
Detecting Selection on Segregating Gene Duplicates in a Population1

Tristan L. Stark (1,2, *), Rebecca S. Kaufman (1), Maria A. Maltepes (1), and David A. Liberles (1,*)2

1Department of Biology and Center for Computational Genetics and Genomics, Temple3

University, Philadelphia, PA 19122, USA4

2Current Address: Discipline of Mathematics, University of Tasmania, Hobart, Tasmania5

7001, Australia6

email contact: TLS: tristan.stark@utas.edu.au; DAL: daliberles@temple.edu7

Abstract8

Gene duplication is a fundamental process that has the potential to drive phenotypic differences be-9

tween populations and species. While evolutionarily neutral changes have the potential to affect pheno-10

types, detecting selection acting on gene duplicates can uncover cases of adaptive diversification. Existing11

methods to detect selection on duplicates work mostly inter-specifically and are based upon selection on12

coding sequence changes, here we present a method to detect selection directly on a copy number variant13

segregating in a population. The method relies upon expected relationships between allele (new dupli-14

cation) age and frequency in the population dependent upon the effective population size. Using both a15

haploid and a diploid population with a Moran Model under several population sizes, the neutral baseline16

for copy number variants is established. The ability of the method to reject neutrality for duplicates17

with known age (measured in pairwise dS value) and frequency in the population is established through18

mathematical analysis and through simulations. Power is particularly good in the diploid case and with19

larger effective population sizes, as expected. With extension of this method to larger population sizes,20

this is a tool to analyze selection on copy number variants in any natural or experimentally evolving21

population.22

1 Introduction23

A major goal in computational genomics is to uncover the intra- and inter-specific changes that affect24

organismal phenotypes, including those driven by selective forces. An extensive suite of methods exists25
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to characterize the fixation and divergence of point mutations (Anisimova & Liberles, 2012), but the26

methods developed to date aimed at studying gene duplicates have been mostly interspecific and based27

upon on patterns of sequence divergence (Conant & Wagner, 2003) or retention patterns over a phy-28

logeny (Arvestad et al., 2009; Tofigh et al., 2010; Yohe et al., 2019). There is a need for new methods29

that characterize selection on segregating copy number variants.30

Gene duplication affecting a single gene occurs through two predominant processes. Tandem du-31

plication leads to duplicate copies that may encompass the entire length of the gene and are initially32

found adjacent to one another on a single chromosome (Katju & Lynch, 2006). Transposition, including33

retrotransposition-mediated processes, is the other common mode of duplication, which leads to unlinked34

duplicate copies (Innan & Kondrashov, 2010).35

Evidence of gene duplication has been found in all three domains of life (Lynch & Force, 2000; J.36

Zhang, 2003). Within gene families, divergent function has been identified, suggesting gene duplication37

is an important contributor to genome diversification (Innan & Kondrashov, 2010). A dramatic case38

involves the convergent expansion of gene families through duplication in the devil worm and in oyster39

genomes in response to temperature stress (Guerin et al., 2019). Additionally, copy number variation40

(CNV) is known to be associated with disease (C. Zhang et al., 2013) and the ability to adapt to new or41

changing environments (Bornholdt et al., 2013; Perry et al., 2007). Despite the apparent importance of42

duplication in genomic evolution, the mechanisms by which gene duplicates are fixed and maintained in43

a population are not well understood, including the mutational state at the point of fixation.44

Gene duplication occurs in an individual and can be fixed or lost in the population. At the time of45

duplication, the frequency of the new locus in a haploid population will be 1/N and 1/2N in a diploid46

population. If the duplicated gene is selectively neutral, its probability of fixation is its frequency in the47

population. As redundant duplicates segregate, mutations can accumulate. In the absence of non-neutral48

forces, the probability of a single mutation going to fixation decreases as population size grows. Multiple49

functions and structures can affect the likelihood of individual genes losing function (pseudogenization),50

becoming subfunctionalized through partition of ancestral functions, or gaining a new function (neofunc-51

tionalization). (Force et al., 1999; Hughes, 1994; Lynch et al., 2001). Mutations that disrupt the function52

of non-redundant proteins will be selected against at a population genetic level (Ohno, 1970). Gene53

duplication provides new material for drift or selection to act on, and therefore has been proposed as a54

major driving force for functional diversification (Hughes, 1994; Ohno, 1970). Identical duplicates with55

redundant function allows natural selective pressures to be relaxed on both copies while still redundant.56

