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Bullet Point Summary

What is already known? 

• Canthin-6-one has pharmacological properties that could be useful for 
ameliorating inflammatory disorders, such as IBD.

What this study adds? 

 In in vivo/silico studies, canthin-6-one reduced pro-inflammatory mediators and 
oxidative stress, relieving greatly ulcerative colitis.

What is the clinical significance? 

• Findings suggest canthin-6-one as novel candidate with better efficacy than 
current drugs for IBD.
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ABSTRACT

Background  and  Purpose: Canthin-6-one  (Cant)  is  an  indole  alkaloid  found  in

different  medicinal  plants,  reported  to  be  gastroprotective,  anti-inflammatory,  anti-

microbial,  anti-diarrheal  and  anti-proliferative.  We  aimed  to  explore  Cant  in  the

management  of ulcerative  colitis  (UC) using a trinitrobenzenesulfonic acid (TNBS)-

induced rat model.

Experimental Approach: Cant (1, 5 and 25 mg/kg) was administered by oral gavage

to  Wistar  rats  followed  by  induction  of  colitis  with  TNBS.  Macroscopic  and

histopathological  scores,  myeloperoxidase  (MPO),  malondialdehyde  (MDA)  and

reduced glutathione (GSH) were assessed in colon tissues. Pro- (TNF-α, IL-1β and IL-

12p70) and anti-inflammatory (IL-10) cytokines, and vascular endothelial growth factor

(VEGF) were also quantified. Mitogen-activated protein kinase 14 (MAPK14) and Toll-

like receptor-8 (TLR8), as putative targets, were considered through in silico analysis. 

Key Results: Cant  (5  and  25  mg/kg)  reduced  macroscopic  and  histological  colon

damage scores in TNBS-treated rats. MPO and MDA were reduced by up to 61.69%

and  92.45%,  respectively,  compared  to  TNBS-treated  rats  alone.  Glutathione

concentration  was reduced in  rats  administered  with  TNBS alone (50.00% of  sham

group), being restored to 72.73% (of sham group) under Cant treatment. TNF-α, IL-1β,

IL-12p70  and  VEGF  were  reduced,  and  anti-inflammatory  IL-10  was  increased

following  Cant administration  compared to rats  administered TNBS alone.  Docking

ligation results for MAPK14 (p38α) and TLR8 with Cant, confirmed that these proteins

are feasible putative targets.

Conclusions and Implications: Cant  has an anti-inflammatory effect in the intestine

by  down-regulating  immune  molecular  mediators  and  decreasing  oxidative  stress.

Therefore,  Cant could  have  therapeutic  potential  for  the  treatment  of  inflammatory

bowel disease and related syndromes.

KEYWORDS: Canthin-6-one, inflammatory bowel disease, TNBS, MAPKs, TLRs, 

cytokines, VEGF, ulcerative colitis
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ABBREVIATIONS

IBD  -  Inflammatory  bowel  diseases;  UC  –  ulcerative  colitis;  TNBS  –  2,4,6

trinitrobenzenesulfonic  acid;  MPO  –  myeloperoxidase;  GSH  -  reduced  glutathione;

MDA – malondialdehyde;  Cant - canthin-6-one; PAS - Schiff's periodic acid; H&E,

haematoxylin and eosin; MAPK14 - mitogen-activated protein kinase 14 (p38α kinase);

TLR8 - Toll-like receptor 8; VEGF - vascular endothelial growth factor.

1. INTRODUCTION 

Inflammatory bowel diseases (IBD) are predominantly categorised into Crohn's

disease  (CD)  and  ulcerative  colitis  (UC)  that  are  chronic  idiopathic  diseases  and

commonly  affect  colonic  and rectal  mucosal  layers  (Matkowskyj  et  al.,  2013).  The

clinical  symptoms  of  UC  are  abdominal  pain,  recurrent  bowel  inflammation,

haematochezia and diarrhoea that often contain blood or mucus, malabsorption, weight

loss and fatigue.  Usually,  the course of the disease comprises periods of worsening,

such  as  chronic  and  recurrent  inflammation,  alternating  with  periods  without

inflammation  (remission),  which  occur  throughout  the  patient's  life  (Flynn  and

Eisenstein, 2019).

IBD has pathology of unknown aetiology. However, it is widely accepted that

several factors including genetic susceptibility, alterations in intestinal cell processes,

dysregulation  of  the  immune  system,  intolerance  to  microbiota,  and  environmental

factors all contribute, in an environment of oxidative stress, to IBD pathogenesis (Tian

et al., 2017).

In  the  last  decade,  IBD has  emerged  as  a  growing worldwide  public  health

challenge  and  in  Westernised  countries is  associated  with  morbidity,  mortality  and

substantial costs to the healthcare systems. IBD affects more than 2 million people in

Europe  and  is  similarly  prevalent  in  North  America  (Kaplan,  2015).  Recent

epidemiological studies suggest that IBD incidence is now fast rising in South America,

Eastern  Europe,  Asia  and  Africa,  but  the  true  prevalence  in  these  regions  remains

uncertain (Kaplan and Ng, 2017).

As IBD aetiology remains to be elucidated, pharmacological treatments aim to

attenuate clinical symptoms in the acute phase and to promote remission of the disease.
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The  treatment  of  mild  to  moderate  exacerbations  is  made  with  oral  or  topical

administration  of  5-aminosalicylate  (mesalazine),  sulphonamide  (sulfasalazine),  or

corticoids.  Severe  conditions  require  the  use  of  intravenous  (iv)  corticosteroids  and

maintenance  with  mesalazine  or  sulfasalazine.  When  the  response  is  inadequate,

cyclosporine  or  infliximab  iv  is  used.  With  the  exception  of  mesalazine  and

sulfasalazine,  the  other  therapies  are  intended  to  induce  immunosuppression,  by

blocking  mainly  TNF-α  or  NF-κB-mediated  inflammation  (Tian  et  al.,  2017).  In

refractory IBD, surgical intervention may become necessary. However,  the currently

available treatments have several disadvantages, such as low remission rate when using

sulfasalazine or mesalazine, harmful side effects (loss of tissue function, increased risk

of infections, lymphomas, and skin cancer) when using steroid anti-inflammatory drugs,

and the economic cost associated with the biological therapy with antibodies (Wright et

al., 2018). Thus, there is a necessity to find new treatments that are either adjunctive or

complementary therapies for UC, with better efficacy and reduced potential side-effects.

