
Using Machine-Learning for Prediction of the Response to Cardiac Resynchronization

Therapy: the SMART-AV Study 

Stacey J. Howell, MD,1 Tim Stivland, BSME, MBA,2 Kenneth Stein, MD, FHRS,2 Kenneth A. 

Ellenbogen, MD, FHRS,3 Larisa G. Tereshchenko, MD, PhD, FHRS, CCDS.1,4

1Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR; 2Boston 

Scientific; 3Medical College of Virginia/VCU School of Medicine; 4Cardiovascular Division, 

Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD.

Brief Title: SMART-AV CRT Response prediction

Correspondence: Larisa Tereshchenko, 3181 SW Sam Jackson Park Rd; UHN62; Portland, OR, 

97239. E-mail:tereshch@ohsu.edu. 

Words:0

1



Abstract 

Introduction—We aimed to apply machine learning (ML) to develop a prediction model for 

cardiac resynchronization therapy (CRT) response. 

Methods and Results—Participants from the SmartDelay Determined AV Optimization 

(SMART-AV) trial (n=741; age, 66 ±11 yrs; 33% female; 100% NYHA III-IV; 100% EF≤35%) 

were randomly split into training & testing (80%; n=593), and validation (20%; n=148) samples. 

Baseline clinical, ECG, echocardiographic and biomarker characteristics, and left ventricular 

(LV) lead position (43 variables) were included in 6 ML models (random forests, convolutional 

neural network, lasso, adaptive lasso, plugin lasso, elastic net, ridge, and logistic regression). A 

composite of freedom from death and heart failure hospitalization and a >15% reduction in LV 

end-systolic volume index at 6-months post-CRT was the endpoint. The primary endpoint was 

met by 337 patients (45.5%). The adaptive lasso model was more accurate than class I 

ACC/AHA guidelines criteria (AUC 0.759; 95%CI 0.678-0.840 versus 0.639; 95%CI 0.554-

0.722; P<0.0001), well-calibrated, and parsimonious (19 predictors; nearly half are potentially 

modifiable). The model predicted CRT response with 70% accuracy, 70% sensitivity, and 70% 

specificity, and should be further validated in prospective studies.

Conclusions—ML predicts short-term CRT response and thus may help with CRT procedure 

planning.

Clinical trial registration—ClinicalTrials.gov Identifier: NCT00677014

Keywords: cardiac resynchronization therapy, machine learning
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Introduction

Cardiac resynchronization therapy (CRT) is an established treatment for patients with 

systolic heart failure (HF) and ventricular dyssynchrony.1 However, despite proven benefit, 

nearly a third of CRT recipients are considered to be “non-responders”.2 

Guided left ventricular (LV) lead placement considering the timing of LV activation and 

electrical delay3, together with dynamic atrioventricular (AV) optimization4, can potentially 

reduce the CRT non-response rate. Previous analysis of the SMART-AV (SmartDelay 

Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac 

Resynchronization Therapy) study suggested a strategy for using measures of LV electrical delay

at implantation to guide LV lead placement.5 However, a complex interaction between cardiac 

veins anatomy and cardiomyopathy substrate can make guided LV lead placement procedure 

technically difficult. Prediction of the probability of a CRT response can possibly help with the 

allocation of resources and CRT procedure planning. 

Machine learning (ML) has taken hold in a number of fields to improve risk prediction as

compared to traditional methods.6,7 Several studies have applied ML to address the clinical 

challenge of CRT patient selection and showed that ML algorithms perform better than 

guidelines-recommended QRS duration and bundle branch block (BBB) morphology.8-11 

However, all previous ML-prediction models targeted the long-term (≥ 1 year) CRT outcomes. 

At present, there is no short-term (6-month) CRT response prediction tool that can be used to 

plan CRT implantation and delivery. 

We conducted the current study with the goal to use ML to predict short-term (6-month) 

response to CRT. 
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Methods 

The authors used the deidentified SMART-AV study dataset, provided by the executive 

study committee. The Oregon Health & Science University Institutional Review Board 

determined the deidentified nature of the dataset. Open-source code for statistical data analysis is

provided at https://github.com/Tereshchenkolab/statistics.

Study population

The SMART-AV was a randomized, multicenter, single-blinded clinical trial12,13 that sought 

to determine whether AV delay optimization would improve CRT response at six months post-

implant. The trial enrolled New York Heart Association (NYHA) class III-IV HF patients with 

left ventricular ejection fraction (LVEF)≤35% despite optimal medical therapy, and QRS 

duration ≥120 ms, in sinus rhythm. HF patients who were in complete heart block, could not 

tolerate pacing at VVI-40-RV for up to two weeks, or previously received CRT were excluded. 