Reduced selective pressures on redundant copies of a locus may allow otherwise prohibited mutations to57

accumulate, potentially leading to novel functions (Hughes, 1994).58

Duplicates can be stably maintained in a population when they differ in some aspects of their func-59
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tion (J. Zhang, 2003). There is a high probability that random genetic drift will cause loss of any given60

duplicated gene. Most mutations in gene duplicates will be deleterious to function, although potentially61

selectively neutral when there are redundant copies. Loss of one copy is likely to be through fixation of62

a null mutation at the duplicated locus, leading to pseudogenization (Lynch & Force, 2000). Persistence63

of gene duplicates in the population may be driven by fixation of rare, beneficial mutations (neofunction-64

alization) (Ohno, 1970), subfunctionalization (Force et al., 1999) or dosage balance in cases where genes65

are duplicated together with interacting partners (Konrad et al., 2011).66

The origin of novel function is an important outcome of gene duplication. Positive selection speeds67

up fixation of nearly neutral substitutions that create a new, but weakly active function (J. Zhang,68

2003). In larger populations, positive selection is likely to supercede nearly neutral mutations as a69

driver for this process. In addition to selection on mutations in the duplicate copy, there can also be70

selection on the duplicate copy itself. Positive and negative fitness effects have been reported for gene71

duplicates in many different genes. Copy-number increase in the human salivary amylase gene (AMY1) has72

enabled adaptation to a high-starch diet (Perry et al., 2007) and segmental duplications of the chemokine73

gene CCL3L1 gene are associated with decreased susceptibility to HIV infection (Gonzalez et al., 2005).74

Methods to characterize selection on point mutations within duplicate genes are well established (for75

example, dN/dS, MacDonald-Kreitman tests, or population genetic outliers), whereas those that detect76

selection directly on copy number variants do not exist. Probabilistic models for inferring selection on gene77

duplicates have previously been described in an inter-specific context, but not intra-specifically (Konrad78

et al., 2011; Stark et al., 2017).79

Allele age can be defined as the duration of time a mutant allele has been segregating in a popula-80

tion (De Sanctis et al., 2017). Directional selection, both positive and negative, can lead to a functional81

allele that is younger than expected given its frequency (Platt et al., 2019). If not lost from the population,82

an allele under directional selection will reach a given frequency faster than a neutral allele (Maruyama,83

1974).84

Methods to detect selection on individual SNPs that are segregating in a population (Platt et al.,85

2019) rely on the complication of examination of tracts of identical descent that have not been interrupted86

by recombination to establish age. No such method exists for CNVs, but in principle, such methods can87

be much simpler because the coding sequence of the gene can accumulate synonymous mutations with88

time anywhere in its sequence. From this, a pairwise dS value is a natural measure of CNV age, with an89

assumption of the neutrality of synonymous mutations. This assumption is in some cases violated, but is90

reasonable and dS is commonly used as a molecular clock (Anisimova & Liberles, 2012).91

With this in mind, a continuous time Moran model (Moran, 1958) is proposed, to infer from duplicate92

age (measured in pairwise dS for the duplicate pair), the expected duplicate frequency in a population93

3



depending upon relevant population genetic and selective parameters. The Moran model is a stochastic94

model of mutational and selective processes that assumes a fixed population size (N) over generations and95

can be implemented in either a haploid or a diploid setting. At each instant when the state of the model96

may change, one gamete is chosen at random to die and is replaced by a new gamete with probabilities97

assigned to each genotype based on fitness and frequency in the population. Transitions in this Markov98

chain occur at the death of a single individual. Using this model, we test the null hypothesis of neutral99

evolution with the aim of building a method that enables detection of non-neutral processes acting on100

segregating duplicated genes based upon their age (measured in pairwise dS units) and their frequency in101

the population. This model has been implemented exactly in both haploid and diploid populations and102

is first described here. Future approximations will need to be introduced to enable extension to realistic103

population sizes to fit fungal, metazoan, plant, or other datasets.104

2 Methods105

We consider a locus which has only one allele at the time of duplication, so that the population starts with106

1 one individual having two unlinked copies of the gene, and N − 1 individuals having only a single copy.107