In this way, herbal immunomodulatory agents may represent a promising approach for

UC therapy, as demonstrated by the variety of preclinical and clinical studies currently

in progress (Ke et al., 2012).

Canthinones are a subclass of β-carboline alkaloids with an additional D ring

that  are  often  found in  Simaroubaceae  and Rutaceae  plant  extracts  (Devkota  et  al.,

2014). Canthinones have been reported to have a wide range of potential therapeutic

properties, shared with their corresponding source plant extracts, such as anti-pyretic,

analgesic, gastric ulcer protection, anti-microbial (for bacteria, viruses and parasites),

anti-diarrhoeal and anti-inflammatory. They also display efficacy as anti-proliferative

and/or cytotoxic agents against several human cancer cell lines, suggestive that they will

have therapeutic properties for cancer chemoprevention  (Dejos  et al., 2014a). Within

this class of alkaloids,  canthin-6-one (Cant)  is  in the spotlight  by showing efficacy

against  Trypanosoma cruzi (Ferreira  et al., 2011) and chloroquine resistant strains of

Plasmodium falciparum (Cebrián-Torrejón  et al.,  2013), anti-ulcerogenic activity  (de

Souza  Almeida  et  al.,  2011),  and  cytotoxic  activity  against  many  cancer  cell  lines

(Dejos et al., 2014b; Vieira Torquato et al., 2017).

Because of this, there is a growing pharmaceutical interest in the production of

canthin-6-one, however, it is difficult to extract from natural sources. Great efforts have

been made to increase the production to a commercial level of industrial value. In vitro
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suspensions  of  cultured  plant  cells  supplemented  with  tryptophan,  the  natural

biosynthetic source, have recently been used to efficiently maximise the yield (Wagih et

al.,  2008). A synthetic chemical pathway has now also been described starting from

tryptamine (Cebrián-Torrejón et al., 2013).

Therefore, the purpose of this study was to evaluate the anti-ulcerative colitis

activity of Cant in a 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced experimental

rat colitis model.  This is a well-established model that mimics  human colitis  on the

basis of its histological and biochemical characteristics, further supported by studies on

biochemical and inflammatory markers  (Antoniou  et al., 2016). It is widely used for

preclinical testing of chemical or natural compounds to determine their possible anti-

colitis potential, focusing primarily on their anti-inflammatory and antioxidant activity.

In this model, we analysed colon damage through macroscopic and histologic

scoring, colonic mediators involved in the inflammatory response including interleukins

(IL-1β, IL12p70, IL-10),  tumour necrosis factor -alpha (TNF-α), vascular endothelial

growth factor (VEGF),  and oxidative  stress parameters,  such as  glutathione  (GSH),

malondialdehyde  (MDA)  and  myeloperoxidase  (MPO)  were  also  measured.

Additionally, an  in silico analysis, directed towards known molecular targets involved

in  gut  inflammatory  signalling  such  as  Toll-like  receptor  8  (TLR8)  and  mitogen-

activated  protein  kinase  14 (MAPK14  or  p38α)  was  conducted  to  strengthen  the

findings, concluding all  together than  Cant  has potential  as an anti-ulcerative colitis

agent.

2. METHODS

2.1. Chemicals

Due to the low yield of  Cant attained when isolated from plant extracts, the

alkaloid used was purchased from Alpha Chimica (Chatenay-Malabry, France), CAS

no.  479-43-6,  purity  >  96%.  To  confirm  purity  and,  in  order  to  ensure  that  the

commercial product is the same previously described in the isolation from plant sources,

we compared both compounds by gas chromatography-mass spectrometry (GC-MS),

hydrogen-1  nuclear  magnetic  resonance  (1H-NMR)  and  carbon-13  nuclear  magnetic

resonance (13C-NMR) (see the supplementary material for additional information). For
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that, we prepared a sufficient quantity of the natural compound, using rhizome methanol

extracts of  Simaba ferruginea A. St.-Hil., followed by dichloromethane fractionation,

using methods described by Noldin et al. (2005).

Unless  otherwise  specified,  the  other  chemicals  used  in  this  work  were

purchased from Sigma (St. Louis, MO, USA), as mesalazine, 5% TNBS solution, 5.5-

dithiobis-(2-nitrobenzoic)  (DTNB),  thiobarbituric  acid,  trichloroacetic  acid,  sodium

bicarbonate,  carboxymethylcellulose  (CMC),  potassium  chloride,  sodium  chloride,

dibasic potassium phosphate, monobasic potassium phosphate, reduced glutathione, and

Griess reagent.

2.2 Animals

Male Wistar rats (Rattus norvegicus, adults), 180 to 200 g, were procured from

the “Biotério Central” (animal house), Universidade Federal de Mato Grosso (UFMT),

Cuiabá, Brazil. The animals were maintained in cages at 21 ± 2 °C, humidity of 50 ±

1%,  in  a  light/dark  cycle  of  12  h,  receiving  standard  feed  (NUVILAB®,  Quimtia,

Paraná,  Brazil)  and  water  ad  libitum.  The  rats  were  fasted  for  12  h  prior  to  the

experiment but with free access to water. Experimental procedures were carried out in

accordance  with  the  guidelines  of  the  European  Commission  (2010/63/EU),  and

licensed by the  “Comitê  de Ética no Uso de Animais,  UFMT” (No. CEUA/UFMT-

23108,914446/2018-58).

