < ©.3)
From ([6.3) and
p 2 I(um () - p—2
J (u, () = Xt ()] 720 + PR ™ 1 Xt (8)|I72(gy - V2 € [0,00)

we can get

| 2pd
||um||Loo<0’oo;H;(,0) < pT, Vm - N,

1t 2 (005118, ) < Vs Y €N,

-1
2pd EN
||um||LOO<O7T;Lp/(Q)) < O, (m) , VYm € N.

Therefore, up to a subsequence, we may pass to the limit and obtain a weak solution u with
the above regularity.
Next, we consider the following three cases.

1. Assume that I (u(t)) > 0 for all £ € [0,00) then u does not vanish in finite time.
Furthermore, from

1d ,
o [l (2 )H?{}CO(Q) = (u' (1) 7u(t)>H)1(70(Q) =—I(u(t)) <0, Vt €0,00),

which implies that u; # 0. Therefore, by ((5.3)) for any ¢ty > 0 (suitably small) we have
t
2
0 < J (u(to)) = d—/o o (g oy ds = i < .

Taking t = ¢y as the initial time and by Theorem 5.1} there exist constants C; > 0 and
C5 > 0 such that

@)l ay ) < Crexp (~Cat), ¥t € [0,00).

2. If I (up) > 0 and there exists ¢, € (0,00) such that I (u(t,)) = 0 then v’ (t) # 0 for all
t
t € (0,tg). It leads to / ||/ (s)||12q;(0(9) ds > 0. Applying (5.3 again, we have
0 :

tx
T (t)) = d= [ Gy o ds =i <

By the definition of d, we know wu (t.) = O Define u (t) = 0 for all ¢ > t,. Then it is
seen that such a u is a weak solution of (1.1] —- ) that vanishes in finite time.

18



3. Suppose J (ug) = d and [ (up) = 0. From definition of d, we have J (ug) = mlJI‘} J (u).
ue

Obviously,
H;(l(Q)U/ (uo) 7UO>H)1(’O(Q) =2 ||Xu0||i2(n) -Pp ||U0||I£p(g) =(2-p) ||U0||ip(9) > 0.

Thanks to Lagrange multiplier theorem, there exists A € R such that

s (o) — A" (uo) 7U>H)1{70(Q) =0, Vv € Hy, (). (6.4)
With v = ug in (6.4), we obtain

Ao = 2) g ) = 0 = A = 0, (65
Combine and , we get
H;l(n)ul (uo) 7U>H)1(70(Q) =0,Vve HJI(,O (€),

or equivalently
(Xug, Xv) = (|uol’*uo,v), Yv € Hy ().

So ug is stationary solution. Then wu (t) = g for all ¢t > 0.
The proof is complete. O

Remark 6.1. In the proof of Theorem 0.1 in [26], in order to prove I (u (t)) > 0 for any ¢ > 0,
they wrote, “Let us suppose by contradiction that ¢y > 0 is the first time that I (u (o)) = 0.
By the definition of d, we see J (u (ty)) = d”. This is not right. Since J (u (t9)) > d cannot
be obtained only by I (u (t9)) = 0, unless they had proved u (ty) # 0, but which cannot be
obtained by any one result in [26]. So, the result in the original paper [25] still holds.

2v

Theorem 6.2. Let |[A1]], [[As]| and p € (2, —2) hold. If J (up) = d and I (uy) < 0, then the
V —

weak solution u to problem (1.1)-(1.3]) blows up in finite time.

Proof of Theorem[6.2. Since J (ug) = d, I (ug) < 0, by the continuity of J (u (-)) and I (u(+))
with respect to t, there exists a ty > 0such that J (u (t)) > 0and I (u (t)) < 0for allt € [0, ¢y].
From (' (t) ,u (t)) g () = —1 (u(t)), we have u'(t) # 0 for t € (0,%). Furthermore, we
have ,

(k) = 9 (o) = [ 1 () oyl < T (1) =

Taking t = ty as the initial time and reminder of the proof is almost the same as that of
Theorem [5.2] and hence is omitted. O

2v

Remark 6.2 (Sharp Condition for J (ug) < d).Let [[A1], [[A2]| and p € (2, 2) hold.

I/ p—
Assume that ug € Hy o (Q) and J (ug) = d. If I (ug) > 0, problem (LI)-(1.3) admits a
global weak solution; if I (ug) < 0, all solutions to problem ([1.1])-(1.3]) blow up in finite time.
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7 High energy initial data

In this section, we investigate the conditions to ensure the existence of global solutions or
blow-up solutions to problem (L.I)-(L.3) with J (ug) > d. Inspired by some ideas from
[12, 25], where a class of semilinear parabolic and pseudo-parabolic equations were studied,
respectively, we give some sufficient conditions for the solutions to exist globally or not with
arbitrarily high initial energy. Before stating the main results in this section, for a > d, we
put

No=JNAN ={ue N :J(u) <a}#0. (7.1)

The above alternative characterization of d also shows that

. . 2pd
dist 1 () (0,47) = ulen/fV [ Xul2() = Um > 0. (7.2)

We also define two variational numbers
A, = inf {y|u||H%(‘O(Q) Lue /V} A, = sup {||u\|H;m(m ue /} . (7.3)

It is clear that A, is nonincreasing in s and Ay is nondecreasing in s.
The next lemma shows that A; and A, are finite numbers.