Enrollment was completed from May 2008 through December 2009. In the current study, we 

excluded participants with missing candidate predictor variables and lost to follow-up. Of the 

980 randomized SMART-AV participants, 741 CRT recipients were included in this study.

Candidate predictor variables

At the enrollment visit, baseline clinical characteristics data were collected, which included 

medical history, current cardiovascular evaluation (NYHA class) and medications list, the 6-

minute walk test, quality of life (Minnesota Living with Heart Failure Questionnaire), and blood 

draw for biomarkers.12,13 We calculated estimated glomerular filtration rate (eGFR) using the 

chronic kidney disease (CKD) Epidemiology Collaboration equation (CKD-EPI).14 LV lead 

location was selected at the discretion of the implanting physician. Baseline ECG and 
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echocardiogram were recorded post-implant (no biventricular pacing).12,13 We normalized LV 

volumes and dimensions by body surface area (BSA). 

The study endpoint

We defined the primary endpoint as a composite of freedom from death and HF 

hospitalization and a >15% reduction4,5,15,16 in LV end-systolic volume index (LVESVI) at six 

months of follow-up. LVESV was the primary endpoint in the SMART-AV trial.12,13 A single 

core laboratory performed all echocardiographic measurements in a blinded fashion.

Statistical machine learning analysis

We randomly split the study population into two non-overlapping samples: training & testing

(80%; n=593), and validation (20%; n=148). Considering future clinical implementation, we 

included routinely available predictor variables that describe baseline clinical, ECG, 

echocardiographic and biomarker characteristics, and LV lead position (43 variables, Table 1).

We fitted eight different models (random forests17, convolutional neural network18, lasso, 

adaptive lasso, plugin lasso, elastic net, ridge, and logistic regression). 

To train the random forests algorithm, we arranged the data in a randomly sorted order and 

tuned the number of subtrees and number of variables to randomly investigate at each split. We 

calculated both out-of-bag error (tested against training data subsets that are not included in 

subtree construction) and a validation error (tested against the validation data) to find the model 

with the highest testing accuracy. 

We trained the convolutional neural network with 20 hidden layers, using 500 iterations with 

a training factor 2 and 4 normalization parameters. The network was comprised of 3 layers, 64 

neurons per layer, and 901 synapse weights. 

5



The family of lasso (least absolute shrinkage and selection operator) models employed ten-

fold cross-validation in the training & testing sample. In lasso model, cross-validation selected 

the tuning parameter λ that minimized the out-of-sample deviance. The adaptive lasso performed

multistep cross-validation, performing the second cross-validation step among the covariates 

selected in the first cross-validation step. The plugin lasso used partialing-out estimators to 

determine which covariates belong in the model, achieving an optimal bound on the number of 

covariates it included.19 The elastic net permitted retention of correlated covariates.20 In the ridge 

model, the penalty parameter used squared terms and kept all predictors in the model.

We validated the predictive accuracy of the models by comparing the area under the receiver 

operator curve (ROC AUC) in the validation sample. To assess calibration, we compared the 

observed and predicted proportions within the groups formed by the Hosmer-Lemeshow test21, 

and used the calibration belt22 to examine the relationship between out-of-sample estimated 

probabilities and observed CRT response rates. For the lasso family of models, we also 

calculated the out-of-sample deviance and deviance ratio.

We compared the performance of the selected model to the current 2013 American College 

of Cardiology Foundation/American Heart Association class I guideline criteria (QRS>150 ms 

and the presence of LBBB).23 

Statistical analysis was performed using STATA MP 16.1 (StataCorp LP, College Station, 

TX). P-value < 0.05 was considered statistically significant. 

Results

The SMART-AV study population characteristics are shown in Table 1 and have been 

previously reported elsewhere.16 The primary endpoint was met by 337 patients (45.5%). Out of 
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404 participants who failed to respond, 13 died, 75 participants were hospitalized because of HF,

and 316 participants failed to achieve a volumetric response.  

In tuning the random forests algorithm, we observed that both out-of-bag error and validation

error stabilized after 300 iterations at 30-35% (Figure 1), and we conservatively chose 500 

subtrees. The minimum validation error was observed for 7 variables, and we chose 7 variables 

to investigate at each split randomly. The final random forests model reported 26% error in 

validation sample; it accurately predicted freedom from composite CRT response endpoint in 71 

out of 83 participants (specificity 85.5%), and correctly predicted CRT response in 38 out of 65 

individuals (sensitivity 58.5%), having a positive predictive value of 76% and negative 

predictive value of 72.4%. The single most important predictor was diabetes (Figure 2), which, 

together with demographic characteristics (age, sex, race) and other comorbidities (hypertension,

smoking) comprised six the most important predictors. 