2.3 Evaluation of Cant effects in TNBS-induced ulcerative colitis

UC was induced by TNBS in animals as previously described (Morampudi et al.,

2014). Animals were randomly placed into six groups of 8 rats and orally administered

with either vehicle (2% Tween 80, 1 mL/100 g), Cant (1, 5 or 25 mg/kg p.o., dissolved

in 2% Tween 80) or mesalazine (500 mg/kg, p.o., dissolved in carboxymethyl cellulose

at 0.3 mg/mL) for 72, 48, 24 and 2 h before UC-induction by TNBS. Following pre-

treatment, rats were anaesthetised by a solution of ketamine/xylazine (60/8 mg/kg, i.p.)

and induction of UC was conducted by rectal administration of 30 mg/mL TNBS in

20% EtOH solution (250 μL) into the lumen, through a polyurethane catheter (medical-

grade). The sham group received distilled water (10 mL/kg, p.o.) during pre-treatment,

and 250  µL of 0.9% saline by rectal instillation instead of TNBS. Subsequently, rats

were held in a head down position for 2 min to allow the uniform distribution of TNBS

and to avoid leakage back out of the colon (Arunachalam et al., 2020). 
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2.4 Macroscopic assessment of colon damage

After 24 h of TNBS-treatment, rats were sacrificed under anaesthesia and an 8

cm length of distal colon was removed, opened longitudinally, rinsed thoroughly in ice-

cold saline (0.9%) and weighed. Colon was subjected to macroscopic analysis to assess

oedema,  necrosis  and  ulceration  of  the  mucosa  that  were  scored  according  to  a

previously described classification criteria (Morris et al., 1989). Briefly, (score 0–5): 0 -

no damage; 1 - local hyperaemia, but no ulcers; 2 - ulceration without hyperaemia or

thickening of the intestinal wall; 3 - ulceration with inflammation in 1 site; 4 - two or

more sites of ulceration and/or inflammation; 5 - two or more sites of inflammation and

ulceration or one site of inflammation and ulceration > 1 cm along the length of the

colon. 

2.5. Colonic tissue histological damage analysis

After  macroscopic  analysis,  colons  were  prepared  for  microscopic  analysis.

Approximately 2 cm from the colon was collected and stored in 4% paraformaldehyde

solution in phosphate buffer, pH 7.4. Tissues were processed and embedded in paraffin

by standard methods using a histological processor (MTP 100 Slee, Mainz, Germany).

Tissues were then cut to 3 µm thick sections and placed onto microscope slides using a

microtome (Hyrax M60 Carl Zeiss, Oberkochen, Germany). Sections were subjected to

haematoxylin  and  eosin  (H&E)  staining,  for  histopathological  evaluation  of  the

epithelial layer, submucosa and muscular tissue damage, and to Periodic acid Schiff's

(PAS)  staining,  to  assess  goblet  cell  abundance  (mucus  secreting  cells).  After  the

staining,  slides were analysed using optical  microscopy.  Intestinal  inflammation was

quantified according to a 0-4 scale using a previously reported method (Arunachalam et

al., 2020). For that, mucosal damage, presence of inflammatory cells, cell infiltration in

the  submucosa,  ulceration  and  presence  of  goblet  cells  were  assessed  (0-4:  graded

according to the intensity of each one). The scores obtained for each parameter were

added up to quantify the total microscopic-assessed damage (Arunachalam et al., 2020).

2.6 Determination of in vivo antioxidant activity 

Colon tissues were weighed, placed in 10 mM Tris buffer,  pH 7.4,  150 mM

NaCl and 1% Triton X-100 and stored in a biofreezer at -86 ° C. Samples containing

colon  strips  were  thawed,  disintegrated  and  homogenized  (MA102  Turrax  type,

MARCONI, São Paulo, Brazil) in potassium phosphate buffer (200 mM, pH 7.5) in a

1:10 ratio (w/v). Aliquots of the resulting homogenate were reserved for quantification
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of glutathione content (GSH), and the remaining homogenate was centrifuged at 1538 ×

g for 20 min. The resulting supernatant was used for determination of the concentration

of tissue malondialdehyde (MDA). The pellet was used to determine myeloperoxidase

(MPO) activity.

The  amount  of  non-protein  sulfhydryl  groups  in  the  tissue  homogenate  was

determined using methods adapted from those previously reported (Sedlak and Lindsay,

1968). For that, 50 μL of colon homogenate and 40 μL of 12% trichloroacetic acid

(TCA) were mixed, vortexed for 10 min and centrifuged 15 min at 1008 x g. Ten (10)

μL aliquots of the supernatant, together with 190 μL of 0.4 M Tris-HCl buffer (pH 8.9)

were placed in 96-well microplates. Then, the reaction was initiated by the addition of 5

μL of 0.01M 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) (a reagent that, when in contact

with  sulfhydryl  groups,  produces  a  yellow colour)  5  min  before  spectrophotometric

reading at 415 nm. Values were interpolated in a standard GSH curve and expressed in

nmol GSH/g tissue.

The amount of MDA (lipohydroperoxide) in colon homogenates was determined

as  described  by Mihara  and  Uchiyama  (1978)  through  the  determination  of

thiobarbituric acid (TBA) reactive substances. In 500 μL of the homogenate, 3 mL of

1%  phosphoric  acid  (H3PO4),  1  mL  of  0.6%  TBA  and  0.15  mL  of  0.2%

butylhydroxytoluene (BHT) in 95% methanol was added. The samples were heated at

90ºC in a water bath for 45 min, cooled, and vigorously stirred after adding 4 mL of

butanol. The butanol phase was separated by centrifugation for 10 min at 1,985 x g and

the absorbance read at 535 and 520 nm. The amount of MDA was inferred using a

standard  curve,  obtained from known concentrations  of  1,1,3,3-tetramethoxypropane

(100 - 6.25 μmol/mL). Values were expressed in μmol MDA/g of tissue.

Finally, to determine extent of MPO activity, pellets resulting from colon tissue

homogenates were resuspended in 1 mL of 2% NaCl cold solution, vortexed for 30 s,

followed by a new centrifugation at 10,000 x g for 10 min at 4 °C, and the supernatant

discarded.  The  pellet  was  resuspended  in  NaPO4  (0.05  M,  pH  5.4)  plus  0.5%

hexadecyltrimethylammonium  bromide  (100  mg  tissue/mL  of  buffer),  frozen  and

thawed in liquid nitrogen (3 times), centrifuged for 15 min at 10,000 x g at 4 °C, and the

supernatant used for the enzymatic assay. In a 96-well plate, 5 µL of the supernatant

plus 45 µL of NaPO4 buffer was placed in triplicate, after adding 25 μL of TMB (“3.3”,
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5.5´-tetramethylbenzidine) and 100 μL of H2O2 solution (0.017%, in 0.05 M phosphate

buffer, pH 5.4). The microplate was kept in an oven at  37 °C for 5 min.  Then, the

reaction was stopped with 50 μL of 4 M sulfuric acid and read at 450 nm (Matos et al.,

1999).