We present two population genetic models to model the subsequent evolution of such a population, one for108

the haploid case, and one for the diploid case. Both models are continuous-time Markov chains similar to109

the classic Moran model (Moran, 1958). We introduce a simple statistical test to detect selection based110

on this model with the underlying distribution derived from the population genetic model. The test111

compares the observed proportion of the population carrying the duplicate copy at a particular time to112

the distribution of proportions that would be attained by the model under neutrality, and can be extended113

to a time-series test to improve statistical power where such data would be available (for example from114

experimental evolution studies (Lauer et al., 2018)). The test itself is identical for the haploid and diploid115

cases, except that the underlying distribution is derived from the corresponding model.116

The two models share a common set of assumptions:117

• We assume that pseudogenization occurs at Poisson rate µp for each duplicate copy, and we model118

an individual with a pseudogenized copy as equivalent to an individual without the extra copy. E.g.119

if a haploid individual has two copies of the gene, one of which becomes pseudogenized, we then120

consider the individual to be equivalent to a ‘wild-type’ individual with a single copy.121

• We assume that neofunctionalization occurs at a Poisson rate µn for each duplicate copy, and always122

confers a fixed fitness benefit. We further assume that only one of the two loci (representing the123

original and duplicated copies) can become neofunctionalized, and we do not keep track of which is124

which.125
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• We assume that individuals in the population are replaced uniformly at random at Poisson rate 1,126

and that they are replaced by a new individual according to their relative fitness and haploid/diploid127

breeding regime — the individual to be replaced can participate in breeding their own replacement.128

Haploid model129

We model the haploid population as a continuous-time Markov chain with state space130

S = {(i, j) : i, j ∈ 0, . . . , N and i+ j ≤ N}, (1)

where i tracks the number of individuals carrying an unmodified duplicate copy of the gene in question,131

and j tracks the number of individuals carrying a duplicate copy which has become neofunctionalized.132

The number of single-copy ‘wild-type’ individuals is given by N − i− j.133

We let fd and fn denote the fitness of an individual with an unmodified and a neofunctionalized134

duplicate copy respectively, relative to the single-copy wild type. We allow fd to take any value greater135

than 0, and we can interpret different values of fd as corresponding to different biological processes.136

• fd < 1 represents a situation in which there is a cost to maintaining the duplicate that might be137

expected based upon the biosynthetic cost of maintaining and synthesizing products from an extra138

gene (Wagner, 2005).139

• fd > 1 represents the situation where dosage effects confer a selective benefit for increasing gene140

dosage, for example as might occur when the product is limiting in its pathway. The extra copy can141

lead to increased expression, and in turn improve some physiological function.142

• f = 1 is the neutral case, where the effects of biosynthetic cost and dosage are negligible.143

We will only consider cases here in which fn ≥ 1, representing neofunctionalization, although allowing144

fn < 1 does not break any of our modelling assumptions. We will however consider 1 ≤ fn < fd,145

representing a situation where the neofunctionalized copy is less beneficial than the dosage effect of146

maintaining an extra copy of the original gene.147

The process is characterized by its generator matrix148

Q = [q(i,j)(k,l)], (2)
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where the non-zero off-diagonals of Q are given by,149

q(i,j)(k,l) =



(N−i−j)
N

ifd
N−i−j)+ifd+jfn

for k = i+ 1, l = j

j
N

ifd
N−i−j)+ifd+jfn

for k = i+ 1, l = j − 1

(N−i−j)
N

jfn
N−i−j)+ifd+jfn

for k = i, l = j + 1

i
N

(N−i−j)
jfn)+ifd+jfn

+ iµn for k = i− 1, l = j + 1

j
N

(N−i−j)
N−i−j)+ifd+jfn

+ jµp for k = i, l = j − 1

i
N

(N−i−j)
N−i−j)+ifd+jfn

+ iµp for k = i− 1, l = j

(3)

In each case the first factor of the first term represents the death of an individual chosen uniformly, while150

the second factor represents the birth of their replacement, chosen dependent on the relative fitness of the151

replacement allele to the overall fitness of the population. The second term (where such exists) represents152

the effect of mutation.153

In the neutral case, where fd = fn = 1 the model can be simplified to a simple birth-and-death154

process, as in this case ‘neofunctionalization’ is no longer meaningful, and we need not track the number155

of neofunctionalized copies. Doing so allows for much more efficient computation for the neutral case,156

which is of primary concern in our test for selection.157

Diploid model158

The diploid model is similar to the haploid model, but there are six possible genotypes to consider:159