A comparison of the prediction models’ performance is shown in Table 2. The convolutional 

neural network demonstrated the highest predictive accuracy in the training & testing sample, 

with a final error of only 6%. However, the calibration of the convolutional neural network 

model was unsatisfactory (Hosmer-Lemeshow test P<0.0001; Figure 3), and predictive accuracy 

in the validation sample did not differ from the lasso family of models. 

Several models (lasso, adaptive lasso, elastic net, ridge, and logistic regression) demonstrated

similar fit and predictive accuracy both in training & testing, and validation samples (Table 2), 

which was significantly higher than current class I clinical guidelines (AUC 0.639; 95%CI 

0.554-0.722), P<0.0001. Figure 4 shows the cross-validation function and selected λ for each 

model. Only a few models (logistic regression, adaptive lasso, and plugin lasso) showed 
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satisfactory out-of-sample calibration (Figure 5). Ultimately, we selected the adaptive lasso 

model as the most accurate, well-calibrated, and parsimonious (19 predictors listed in Table 3). 

In the adaptive lasso model, the most important predictors (Figure 6) characterized 

dyssynchrony (ventricular conduction type, QRS duration), underlying disease substrate 

(cardiomyopathy type, primary prevention indication), and modifiable characteristics (NT-

proBNP, systolic blood pressure), including PR interval. Nonischemic cardiomyopathy, female 

sex, primary prevention indication, history of valvular heart disease and cancer, and higher QRS 

duration, systolic blood pressure, LVEDVI, 6-min walk distance, eGFRCKD-EPI, and age were 

associated with CRT response. Non-LBBB, AV block, and higher NT-proBNP, CRP, PR 

interval, LVEF, LVESDI, and weight were associated with non-response. Participants in the 5th 

quantile as compared to those in the 1st quantile had 14-fold higher odds of composite CRT 

response (Figure 7). The online calculator is freely available at http://www.ecgpredictscd.org/crt.

Discussion

In this study, using the ML approach, we developed a parsimonious model for the prediction 

of CRT response that is comprised of routinely available baseline clinical, ECG, and 

echocardiographic characteristics - measures of the disease substrate, dyssynchrony, and 

comorbidities. Several included predictors could be potentially modifiable. Developed in this 

study, the CRT response prediction model opens an avenue for a future randomized controlled 

trial, testing CRT implantation planning strategy, incorporating targeted lead placement and 

dynamic AV optimization programming.4,5 

It has been previously shown that increasing degrees of interventricular (rather than 

intraventricular) dyssynchrony is expected to result in improved rates of clinical CRT response.24
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Previous analysis of the SMART-AV study showed that optimally timed AV delay provides an 

incremental benefit to the substantial interventricular conduction delay4,5, suggesting that both 

LV lead and right ventricular (RV) lead placement should target maximizing RV-LV delay. Pre-

procedural planning may involve expensive and time-consuming cardiac imaging. Our risk score

can predict the probability of the short-term composite CRT response and, therefore, can help to 

preserve resources while improving clinical outcomes. Careful pre-procedural planning would be

particularly critical for CRT candidates with a moderate or low probability of CRT response, 

especially if they have modifiable factors. Notably, both the baseline PR interval and the 

presence of AV block were selected by the adaptive lasso model as essential predictors in the 

model, indicating the likely benefit of dynamic AV optimization. 

Consistently with prior studies5,8-11, we confirmed that ML could improve patient 

selection for CRT therapy beyond current guidelines. The strength of ML algorithms is the 

ability to capture complex interactions.25 Several prior studies have used ML to predict CRT 

response. Kalscheur et al analyzed 595 COMPANION NYHA III/IV patients,8 Cikes et al 

studied 1106 MADIT-CRT NYHA class  II patients,11 Feeny et al evaluated 470 NYHA I-IV 

patients from an observational cohort, and Hu et al retrospectively analyzed 990 predominately 

NYHA II-III patients from a single-center cohort.26 Of note, all previous studies considered long-

term CRT benefits, answering a question of CRT candidate selection. In contrast, our prediction 

model is focusing on a short-term CRT response and can help planning the CRT delivery 

strategy, in addition to selecting the most appropriate CRT candidate. Distinguishing those at 

high risk of non-response could alert cardiologists to a specific group that requires special 

attention within the first six months after CRT implantation.
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Presently response and outcomes following CRT implantation vary significantly2, making

it crucial to improve patient selection for CRT. Improved identification of CRT responders could

help to avoid CRT implantation in patients unlikely to benefit and to disproportionately incur 

undue harm and risk. Better prediction of CRT non-responders could be used to identify patients 

that may be better served with earlier consideration of advanced HF therapies, including 

mechanical circulatory support and transplantation rather than CRT, which would carry a lower 

yield of clinical improvement. 