2.7 Determination of IBD-related cytokines and growth factor

Weighed colon strips  were thawed,  disintegrated  and homogenized in 0.2 M

phosphate buffer and the concentrations of TNF- α, IL-1β, IL-12p70, IL-10, and VEGF

determined following the instructions described in  a Milliplex kit (Sigma®, St. Louis,

MO, USA), using a magnetic-based dual laser detection instrument (Luminex® XMAP

Technology, MAGPIX, Texas, USA).

2.8 Biological Activity Spectrum Prediction

The  2D  structure  of  Cant was  computationally  designed  using

ACD/ChemSketch v.2018.2.5 software and submitted to PASS (Prediction of Activity

Spectra  for  Substances)  web  tool  to  predict  its  biological  activity  spectrum

(Parasuraman,  2011) (http://www.way2drug.com/PASSOnline/).  PASS  is  an  online

server (hosted by the V. N. Orechovich Institute of Biomedical Chemistry under the

aegis of the Russian Foundation of Basic Research) that has the ability to predict 3678

kinds of pharmacological activities based on the structure of the compound, with a mean

accuracy  of  95%,  using  the  leave-one-out  cross-validation  method  (Lagunin  et  al.,

2000).

2.9 Molecular docking analysis between inhibitors and target proteins

Binding  affinities  of  Cant against  reported  targets  for  inflammatory  bowel

disease were evaluated using molecular docking  (Bikadi and Hazai, 2009). Based on

literature  searches,  mitogen-activated  protein  kinase  14  (MAPK14)  and  Toll-like

receptor 8 (TLR8) were selected as targets. For IBD, expanding evidence has shown an

immune-system dysfunction, particularly TLRs- and MAPKs-mediated innate immune

dysfunctions, as key members in the pathogenesis and in the progression of IBD. The

motivation behind this  docking study is to understand the molecular  mechanisms of

MAPK14 and TLR8 signalling pathways in IBD, as well as novel possible therapeutic

strategies against this pathology (Kordjazy et al., 2018; Coskun et al., 2011; Lu et al.,

2018).
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Protein  Data  Bank (PDB) structures  of  both  targets  were  retrieved  from the

Research Collaboratory for Structural Bioinformatics (RCSB) (www.rcsb.org/), upon id

3DS6 and 3W3L, respectively. For comparative purposes, along with Cant, previously

reported  drug molecules  for  IBD treatment,  mesalazine  and  sulfasalazine  were  also

docked against these targets. These two drugs are commonly used for the treatment of

IBD,  UC and CD,  by  reducing inflammatory  response  through several  mechanisms

(Masuda et al., 2012). 

The  docking  study  was  carried  out  using  a  molecular  server  as  previously

described  (Solis  and  Wets,  1981;  Ganou  et  al.,  2018;  Eleftheriou  et  al.,  2020).

Molecular  ligations  were  minimised  using  the  Merck  molecular  force  field  94

(MMFF94), and Gasteiger partial charges were added to the atomic bonds. Nonpolar

hydrogen atoms in PDB target  structures  were merged and rotatable  bonds defined.

Kollman united atom type charges, solvation parameters and essential hydrogen atoms

were added using AutoDock tools  (Morris  et al., 1998). Grid points (60×60×60) and

spacing  was  defined  using  the  Autogrid  programme.  To  define  electrostatic  terms,

AutoDock parameters for Van der Waals and distance dependent dielectric functions

were used.  “Lamarckian  genetic  algorithm” (LGA) and “Solis  & Wets  local  search

method”  were  implemented  in  the  docking  studies.  The  docking  experiment  was

retrieved from ten different  runs, which were set to end after a maximum of 250,000

minimal energy evaluations.  Flexible docking was selected rather than a rigid docking

model, in order to increase the degree of accuracy of the result (Forli et al., 2016).

2.10. Data and statistical analysis

Parametric  data  were  expressed  as  the  mean  ±  standard  error  of  the  means

(SEM)  or  mean  ±  standard  deviation  (SD).  The  differences  between  means  were

determined through one-way analysis of variance (ANOVA) followed by the Student-

Newman-Keuls post-test. All non-parametric data were expressed as the median and its

quartile range (Q1:Q3), and compared by the Kruskal–Wallis followed by the Dunn post-

test.  P values less than 0.05 were considered as significant. Analyses were performed

using GraphPad Prism v6.07 (GraphPad Software, San Diego, USA). 

3. RESULTS
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3.1. Protective effects of canthin-6-one on macroscopic and histological changes in

TNBS-induced colitis 

Macroscopic and histological signs of colitis were observed in intrarectal TNBS-

administered rats. In the vehicle group treated only with TNBS, the macroscopic score

increased by 99% (4.75 ± 0.16, p < 0.001), compared to the sham group. Treatment with

Cant at doses of 5 and 25 mg/kg decreased the macroscopic scores of colon tissue by

45% (2.62  ± 0.32)  and 58% (2.00  ± 0.32,  p < 0.01),  respectively,  compared to  the

vehicle TNBS-treated group. Comparatively, the standard drug mesalazine (500 mg/kg)

significantly  reduced the macroscopic  scores by 47% (2.50  ± 0.32,  p < 0.01) when

compared to the vehicle TNBS-treated control group (Fig. 2), suggesting that 25 mg/kg

Cant has a better effect on preventing TNBS-induced tissue damage.

Histopathological examination of colon specimens from the TNBS control group

showed severe infiltration of acute and chronic inflammatory cells, deposition of fibrin

protein, epithelial necrosis and ulcer. Colon histology in Cant (25 mg/kg) or mesalazine

(500 mg/kg) treated TNBS-administered groups indicated a reduction of oedema and

necrosis,  compared  to  the  TNBS-treated  vehicle  control  group  (Fig.  3  A-F).

Histopathological scoring showed significant inhibition of mucosal damage (62.50%),

oedema (62.50%), ulcer (68.75%), and necrosis (62.50%) following 25 mg/kg  Cant.

Mesalazine (500 mg/kg) treatment showed similar reductions in pathological changes (p

< 0.05)  of  mucosal  damage  (62.50%),  oedema  (62.50%),  ulceration  (68.75%),  and

necrosis (56.25%), as shown in Fig. 4 A-D.