AA−−, AAA− , AAAA, AAA′-, AAAA′, AAA′A′, where A represents an unmodified copy, A′ represents160

a neofunctionalized copy, and − represents the absence of a copy. The idea here is that we think of two161

sets of loci, the original and the duplicated locus, with each of the two chromosomes initially having a162

single copy of the gene (AA−−). The copies on both chromosomes are assumed to be duplicated by the163

initial duplication event (AAAA) consistent with an origin through retrotransposition, and the remaining164

combinations come about through subsequent mating, and neofunctionalization. The state space of this165

model is the set of 5-vectors with natural valued entries summing to ≤ N ,166

S = {s ∈ N5 : s1 + s2 + s3 + s4 + s5 ≤ N}. (4)

In the interests of brevity we present the transition rates in a compact form as167

qs,s+ex−ey = pb(x|s)pd(y|s) + µnCn(s, x, y) + µpCp(s, x, y), (5)
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where s is the state of the process ex is a unit vector with 1 in the x entry, pb(x|s) is the probability that168

an individual of type x is born when the process is in state s, pd(y|s) is the probability that an individual169

of type y dies when the process is in state s, and Cn(·), Cp(·) are functions counting the number of ways170

in which s + ex − ey can be reached from s by neofunctionalization and pseudogenization respectively.171

The specifics of each function are easy to determine, but unwieldy when written out, so we omit them172

here.173

In this case, we parameterize selection in terms of the selection coefficients sd and sn, and we assume174

that175

fX = 1 + ndsd + nnsn, (6)

where X denotes a genotype, nd is the total number of duplicate copies, including neofunctionalized, while176

nn is the number of neofunctionalized copies. For example, fAAAA′ = 1+2sd+1sn. Effectively, we assume177

that any selective benefit conferred from a duplicate copy is also conferred to a neofunctionalized copy,178

ontop of any benefit conferred from the neofunctionalization, and that the selective effects are additive.179

This parameterization allows us to consider all of the same underlying biology as discussed in the haploid180

case, but we keep the number of model parameters low by now explicitly assuming additive effects. Figure181

1 shows a conceptual diagram of this rationale, where we think of some physiological function increasing182

with gene dosage towards an asymptote. The relationship between function and dosage can be thought183

of as having two modes, a ‘linear’ mode, where function is well approximated as linearly increasing in184

dosage, and a ‘saturation’ mode, in which increasing dosage results in little to no increase in function.185

This then leads to additive selection as parameterized here, where sd > 0 corresponds to the linear mode,186

and sd = 0 corresponds to the saturation mode. To model the situation in which a neofunctionalized187

copy is less beneficial than an extra copy of the original gene, we allow for −sd < sn < 0, representing188

the difference in benefit conferred from neofunctionalization and dosage.189

Similarly to the haploid model, the diploid model can be reduced significantly in the neutral case.190

Discarding neofunctionalization there are only three genotypes to consider, AA−−, AAA− and AAAA.191

This leads to a model with state space192

S = {(i, j) : i, j ∈ 0, . . . , N and i+ j ≤ N}, (7)

where i tracks the number of double-duplicate (AAAA) individuals, and j tracks the number of single-193

duplicate individuals (AAA−). In this case, the non-zero off-diagonals of the generator Q are given194
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by195

q(i,j)(k,l) =



(N−i−j)
N

pb(AAAA|(i, j)) for k = i+ 1, l = j

j
N
pb(AAAA|(i, j)) for k = i+ 1, l = j − 1

i
N
pb(AAA− |(i, j)) + 2iµp for k = i− 1, l = j + 1

(N−i−j)
N

pb(AAA− |(i, j)) for k = i, l = j + 1

i
N
pb(AA−−|(i, j)) for k = i− 1, l = j

j
N
pb(AA−−|(i, j)) + jµp for k = i, l = j − 1

(8)

where pb(X|(i, j) denotes the probability that when a birth occurs it is of an individual with genotype196