In this study, an absence of sustained ventricular tachyarrhythmia (primary prevention 

indication) was an important predictor of CRT response. This finding is consistent with previous 

studies that showed the antiarrhythmic effect of CRT and reversed electrical remodeling27, which

can be facilitated by the autonomic nervous system response.28 

A comparison of ML models and selection of the “best” model also deserves discussion. We 

observed similar accuracy in all but one (plugin lasso) models, leaving seven models for 

consideration. However, only two of them (logistic regression and adaptive lasso) demonstrated 

satisfactory calibration. The parsimonious model (adaptive lasso) won because of (1) 

convenience (19 versus 43 predictors), and (2) approach to feature importance ranking. The most

important predictors in the random forests model describe comorbidities and demographic 

characteristics, which unlikely to be modified (age, sex, race, diabetes, hypertension, smoking). 

In contrast, the most important predictors in the adaptive lasso model provide a meaningful 

characterization of the disease substrate and its electrophysiology (a type of cardiomyopathy and 

conduction abnormality, QRS duration, history of sustained ventricular tachyarrhythmia or 

cardiac arrest, NT-proBNP and systolic blood pressure), which can guide CRT delivery. 
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Strengths and Limitations

SMART-AV is a large multicenter randomized control trial with careful phenotyping that 

included blinded analysis of echocardiograms and biomarkers in core laboratories, and 

appropriate follow-up, providing an opportunity to study composite CRT response. A strength of

the present study was the use of a composite endpoint of clinical outcomes (death, HF 

hospitalization) and volumetric remodeling. However, limitations of the study have to be taken 

into account. The study population was predominantly men, although this is characteristic and 

similar to other CRT trials. We limited candidate predictor variables by currently widely 

available and did not include novel ECG measures of dyssynchrony that can potentially further 

improve prediction.15,29

Conclusion

In summary, in this study, using ML, we developed and validated a parsimonious model that 

is comprised of routinely available baseline clinical, ECG, and echocardiographic characteristics.

The model outperforms the current guidelines and predicts CRT response with 70% accuracy, 

70% sensitivity, and 70% specificity, and should be further validated in prospective studies. The 

calculator is available at http://www.ecgpredictscd.org/crt.
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Table 1. Baseline Clinical Characteristics in study participants

Characteristics All (n=741)

Age(SD), y 66.0(11.0)

Female, n(%) 241(32.5)

White, n(%) 575(77.6)

LVEF(SD), % 27.5(8.7)

Weight(SD), kg 87.4(20.8)

Height(SD), cm 171.6(10.3)

Body mass index (SD), kg/m2 29.6(6.2)

BP systolic(SD), mmHg 124.5(20.9)

BP diastolic(SD), mmHg 71.4(12.7)

Ischemic cardiomyopathy Hx, n(%) 426(57.5)

Primary prevention, n(%) 589(79.5)

Smoking Hx(current or former), n(%) 461(62.2)

Hypertension Hx, n(%) 528(71.3)

Diabetes Hx, n(%) 289(39.0)

Revascularization Hx, n(%) 380(51.3)

Autoimmune disease Hx, n(%) 19.0(2.6)

Sleep apnea Hx, n(%) 89(12.0)

Cancer Hx, n(%) 67(9.0)

Renal disease Hx, n(%) 119(16.1)

COPD Hx, n(%) 109(14.7)

Valve disease Hx, n(%) 40(5.4)

Pacemaker implant Hx, n(%) 15(2.0)

AV block, n(%) 138(18.6)

PR interval(SD), ms 198.2(50.4)

Heart rate(SD), bpm 71.3(12.5)

QRS duration(SD), ms 151.8(19.9)

Conduction disease:LBBB, n(%) 552(74.5)

RBBB 81(10.9)

IVCD 86(11.6)

RBBB+left hemiblock 22(3.0)

NYHA class               II, n (%) 21(2.8)

III 698(94.2)

IV 22 (3.0)

6 minute walk(SD), m 268.2(124.7)

Quality of life(SD), points 47.2(25.0)