Histopathological examination of PAS stained colon tissue specimens from the

vehicle  treated TNBS control  group showed destruction of epithelial  architecture.  In

contrast, histological samples from Cant (5 and 25 mg/kg) or mesalazine (500 mg/kg)

TNBS-treated colons showed epithelial integrity with intense coloration of globet cells

(Fig. 5). PAS staining of the colon from the vehicle-treated colitic group showed goblet

cells damage compared to the sham group, decreasing the score by 93.75% (p < 0.01).

In contrast,  when compared to the vehicle-treated group, the  Cant  pre-treated colitic

group (1; 5 and 25 mg/kg) showed an increased goblet cell score by 31.25% (p < 0.05),

56.25% (p < 0.05) and 62.50% (p < 0.01), respectively. Mesalazine treated rats similarly

displayed an increase of goblet cell score by 56.25% (p < 0.05) (Fig. 5 G).
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3.2.  Oxidative  stress  parameters  are  attenuated by Cant  during TNBS-induced

ulcerative colitis

3.2.1 Myeloperoxidase activity (MPO) 

MPO activity in colon isolates was increased by 107.21% (p < 0.001) in the

TNBS-treated vehicle control group compared to the sham group (Fig. 6A). The pre-

treatment  of  rats  with  Cant administered  at  1;  5  and  25  mg/kg,  p.o.,  prior  to  the

induction of colitis by TNBS, reduced MPO activity by 49.37% (p < 0.05), 52.85% (p <

0.001)  and  61.69%  (p <  0.001),  respectively.  Pre-treatment  with  mesalazine  (500

mg/kg) showed a comparable reduction in MPO activity, by 59.67% (p < 0.001).

3.2.2 Glutathione (GSH) content

Colonic  mucosal  GSH was  partially  depleted  upon  TNBS-induced  intestinal

colitis in the vehicle group, by 44.56 % (p < 0.001) when compared to the sham group

(Fig. 6B). Pre-treatment with  Cant at  1; 5 and 25 mg/kg, reverted this reduction by

29.54%, 26.59% and 26.21% (p < 0.01) respectively, when compared to the ulcerated

control group (Vehicle). Mesalazine (500 mg/kg) prevented the reduction of GSH levels

induced by TNBS to 25.00% (p < 0.01).

3.2.3 MDA levels 

The  vehicle  administered  TNBS  control  group  demonstrated  high  lipid

peroxidation in colon isolates, as the MDA concentration was increased by 93.60% (p <

0.001), compared to the sham group (Fig. 6C). All doses of Cant (1; 5 and 25 mg/kg,

p.o.) tested reduced lipid peroxidation by 33.75%, 61.63% (p < 0.01) and 92.45% (p <

0.001), respectively, in a dose-dependent manner, when compared to the colitis-induced

vehicle control group. In a similar way to the 25 mg/kg dose of Cant, mesalazine (500

mg/kg, p.o.) reduced the MDA concentration by 92.64% (p < 0.001) to concentrations

near to the observed for the sham group. 

3.3. Cant reduces pro-inflammatory cytokines and increases IL-10 during TNBS-

induced colitis

As expected, following TNBS-induced colitis, we observed an increase of TNF-

α (81.80%, p < 0.001), IL-1β (72.77%, p < 0.001), IL-12p70 (82.03%, p < 0.001) pro-

inflammatory cytokines and of VEGF (37.90%,  p < 0.05) in the colon tissues of rats,

compared to  the  sham group.  Colon tissues  from the  vehicle  treated  TNBS control
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group  also  demonstrated  a  reduction  in  anti-inflammatory  IL-10,  by  79.28%  (p <

0.001).

Pre-treatment with Cant (5 and 25 mg/kg), significantly reduced the colon tissue

concentration of TNF-α (55.25% and 57.26%, p < 0.01, respectively), IL-1β (47.98%, p

< 0.05 and 75.02%, p < 0.01), IL-12p70 (58.48%, p < 0.05 and 67.06%, p < 0.01) and

VEGF (45.79%, p < 0.05 and 61.39%, p < 0.01) when compared to the TNBS-treated

vehicle  control  group.  In  addition,  Cant (5  and  25  mg/kg)  also  increased  the

concentration  of  IL-10  by  258.58% and  401% (p <  0.05),  respectively.  Cant pre-

treatment of 1 mg/kg was capable of ameliorate colon inflammation, however, it did not

significantly  alter  the  colon tissue  concentrations  for  IL-12p70 and IL-10 cytokines

compared to vehicle treated TNBS control. Mesalazine (500 mg/kg) reduced TNF- by

56.59% (p < 0.01), IL-1 by 52.75% (p < 0.05), IL-12p70 by 41% (p < 0.05) and VEGF

by  27.79% (p <  0.05),  and  increased  IL-10  by  66.68% (p <  0.05),  demonstrating

concentrations  comparable  to  those  observed  following  pre-treatment  with  5  mg/kg

Cant (Fig.7 A-E).

3.4 In silico experiments

3.4.1 Prediction of Activity Spectrum (PASS analysis) for Cant

The  PASS  server  calculated  the  molecular  scores  (the  probability  to  be

pharmacologically  active,  Pa,  and  the  probability  to  be inactive,  Pi)  of  Cant in  its

interaction  with  thousands  of  enzymes  and  molecular  targets.  Of  a  total  of  1494

biological interactions retrieved from the PASS server (with Pa > Pi), we selected those

with  Pa > 0.7 and  Pi < 0.05, as shown in  Supplementary file  2,  with a total  of 43

putative  targets  in  several  organisms,  including humans.  From them,  10 have some

direct relationship with inflammation inhibition, with “kinase inhibition” (Pa = 0.719)

as the most relevant pharmacological interaction in this category.

The most frequent interactions are 13 related to the inhibition of various kinds of

enzymes implicated in the redox state,  including mitochondrial  electron-transferring-

flavoprotein dehydrogenase (Pa = 0.767), two interactions related to P450 reductases,

and principally NAD(P)H-dependent oxidoreductases from diverse organisms.
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Finally, the other interactions are related to various kinds of biological functions

that  would  explain  other  recognised  properties  of  Cant,  such  as  nociceptive  or

antitumoral.