X given that the current state is (i, j). We assume that the population is monoecious (equivalent to a197

dioecious population without sex biased allele frequencies), that individuals cannot mate with themselves,198

and that the offspring receives a copy of the gene from each parent at each of the original and duplicated199

locus, including the possibility of inheriting the absence of any gene at that locus.200

pb(X|(i, j) =



i
N

(i−1)
(N−1)

+ 1
4

j
N

j−1
N−1

+ j
N

i
N−1

for X = AAAA

j
N

N−j−i
N−1

+ j
N

i
N−1

+ 1
2

j
N

j−1
N−1

+ 2 i
N

N−j−i
N−1

for X = AAA−

N−j−i
N

N−j−i−1
N−1

+ j
N

N−j−i
N−1

+ 1
4

j
N

j−1
N−1

for X = AA−−

(9)

Recall that under our model, replacement of individuals occurs at Poisson rate 1 and thus the time to201

replace N individuals is Erlang distributed, and has expectation N . We therefore say that the ‘generation202

time’ under the model is N , but note that this is the time expected to replace N individuals, not the203

expected time after some time t to replace all individuals who were present at t. The expected time for204

any particular individual to be replaced is 1/N .205

Note also that the models do not include new duplication events. Rather it is assumed that we206

start with a duplicate copy and track the subsequent evolution of the population assuming no further207

duplication events occur. A consequence of this is that the models have an absorbing structure, and208

permanent fixation of the duplicate is only possible if µp = 0. When µp > 0 the new duplicate must209

eventually go extinct since in this case only the state (0, 0) is absorbing. However selection acts to increase210

(or decrease) the timescale over which a duplicate segregates in the population. In the case of strong211

selection, the time it takes for the duplicate to go extinct could be much larger than the timescales under212

consideration here.213
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Testing for selection214

To test for selection, we evaluate the 95% prediction band for the proportion of haploids carrying a215

duplicate copy under the reduced (neutral) model, given that the duplicate copy has not yet gone extinct.216

If the observed proportion of duplicates in a population falls outside of this region, we can reject the217

hypothesis of neutrality at the 95% significance level, under the assumptions of our models. Further, we218

can in principle calculate the prediction bands and expectation for non-neutral models in order to gauge219

the power of the test to detect selection. We can evaluate the probability of false negatives for given220

fitness (under the modelling assumptions) by calculating the probability that the proportion of haploids221

carrying a duplicate copy in the model with selection falls within the prediction bands of the neutral222

model. However, since the models with selection are less computationally tractable than the neutral223

population, this is only possible for small population sizes at present. We anticipate that approximations224

will be forthcoming that allow this to be extended to large populations. However at the time of publication225

we have not investigated such approximations.226

One important consideration is the tuning of the parameter up. The reduced model for the neutral227

case has only two parameters, N , and up. The parameter N is likely to be known to reasonable accuracy.228

TreatingN as fixed, up is solely responsible for tuning the model behaviour, and its value will be dependent229

on the organism and gene under study. A reasonable estimate of up can be obtained by considering the230

target size for pseudogenizing mutations and becomes a scalar from the background substitution rate231

dS in the organism and loci under study. Compared to the mutational opportunity for synonymous232

substitutions per synonymous site (see for example, Nei and Gojobori (1986)), the number of mutations233

that would introduce an early stop codon leading to a nonfunctional truncated protein, cause a protein to234

not fold, hit a functional residue, or hit a core region of the promoter sequence that affects all expression235

domains could be quantified. For our purposes here, this number was set at 35, but a more precise and236

specific estimate will ultimately be necessary when fitting the model to genomic data. The background237

substitution rate, dS, could be evaluated for example using PAML for any pair of duplicates (Yang,238

2007). It is also, in principle, possible to obtain an empirical rather than a theoretical estimate of the239

pseudogenization rate when full population (genomic and transcriptomic) sequencing exists by observing240

and counting the number of pseudogenized copies of the duplicate that are segregating.241

The models described here, particularly the diploid model with selection, have very large sparse gen-242

erator matrices which require special computational consideration. The software package expokit (Sidje,243

1998) largely solves these problems for small N (on the order of 1000 in the diploid case), and we used244

a modified version of the MATLAB implementation of expokit for our analysis. Work is underway to245

find suitable approximations for large N , but the test for selection itself is tractable in the haploid case246

for N = 100, 000 and in the diploid case for N = 10, 000 thanks to the reduced neutral models discussed247
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above and the use of expokit.248