Potassium(SD), mmol/L 4.3(0.5)

Sodium(SD), mmol/L 138.7(3.1)
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C-reactive protein(SD), ng/mL 6,438(4,425)

NT-proBNP median(IQR), pmol/L 1691(863-3952)

eGFRCKD-EPI (SD), mL/min/1.73 m² 63.6(22.8)

Use of ACEI/ARB, n (%) 485(65.5)

Use of beta blocker, n(%) 681(91.9)

Use of aldosterone antagonist, n(%) 262(35.4)

LV end systolic volume index (SD), mL/m2 64.7(29.8)

LV end diastolic volume index (SD), mL/m2 87.0(32.0)

LV end systolic diameter index (SD), cm/m2 2.8(0.5)

LV end diastolic diameter index (SD), cm/m2 3.2(0.5)

Lead location Apical n(%) 98(13.2)

           Basal 47(6.3)

           Mid 596(80.4)
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Table 2. Development and validation of composite CRT response prediction tool

Training & testing sample (N=593) Validation sample (N=148)

Group Model Deviance Deviance 
ratio

Number of 
predictors

ROC AUC 
(95%CI)

P-value Deviance Deviance 
ratio

N  
predictors

ROC AUC (95%CI) P-value

A
ll

 p
ar

ti
ci

pa
nt

s

Ridge 1.201 0.129 43 0.753(0.714-0.792)

0.277

1.164 0.151 43 0.778(0.699-0.857)

0.368

Elastic net 1.196 0.133 30 0.751(0.711-0.790) 1.163 0.152 30 0.769(0.688-0.849)

Lasso 1.187 0.140 29 0.752(0.713-0.792) 1.155 0.158 29 0.770(0.690-0.850)

Adaptive lasso 1.184 0.142 19 0.751(0.712-0.790) 1.169 0.148 19 0.759(0.678-0.840)

Logistic regress 1.147 0.168 43 0.768(0.730-0.805) 1.135 0.172 43 0.774(0.697-0.851)

CNN - - 43 0.979(0.966-0.993) <0.0001 - - 43 0.759(0.682-0.837)

Random forest - - 43 0.642(0.600-0.683) <0.0001 - - 43 0.720(0.649-0.791)

Plugin lasso 1.295 0.061 2 0.655(0.613-0.696) <0.0001 1.296 0.055 2 0.667(0.582-0.751) 0.028

All coefficients are penalized except plugin lasso (postselection)
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Table 3. Lassoknots, or predictors in the adaptive lasso model listed in the order of their 

importance

Predictor Importance Rank Beta-coefficient 

Conduction type (non-LBBB) 1 -0.339

Nonischemic CM 2 0.267

QRS duration, ms 3 0.217

NT-proBNP 4 -0.180

Systolic BP, mmHg 5 0.186

Primary prevention 5 0.167

PR interval, ms 6 -0.155

Female 7 0.171

LVEF 8 -0.210

CRP 9 -0.100

LVEDVI 9 0.260

LVESDI 9 -0.368

6-min walk 10 0.114

eGFRCKD-EPI 11 0.110

Age, y 12 0.155

Valve disease 13 0.069

Any AV block 13 -0.056

Weight, kg 13 -0.135

Cancer 14 0.011

constant -0.202

Conduction type categories include:
1=LBBB
2=RBBB+left hemiblock
3=IVCD
4=RBBB
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Figure Legends

Figure 1. Out-of-bag error and validation error plotted versus (A) number of iterations or 

subtrees, and (B) number of variables randomly investigated at each split in a random forests 

model.

Figure 2. Importance scores of predictor variables in the random forests model.

Figure 3. The calibration plot shows the observed and predicted CRT response proportions in 

convolutional neural network model for all participants. The size of the circles is proportional to 

the amount of data.

Figure 4: Cross-validation (CV) function (the mean deviance in the CV samples) is plotted over 

the search grid for the lasso penalty parameter λ on a reverse logarithmic scale for (A) lasso, (B) 

adaptive lasso, (C) elastic net, (D) ridge models. The first λ tried is on the left, and the last λ tried

is on the right. 

Figure 5. The calibration belt with 80% and 95% confidence intervals on the external sample 

shows the observed and predicted CRT response proportions in (A) logistic regression, (B) lasso,

(C) adaptive lasso, (D) plugin lasso, (E) elastic net, and (F) ridge models for all participants. 

Figure 6. Importance of the selected predictors in the adaptive lasso model. The most important 

predictors were added to the model early. 

Figure 7. Probabilities of composite CRT response by quantiles of the adaptive lasso model.
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