3.4.2 Molecular Docking between Cant. and putative candidate target proteins

As an initial screen of the action mechanism of Cant, ligand–protein interactions

with presumed targets were analysed by molecular docking.  The binding sites of each

target  protein  were  retrieved  from  the  PDBsum  database

(http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/).  From  the  Hydrogen

Bonding plotting, the  Cant moiety can be placed adjacent to some MAPK14 residues

(Fig. 8A), such as TYR 35, LYS 53, GLU 71, LEU 75, ILE 84, LEU 104, THR 106,

LEU 167 and ASP 168, and to TLR8 residues (Fig. 8B), such as ASN 262, PRO 264,

PHE 265, SER 266, PHE 320, PHE 467 and TYR 468, indicating a strong interaction

between drug and target  proteins.  The crystal  structures  of  the  target  proteins  were

obtained  from  PDB,  and  the  best  docked  results  for  each  protein,  considering  the

interacting residues with minimal ligation energy, are shown in Fig 8C and D. Among

the  docked  ligands  evaluated,  for  comparative  purposes  (Cant,  mesalazine  and

sulfasalazine), Cant has the best docking score, being -7.07 kcal/mol for MAPK14 and

-7.41 kcal/mol for TLR8 (Table 1).

4. DISCUSSION

For this  study,  doses  of  1,  5  and 25 mg/kg of  Cant were chosen based on

previous work carried out by our research group  (Noldin et al.,  2005;  Gazoni et al.,

2018). As for safety, in vitro tests showed that Cant did not cause cytotoxicity using the

cell line CHO-k1. Moreover, it is important to note that previous in vivo studies in mice

of both sexes demonstrated that a single oral administration of Cant of 100 mg/kg had

no adverse effect  (Gazoni et al., 2018), being 100 times higher than the lowest active

dose (1 mg/kg) used here in the TNBS-induced ulcerative colitis model, and 4 times

higher  than  the  highest  dose  investigated  (25 mg/kg).  However,  as  a  cytotoxic  and

cytostatic agent for tumoral cells, there is likely some cell proliferating genotoxicity and

hepatotoxic  effects  at  elevated  doses/concentrations  (Vieira  Torquato  et  al.,  2017;

Gazoni et al., 2018).
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Although  the  causal  mechanisms  of  IBD  remain  to  be  fully  elucidated,

accumulating data from both animal experimental models and clinical studies indicate

that oxidative stress, along with other inflammatory mediators, is a key factor in the

pathogenesis and perpetuation of mucosal damage observed during active IBD (Jaiswal

et al., 2018). Oxidative stress and inflammation are closely related pathophysiological

processes, each of which can be easily induced by the other, with both processes being

simultaneously found in many pathological conditions (Biswas, 2016). 

While  uncontrolled  oxidative  stress  is  destructive  for  the  gastrointestinal

mucosa,  cellular  defences  can  counteract  these  effects. Reduced  glutathione  (GSH)

decreases as oxidised glutathione (GSSG) significantly increases in the colon mucosa of

UC patients, indicating that tissue is under oxidative stress  (Tian et al., 2017). In this

sense,  in the present  work,  the administration of  Cant resulted in increased colonic

mucosal  non-protein sulfhydryl groups, being represented in the cell mainly by GSH,

probably restoring redox balance.  

MPO is an inflammatory mediator produced by the degranulation of neutrophils

that increased in patients with active UC (Hansberry et al., 2017). Previous studies have

shown that colonic MPO is elevated in rats with active colitis induced by TNBS  and

this  is  likely  to  be  linked  to  disease  progression  (Moura  et  al.,  2015).  In  humans,

activated neutrophils and macrophages are responsible for the generation of both ROS

and reactive nitrogen species (RNS), and the levels of reactive radicals may also be

correlated with severity of inflammatory injuries in the colon mucosa  (Balmus et al.,

2016). In our work, Cant administration,  at  all doses tested,  displayed an important

reduction  in  colonic  MPO  activity,  plausibly  related  to  a  reduced  infiltration  of

neutrophils  in  this  model. Histopathological  results  support  this  anti-inflammatory

effect of Cant, as confirmed by the reduced inflammatory cell recruitment in the injured

area (Fig. 6).

MDA is a by-product from the oxidation of polyunsaturated fatty acids and has

been established as a biomarker for oxidative stress (Murad et al., 2016). Thus, elevated

concentrations of MDA have been documented in TNBS-induced colitic tissues from

rats  (Liu  et  al.,  2012),  as  was also  demonstrated  in  the  present  study.  This  finding

supports  that  Cant  can  act mechanistically as  an  antioxidant,  by  interfering  in  the
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production of free radicals through the interruption of lipid peroxidation, which is one

of the main triggers of the inflammatory progression.

Hence,  the  present  study  indicates  that  Cant  can  interfere  in  part  with  the

inflammatory  signalling  cascade  of  TNBS-induced  colitis,  through  a  direct  and/or

indirect  effect  on  oxidative  stress.  In  this  way,  De  Souza  Almeida  et  al.  (2011)

demonstrated that Cant-gastroprotective activity in rodents depends on MPO and MDA

inhibition, corroborating the antioxidant results found here in UC.

From PASS analyses, the antioxidant effect of Cant appears to be mediated via

a direct action through the inhibition of enzymes related to ROS generation, principally

NAD(P)H dependent oxidoreductases (NOX-like enzymes) (see Supplementary Results

2).  ROS has been reported to activate MAPK in various tissue systems, acting as an

intracellular  second  messenger.  In  particular,  MAPK-activated  redox-sensitive

transcriptional factors such as nuclear factor-kB (NF-kB) and activator protein-1 (AP-1)

play a critical role in the production of cytokines, which mediate several inflammatory

responses  including IBD  (Torres  and Forman,  2003;  Escoubet-Lozach  et  al.,  2002).

Conversely,  cytokine  activation  can  prime  an  oxidative  burst  initiated  by  NADPH-

oxidases (NOX2) from innate immune cells (Elbim et al., 1994).