2
Lemma 7.1. Let [Ay]}, [[As][ and p € (2, y——VQ) hold. Then for any s > d, s and A, defined
in (7.3) satisfy

0< A <A <00

Proof of Lemma[7.1. We first prove that Ay < co. Let s > d, by definition of .45, for any
u € A, we have that J(u) < s and I (u) = 0. On the other hand, by the definition of
functionals / and J one has

p—2 2 2ps
s> J(u) = o [ Xull2 ) = [ Xull2q) < Pt Vu € A,

Hence, we obtain
Ay = sup {HuHH}(O(Q) Tu € Ji/s} < 00.

We finally prove A, > 0. Let u € .4 then u € Hy o () \ {1}, J (u) < s and I (u) = 0. And
therefore, we get
2
HXUHLQ(Q) = ”UHZ(Q) S ”XUHIEQ(Q)'

This fact implies ||.X u||2£;(2m 2 1 and therefore Ay > 0. The proof is complete. O

Remark 7.1. We have the set J* N4, is bounded in Hy ( (Q) for any « € R.
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To state the next theorem, we denote by

S = {u € H)l(,o : u is stationary solution of |}|| . (7.4)

In the following, we let T, (up) denote the maximal existence time of the solution with initial
condition wuy € H)lc,o (Q). If T, (ug) = oo , we also define the w-limit set w (ug) of the initial

data ug € H)l(70 (Q) by
1
IO (7.5)
20

Let u be a solution to (L.I)-(L.3) associated with ug € H 4 (€2) on the maximal existence
time interval [0, 7T.,). We then introduce the sets

G={u € Hy(Q) : T (up) = 00}, (7.6)
Go = {0 € Hy () T (10) = o0, Jim [ Xu (1) 120y = 0} (7.7

and
B ={uy€ Hiy(Q): To (ug) <00} . (7.8)

It is obvious that
GoCG . GNB=0,GUB=Hy,(Q).

The next lemma shows the characterization of the w-limit set w (uy).

2
Lemma 7.2. Let [A1]}, [A2]| and p € (2, —VQ> hold. Then we have ¢ € w (ug) if and only if
V —

there exist a sequence {t,} C (0,00) such that lim t, = oo and
n—oo

lim lu(tn) = ¢llgy @) = 0-

n—oo

Furthermore, w (ug) # 0 and w (ug) C 7.

Proof of Lemma[7.9. First, we assume that if there exist a sequence {t,} C (0, 00) such that
lim ¢, = co and lim ||u (¢,) — SOHH)l(O(Q) = 0. Then, for any ¢ > 0, there exist N € N such
n—oo ’

n—oo

that
u(t,) €{u(s):s=>1t},Vn> N.
J e — - 0
Let n — oo, we get p € {u(s) : s > t}HX’O( ' And therefore, we have ¢ € w (ug).

Yol
Next, suppose that ¢ € w (ug) = ﬂ (u(s)s>1) o en peTu() 55 n}Hx,o( )

t=0

SEES

for all n € N. So for each n € N| there exist t,, € [n,00) such that ||u(¢,) — ngH)l(O(Q) <
for all n € N. This fact implies lim ¢, = co and lim [ju(t,) — @1 (@) =0
n—oo n—oo X,0
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Next, we prove that w (ug) # (). Thanks to Theorem we may assume that J (u (t)) €
0, J (up)] and by (5.3)), we have tlim J (u(t)) = L for some L. Again by (j5.3]), we obtain
—00

> 2
| @ oy s = T a0) = L < o0,
This fact implies u, € L? (0, 00; H)lgo (Q)) By direct computation, we achieve that

(T @ 0) )y o = |~ Oy o] < I Ol @10y o> ¥ € Hio ().

Therefore, we obtain
1 (Ol ) < e D)y, ) VE € [0, 00)

And this fact implies

~ 2 - 2

|1 e e ds < [ 0y oy ds < .