3 Results249

A test for selection on copy number variants in a population has been devised. The neutral expectation and250

its confidence intervals have been generated for both haploid (N=1000, 100,000) and diploid populations251

(N=1000). Under a range of selective conditions, both individual realizations and the expectation are252

presented for both types of population. We also explicitly calculate the probability of correctly rejecting253

the neutral hypothesis for samples of an example haploid population taken at different times since the254

duplication event.255

Realizations in a Diploid Population256

We calculated the conditional (on survival of the duplicate) expected proportion and 95% prediction257

bands for a diploid population of N = 1000 individuals (2000 haploid genomes) with a very low rate of258

pseudogenization (µp = 10−10). Figure 2 shows this example overlaid with 10 simulated sample paths with259

the same parameters, but with a high rate of highly beneficial neofunctionalization (un = 10−6, sn = 0.1).260

In all 10 simulations the duplicate fixes in the population sooner or later. The shaded region shows the261

neutral prediction band, outside of which our test for selection rejects the hypothesis of neutrality. After262

100 generations (dS ≈ 3 × 10−7) half of the simulations have reached duplicate proportions outside of263

the prediction band, indicating that a sample taken from these populations after this time would reject264

neutrality. The remaining simulations reach such proportions around by the time of the 200th generation265

(dS ≈ 6× 10−7).266

In this example the rate of neofunctionalization is fast compared to pseudogenization (and hence also267

compared to our timescale dS, which scales with up). The initial neofunctionalization happened quickly268

in each case, and the neofunctionalized copies quickly spread through the population. The low rate of269

pseudogenization also results in the prediction band for the neutral case becoming very wide very quickly,270

but the high rate of neofunctionalization provides a window during which selection is easily detected.271

Realizations in a Haploid Population272

We repeated the simulation procedure for a haploid population of N = 105 individuals with a moderately273

high pseudogenization rate (up = 10−7). with relatively small selective effects (fd = 1.01, fn = 1.02). In274

this case the prediction band stays fairly narrow, however the majority of the 10 sample paths remain275

inside the prediction band, meaning that we would fail to detect the selection in most of these simulated276

populations. Figure 3 shows the results of this simulation.277
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In contrast, when we simulated another 10 sample paths with fd = 1.05, fn = 1.1, 9 out of 10 sample278

paths were well outside of the prediction interval by time ds = 0.025, as shown in Figure 4. Furthermore,279

setting fd = 0.95 resulted in an even more pronounced effect, with all 10 sample paths quickly exceeding280

the upper prediction interval by several orders of magnitude and the largest proportion of duplicates281

reached by the end of the simulation being ≈ 0.5. The results for this example are shown in Figure 5282

Power to detect selection283

To better gauge the power of the test, we calculated conditional expectations and prediction bands for284

the model with selection under some different parameterizations. Figure 6 shows several examples. We285

can see from Figure 6 that the test is unlikely to detect negative selection acting on copy number alone, as286

the two different prediction bands almost entirely overlap. However, negative selection on copy number287

increases the probability of detecting selection in the presence of beneficial neofunctionalization, as can288

be seen in the middle columns of figure 6. As selection on the copy number becomes positive, we see a289

significant difference in the two regions, indicating that our test is likely to be able to detect selection.290

For times after which the two regions no longer overlap, there is a 95% chance that samples from the291

selected population would fall outside the 95% prediction band of the neutral model, and the test would292

thus correctly reject the hypothesis of neutrality. Increasing the selective benefit of neofunctionalization293

results in a similar picture. Where the two prediction bands overlap we can expect the test to be somewhat294

unreliable, and to correctly reject neutrality in less than 95% of samples.295

In terms of the biology underlying the parameterization, fd < 1 reflects the biosynthetic cost of296

maintaining an extra copy in the genome (Wagner, 2005) whereas fd > 1 reflects a fitness advantage from297

the linear response region in Figure 1, as was seen with extra copies of amylase in the human population298

associated with eating a high starch diet (Perry et al., 2007). fn > 1 reflects an advantage to a new299

function based upon a new mutation arising. The case where fd > fn reflects the case where the new300

function associated with the new mutation provides less of an advantage than extra copies of the original301

gene, associated presumably with a greater concentration of the encoded protein in relevant cell types.302