Along with leukocyte migration, the production of cytokines and chemokines by

local and migrated cells is one of the main factors that regulate the pathological process

of IBD and other inflammatory conditions.  Previous studies have reported increased

pro-inflammatory  cytokine  (Il-1β,  TNF-α,  IL-12)  and  VEGF  expressions  in  the

intestinal mucosa during active ulcerative colitis (Atreya and Neurath, 2005). Therefore,

cytokines, by regulating mucosal immune responses, may represent rational targets for

therapeutic intervention in IBD  (Strober and Fuss, 2011).  We therefore evaluated the

effect of Cant on pro- (TNF-α, IL-1β, IL-12) and anti-inflammatory cytokines (IL-10),

as well as on the restoring cytokine VEGF, during TNBS-induced ulcerative colitis in

rats. Cant (5 and 25 mg/kg) treatment reduced the concentration of pro-inflammatory

cytokines  and  VEGF  and  increased  anti-inflammatory  IL-10  in  colitic  tissues,

contributing to dampening the immune response induced by TNBS.

TNF-α contributes to the pathogenesis of IBD and mediates multiple biologic

effects, including recruitment of neutrophils to local sites of inflammation  (Baumgart

and Sandborn, 2007). IL-1 is also implicated in the development of colitis and Th17-
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associated responses in the gut  (Coccia et al., 2012).  A recent work has demonstrated

that IL-12 orchestrates the initial innate immune-cell-driven inflammatory reaction in

response to intestinal barrier disruption (Eftychi et al., 2019). VEGF is a growth factor

that is involved in IBD pathogenesis by regulating inflammatory-driven angiogenesis

and  mucosal  inflammation (Scaldaferri  et  al.,  2009). Finally,  IL-10  is  a  key  anti-

inflammatory cytokine that limits and terminates immune responses  (Iyer and Cheng,

2012).

Previously, Cho  et al. (2017) demonstrated that,  in RAW 264.7 macrophagic

cells, treatment with Cant suppressed the LPS-stimulated transcriptional activation by

NF-κB, suggesting that  Cant  may inhibit  the expression of inflammatory  mediators

such  as  iNOS,  COX-2,  and  pro-inflammatory  cytokines,  by  preventing  the

phosphorylation of IκB. Also, using a NF-κB-driven luciferase reporter gene assay, it

was demonstrated that Cant is a potent direct NF-κB inhibitor (Tran et al., 2014). The

production of inflammatory mediators and cytokines, via the NF-κB transcription factor

in  activated  macrophages,  is  regulated  by  upstream  kinases  such  as  Akt  and  p38α

MAPK. Cant markedly inhibited the LPS-induced phosphorylation of Akt (Cho et al.,

2017), suggesting that the inhibition of this pathway may be associated with its anti-

inflammatory effect in UC. Together with direct oxidative stress modulation, the PASS

biological activity spectrum points to a possible anti-inflammatory effect of  Cant, by

inhibiting cellular kinases.

Receptors of the innate immune system, such as TLRs, impact many aspects of

IBD aetiology.  TLR8 is upregulated in colon epithelial cells from patients with active

UC (Steenholdt  et al., 2009;  Cohen, 2014) and can mediate TNF-α and IL-1β release

from immune cells. TLR8 can also regulate the IL-8 chemokine secretion from colon

epithelial  cells  (Steenholdt  et  al.,  2009). Along  with  TLR8,  MAPK14  (p38)  is

important  in  regulating  intestinal  inflammation  (Broom  et  al.,  2009).  MAPK

upregulates the expression of some genes participating in intestinal inflammation, such

as those coding for TNF-, IL-1, IL-6, IL-8 and COX-2 (Bermudez-Brito et al., 2013).

In this context, TLR8 and MAPK14 were hypothesised as putative targets for Cant as

previous preclinical  studies with specific inhibitors of both TLR8 and MAPKs have

provided strong treatment efficacy in colitis experimental models (Broom et al., 2009).
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Therefore,  in  this  study  the impact  of Cant on  intestinal  inflammation was

further strengthened by a molecular  docking approach. Mesalazine and sulfasalazine

were  used  as  standard  therapeutic  drugs  to  treat  IBD  in  humans,  for  comparative

purposes.  Molecular interaction showed high binding affinity of Cant for MAPK14 (-

7,07 kcal/moL) and TLR8 (-7.41 kcal/moL) residues, with low docking energies, which

were more favourable than for mesalazine or sulfasalazine. Many studies confirmed that

molecules having high binding affinity with low docking energy for its target proteins

exhibit potential therapeutic efficacy (Yadav et al., 2013). So, our findings suggest that

Cant may also plausibly exert its therapeutic effect in IBD by modulating TLR8 and/or

MAPK14 or structurally and functionally similar target proteins.

In  conclusion,  Cant may  exert  potent  activity  against  UC  by  modulating

inflammatory mediators, by decreasing oxidative stress and by promoting the balance

between pro-  and anti-inflammatory cytokines.  Molecular  docking results  showed a

good  interaction  of  Cant with  residual  domains  of  protein  targets  upstream of  the

signalling  pathway  for  these  inflammatory  mediators,  such as  the  MAPK14 (p38)

enzyme and the TLR8 receptor, suggesting a putative molecular mechanism for  Cant

by inhibiting  these  targets.  Therefore, Cant may be  a  template  or  a  potential  drug

candidate for the treatment of IBD. Further clinical studies are necessary to validate the

use of  Cant for IBD treatment and to establish further detail about its mechanisms of

action.
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Figure. 1. Structure of canthin-6-one (6H-Indolo[3,2,1-de][1,5]naphthyridin-6-one), 
molecular formula: C14H8N2O, exact mass: 220.06.

Figure. 2. Effect of Cant pre-treatment on TNBS-induced colonic gross pathology: 
vehicle (Veh, 2% Tween-80 aqueous solution 10 mL/kg p.o.), canthin-6-one (Cant, 1; 5
or 25 mg/kg p.o.), mesalazine (Mesa 500 mg/kg p.o.) was administered to Wistar rats 
prior to colitis induction by TNBS. The results are expressed as medians and quartiles 
(Q1;Q3) for 8 animals/group. Statistical comparisons were performed using analysis of 
Kruskal-Wallis followed by Dunn’s test. ** p < 0.01 vs vehicle control. ### p < 0.001 vs 
sham. 