From u € C ([0,00); Hy, (Q2)) and J € C' (Hx, (Q);R), it implies that there exists {t,} C

(0,00) such that lim ¢, = oo and lim |.J' (u (tn))||H)_(1(Q) = 0. We know that .J satisfies the
n—oo

n—o0

Palais—Smale condition then without loss of generality, we may assume that lim w (t,) = ¢.
n—oo

Therefore, we have w (ug) # 0. Finally, we prove that w (ug) C .. Let ¢ € w (ug) then there
exists a sequence {t,} C (0,00) such that lim ¢, = co and lim u (¢,) = ¢. We denote v is
—

n—oo n—oo
the weak solution of problem ((1.1)-(|1.3]) with u (0) = ¢. Then for all £ > 0, we have

J®) =7 (S 0)¢) =7 (S® (lim u(tn))) = lim J (u(ty+1) = lim J (u(t)) = L

n—o00 n—o00 t—o00

where S (t) : Hy o () — Hy o () is the nonlinear semigroup associated to problem (L.I))-
(1.3). Combine with (5.3)), we have v (t) = ¢ for all t > 0 or equivalently ¢ € .. Lemma
is proved. O

We now give an abstract criterion for global existence and blow-up in finite time of
solutions to ([1.1))-(1.3) in terms of the variational values As and As.

2
Theorem 7.1. Let ([A1]}, [[As]| and p € (2, _1/2> hold. If J (ug) > d, then the following
V —

statements hold
1. If ug € A, and ||UOHH;1<,0(Q) < AJug) then ug € Go.

2. If up € A~ and ||u0HH)1(’O(Q) = Ay then ug € B.
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Proof of Theorem[7.1. We first assume that ug € 4, and HUOHH}(o(Q) < AJuo)- Then we

possess u (t) € A, for all t € [0,T (up)). Indeed, by contradiction we assume that there
to > 0 such that u () € A, for t € [0,t) and u (ty) € A". Then by (5.3) and (5.19)), we get

[ o)l iy ) < lwolli @) S Aoy, J (o)) < J (uo) -

This contradicts to the definition of Ajq,) and therefore one has u(t) € A for all t €
[0, T (up)). Again by (5.3), we have u (t) € J/™) 0 4, for all t € [0, Ty (uo)) and then
{u(t),t € [0,Tx (ug))} remains bounded in Hy,(Q). So that uy € G. We next prove
ug € Go. Let w € w (ug), we deduce from and that

||WHH)1(’O(Q) < Auo)s J (W) < J (ug) -

Then by definition of A () we get w (ug) N A" = ), and hence w (up) = {0} due to Lemma
[7.2l And that leads to ug € Gy.
We finally prove the second claim of theorem. Let ug € A satisfy ||u0||H)1( (@ = A Jug)-

By using similar arguments above, we get u (t) € A_ for t € [0,T (ug)). By contradiction,
we assume that T, (ug) = 0o, then for every w € w (ug), from (5.3) and (5.19)) we have

HwHH}(’O(Q) > AJugy, J (W) < J (uo).-

By definition of A ), we get w(ug) N A" = 0. However, since distg () (0, 42) > 0, we
also have 0 ¢ w (ug). And therefore w (ug) = @) which contradicts to T (up) = co. Thus
ug € B. This completes the proof of Theorem [7.1] O

We now give an other criterion for blow-up in finite time of solutions to ([1.1))-(1.3).
Theorem 7.2. At first, we claim that

p—2 2
153 [wollirs () > 7 (uo) (7.9)

2
8(p—1) HUOHH}QO(Q)

T <
(p—

2 [ (p—2 2 ’
2 |2 ol ) — 2 (u0)]

Proof of Theorem[7.3. At first, we claim that up € A#_. Indeed, we have

p—2
2p (1 + 52)

This fact implies I (ug) < 0. We assume that T, = oo and prove that I (u(t)) < 0 for all
t € [0,00). If not, there would exist a ¢ty € (0,00) such that I (u(t)) < 0 for t € [0,ty) and

I (u(ty)) =0. By (5.19)), we have ||u (t0)||12q;(,0(9) > HUOHI%I}(,O(Q)‘ Furthermore, we get

2 p—2 2
J (ug) < oz, @) < o [ Xuoll72(q) - (7.11)

p—2
2p

p—2 P

-2
9 2
T o) < 5 gy ol oo < gy gy 1 (o)l

2
< [ Xu (o)l 720 -
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On other hand, we have
p—2
J (uo) = J (u(to)) = BT 1Xu (to) [ 720

That is contraction. So I (u(t)) < 0 for all ¢ € [0, c0).
With the same notation and calculation in proof of Theorem we have an estimate

p 2
/ o (5) 1y s = 252 10 (6) 2y — 2 1)

p—2 )
P lm luollzzy ooy =/ (Uo)} >0,  (7.12)

1 p—2
We ch 0
e choose 8 € ( o1 {2(1—%522
(5.13). The remainder of the proof is almost the same as that of Theorem and hence is
omitted. O

] ||u0||?{}(y0(9) —pJ (uo)} ) Then, we have the estimate

Remark 7.2. In this remark, we point out that the technique used in [25] is not true. From
the last line on page 2761 of [25], the author has the estimate

2(p+1)

e -1 1 2
Q1= Hlells™ < Hullyy = llulliy < =

p+1

J (Uo) .
After that, the author take supremum both side and implied that

2(p+1 1-p
Wik < 20 o) <

This not right by definition of A,. Because A, = sup {HUHHg tu € ,/1@}
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