The power of the test to detect selection of a given magnitude at any point in time can also be303

calculated explicitly by finding the probability that a sample taken at that time will fall within the304

prediction band of the neutral model. Figure 7 shows a graph of the probability that a sample taken from305

a haploid population with parameters N = 1000, fd = 0.9, fn = 1.1, up = 10−5, un = 10−6 will result in306

the rejection of neutrality under our test. The shape of the curve is similar for other parameters, with the307

strength of selection (and population size) being the main determining factors for how long a duplicate308

must have been segregating before the test becomes reliable.309
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4 Discussion310

A new approach for characterizing selection on segregating gene duplicates (copy number variants of311

CNVs) has been established based upon the expected relationship between an allele’s age and its frequency312

in a population when segregating neutrally. This approach characterizes selection on the duplicate copy313

itself rather than on mutations that occur within the duplicates while segregating. While many models314

for duplicate gene retention assume that fixation of the duplicate copy occurs before fate determining315

mutations under selection begin to act (Innan & Kondrashov, 2010), this assumption may be violated316

frequently for a number of reasons, most particularly when mutation rates and/or effective population317

sizes are large. These are the scenarios when this method has particular power to reject neutrality.318

Similar approaches have recently been applied to characterize selection on SNPs segregating in a319

population (Platt et al., 2019). In those scenarios, characterizing the age of an allele depends upon320

characterizing tracts of identity by descent. Here, characterization of allele (duplicate) age is much321

simpler, relying only upon the pairwise dS value between the copies. More complex schemes to examine322

selection on CNVs have been presented (Itsara et al., 2010), but use orthogonal information to that used323

in this method.324

In this paper, in addition to presenting the neutral baseline and prediction bands about it, we have325

analyzed the statistical power of the test under a number of simple but realistic selective schemes and326

presented cases where one would expect to have the power to reject neutrality. The cases where one expects327

this method to have sufficient power include population sizes much smaller than would be expected for328

most species of interest to the population ecology/ecological genomics community.329

While the approach presented here is an exact solution that has not yet reached population sizes that330

are reflective of those for many eukaryotic populations of interest, approximations to the neutral baseline331

are currently under development that will enable generation of the test statistic to compare to population332

ecological genomic data for any species of interest. The work here lays the basic science foundations for333

such a future application.334
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Figure 1: A conceptual diagram of the relationship between physiological function (where fitness and selection
relate directly to gene product concentration) and gene dosage (hence, copy number).
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Figure 2: Conditional expected proportion (dashed line) of haploid genomes in a diploid population of
N = 1000 individuals with a duplicated copy under neutrality (up = 10−10), overlaid with 10 simulated
populations experiencing positive selection (un = 10−6, sn = 0.1). The neutral prediction band is shaded.
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Figure 3: Conditional expected proportion of haploid genomes (dashed line) in a haploid population of
N = 105 individuals with a duplicated copy under neutrality (up = 10−7). Overlaid are 10 simulated popu-
lations experiencing mild dosage selection and with a moderate rate of mildly beneficial neofunctionalization
(un = 10−8, fd = 1.01, fn = 1.02). The neutral prediction band is shaded.
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Figure 4: Conditional expected proportion of haploid genomes (dashed line) in a haploid population of N =
105 individuals with a duplicated copy under neutrality (up = 10−7). Overlaid are 10 simulated populations
experiencing moderate dosage selection and with a moderate rate of highly beneficial neofunctionalization
(un = 10−8, fd = 1.05, fn = 1.1). The neutral prediction band is shaded.
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Figure 5: Conditional expected proportion of haploid genomes (dashed line) in a haploid population of N =
105 individuals with a duplicated copy under neutrality (up = 10−7). Overlaid are 10 simulated populations
experiencing moderate dosage selection and with a moderate rate of highly beneficial neofunctionalization
(un = 10−8, fd = 0.955, fn = 1.1). The neutral prediction band is shaded.
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Figure 6: Comparison of conditional expectations and prediction bands between the neutral haploid model
and haploid model with selection for several fitness parameters (N = 1000, µp = 10−5, µn = 10−6). fn is
increasing in the columns, while fd is increasing in the rows.
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Figure 7: Probability of correctly rejecting neutrality under the haploid model with N = 1000, fd = 0.9, fn =
1.1, up = 10−5, un = 10−6.
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