Figure. 3. Representative images of the histological analysis of the colon and 
histopathological changes of the mucosa (arrow), submucosa (arrowhead), muscle 
layer (curve arrow) in ulcerative colitis induced by 2,4,6-trinitrobenzene sulfonic 
acid (TNBS): (A) Colon cross section of sham animals demonstrating normal tissue 
architecture. (B) TNBS-treated colon sections showing intense inflammatory cell 
infiltration into the submucosa and disrupted epithelial and muscular layers. (C) Colon 
cross sections from rats pre-treated with 1 mg/kg canthin-6-one (Cant) followed by 
TNBS showing intense inflammatory cell infiltration. (D and E) Rats pre-treated with 
Cant at 5 and 25 mg/kg p.o., respectively followed by TNBS showing reduction of the 
inflammation in the lamina propria. (F) Animals pre-treated with mesalazine (500 
mg/kg p.o.) followed by TNBS showing a prominent reduction of immune cell 
infiltration into the submucosal layer, and also having intact epithelium and 
musculature. The sham group received distilled water (10 mL/kg, p.o.) and 250 µL of 
0.9% saline rectal instillation instead TNBS. Haematoxylin and eosin (H&E) staining. 
Bar = 50 μm. 

Figure. 4.  Histopathological changes in the colon mucosa following Cant pre-
treatment and TNBS-induced colitis. Effects of vehicle (Veh, 2% Tween-80 aqueous 
solution, 10 mL/kg, p.o.), canthin-6-one (Cant, 1; 5 and 25 mg/kg, p.o.) or mesalazine 
(Mesa, 500 mg/kg, p.o.) on histological changes in colon tissue from TNBS-induced 
colitis in rats. Histopathological changes were determined by damage scores from H&E 
stains: (A) mucosal damage score; (B) oedema score; (C) ulceration score; (D) necrosis 
score. The results are expressed as medians and quartiles (Q1;Q3) for 8 animals/group. 
The sham group received distilled water (10 mL/kg, p.o) and 250 µL of 0.9% saline 
rectal instillation instead TNBS. Statistical comparisons were performed using Kruskal-
Wallis analysis followed by Dunn test. *p < 0.05 vs vehicle group, ##p < 0.01, ###p < 
0.001 vs sham. Bar = 50 μm. 

Figure. 5. Representative PAS stained images of the colon following Cant. pre-
treatment and TNBS colitis induction: (A) Colon of sham rats exhibiting normal 
epithelial architecture and presence of goblet cells. (B) Colon sections from rats 
administered vehicle followed by TNBS alone, showing disruption of epithelial 
architecture and reduction of the presence of goblet cells. (C) Colon sections from rats 
pre-treated with 1 mg/kg canthin-6-one (Cant) followed by TNBS, showing epithelial 
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destruction and reduction of the presence of goblet cells. (D and E) Colon sections from 
rats pre-treated with Cant at 5 and 25 mg/kg respectively, followed by TNBS showing 
intact epithelium and intense presence of goblet cells. (F) Animals pre-treated with 
mesalazine (Mesa, 1 mg/kg p.o.), showing intact epithelium with intense presence of 
goblet cells. (G) Effects of vehicle (Veh, 2% Tween-80 aqueous solution, 10 mL/kg, 
p.o.), canthin-6-one (Cant 1; 5 and 25 mg/kg, p.o.) or mesalazine (Mesa, 500 mg/kg, 
p.o) pre-treatment on goblet cell abundance in colon tissue from TNBS treated rats. The 
sham group received distilled water (10 mL/kg, p.o.) and 250 µL of 0.9% saline rectal 
instillation instead TNBS. The results were expressed as medians and quartiles (Q1;Q3) 
for 8 animals/group. Statistical comparisons were performed using Kruskal-Wallis 
analysis followed by the Dunn test. *p < 0.05 and **p < 0.01 vs vehicle group, ##p < 
0.01 vs sham. Bar = 100 μm.

Figure. 6. Evaluation of antioxidant capacity: effects on stress oxidative parameters, 
(A) myeloperoxidase activity (MPO), (B) reduced glutathione levels (GSH) and (C) 
malonaldehyde accumulation (MDA), after vehicle (Veh, 2% Tween-80 aqueous 
solution, 10 mL/kg, p.o.), canthin-6-one (Cant 1; 5 and 25 mg/kg, p.o.) or mesalazine 
(Mesa, 500 mg/kg, p.o.) pre-treatments, followed by TNBS-induced colitis, in colon 
tissues from rats. The sham normal control group received only distilled water (10 
mL/kg, p.o). Values represent the mean ± standard error (S.E.M.) from 8 animals/group.
Statistical comparisons were performed using a one-way ANOVA followed by Student-
Newman-Keuls test for multiple comparisons. * p < 0.05, ** p < 0.01, *** p < 0.001 vs 
vehicle control. ### p < 0.001 vs sham. 

Figure. 7. Quantification of cytokine production: effects of vehicle (Veh, 2% Tween-
80 aqueous solution, 10 mL/kg, p.o.), canthin-6-one (Cant 1; 5 and 25 mg/kg, p.o.) or 
mesalazine (Mesa, 500 mg/kg, p.o.) on cytokines produced by rat colon tissues in 
response to TNBS-induced ulcerative colitis. (A) TNF-α, (B) IL-1β, (C) IL-12p70, (D) 
VEGF, and (E) IL-10. The sham group received distilled water (10 mL/kg, p.o) and 250
µL of 0.9% saline rectal instillation instead TNBS. Statistical comparisons were 
performed using a one-way ANOVA followed by the Student-Newman-Keuls test for 
multiple comparisons. * p < 0.05, ** p < 0.01, vs vehicle control, #p < 0.05,  ###p < 0.01, 
### p < 0.001 vs sham.

Figure. 8. Molecular docking analysis of the hydrogen bonding (HB) plots between 
Cant and (A) MAPK14 and (B) TLR8 residues. Best docking positions between 
canthin-6-one (Cant) (C) MAPK14 and (D) TLR8. The interacting residues of 
MAPK14 and TLR8 (grey, blue, red and yellow) and the structure of Cant (green) are 
represented using a “Cylinder” model. The residues of target proteins are represented 
using black dots whereas the red dots represent HB putative interactions with Cant. 
Colours’ in the Figure (C) and (D) represents the atoms: Carbon (grey), Oxygen (red), 
Nitrogen (blue), Sulphur (yellow).
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