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ABSTRACT
In this paper, an identical approximate regularization method is extended to the
Cauchy problem of two-dimensional heat conduction equation, this kind of problem
is severely ill-posed. The convergence rates are obtained under a priori regulariza-
tion parameter choice rule. Numerical results are presented for two examples with
smooth and continuous but not smooth boundaries, and compared the identical
approximate regularization solutions which are displayed in paper. The numerical
results show that our method is effective, accurate and stable to solve the ill-posed
Cauchy problems.
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1. Introduction

In many industrial heat transfer situations, one wishes to determine the temperature
from transient temperature measurement at one or more interior locations. Especially,
during the past several decades many researchers were interested in the special case
of estimating a surface condition from interior measurements which has be known as
the inverse heat conduction problem (IHCP). Mathematically, the IHCP is ill-posed
or improperly-posed in the concept of Hadamard [1]. The Cauchy problem of one-
dimensional heat equation has been widely researched over the last decades [2, 3].
Relatively, the results on ill-posed heat conduction equation in the 2D case are few.
Ref.[4–6] used Fourier method, simplified Tikhonov regularization method, modified
kernel method respectively, to solve problem (1). Liu [7] utilized a revised Tikhonov
regularization method for a Cauchy problem of 2D heat conduction equation.

In this paper, we propose an identical approximation regularization method to treat
the following Cauchy problem of the two-dimensional heat conduction equation in semi
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infinite plate: 

ut = uxx + uyy, 0 < x < 1, y > 0, t > 0,

u(0, y, t) = g(y, t), y ≥ 0, t ≥ 0,

ux(0, y, t) = 0, y ≥ 0, t ≥ 0,

u(x, y, 0) = 0, 0 ≤ x ≤ 1, y ≥ 0,

u(x, 0, t) = 0, 0 ≤ x ≤ 1, t ≥ 0,

u(x, y, t)|y→∞ bounded, 0 ≤ x ≤ 1, t ≥ 0.

(1)

Assume that u(x, y, t) ≡ 0, for ∀ 0 ≤ x ≤ 1, (y, t) ∈ {(y, t) : y < 0, t < 0}, and we
suppose throughout the paper that all the functions involving x belong to Sobelov
space Hp(R2) for some p ∈ R and that the Cauchy data g is given inexactly by gδ

satisfying

‖g − gδ‖p ≤ δ. (2)

and there holds the following a priori bound,

‖u(1, ·, ·)‖p ≤ E, (3)

where E is a finite positive constant, and ‖ · ‖p always denotes the Sobolev-Hp norm,
i.e.

‖f‖p := (

∫
R2

|f̂(ω, η)|2(1 + ω2 + η2)pdωdη)1/2, (4)

where, f ∈ L2(R2), and f̂(ω, η) is the Fourier transform of function f(x, y) respect to
the variable (x, y) ∈ R2,

f̂(ω, η) =
1

2π

∫
R2

f(x, y)e−i(ωx+ηy)dxdy, (ω, η) ∈ R2.

We will see in the following text that the Cauchy problem (1) is severely ill-posed.
So a suitable regularization method should be used. The character of the regulariza-
tion method depends largely on the selection of regularization parameters, Therefore,
the appropriate regularization parameter selection plays an important role in the reg-
ularization methods.

Definition 1.1. (see [8]) A regularization parameter µ = µ(δ) is called admissible if
µ(δ)→ 0 and

sup{‖Tµ(δ)y
δ − x‖ : yδ ∈ Y, ‖Tx− yδ‖ ≤ δ} → 0, δ → 0,

for every x ∈ X. Where T is a linear compact operator between Hilbert spaces X and
Y over the field K = R or C, and Tµ(δ) : Y → X is a regularization strategy of a family
of linear and bounded operators, such that lim

µ→0
Tµ(δ)Tx = x, for all x ∈ X.

Manselli, Miller [2] and Murio [3, 9] used the mollification method with the Weier-
strass kernel to solve inverse heat conduction problem(IHCP). Hào [10, 11] generalized
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their works with de la Vallée Poussin kernel and Dirichlet kernel. However, the reg-
ularization parameters µ which established on the Dirichlet kernel and de la Vallée
Poussin kernel in Ref. [10, 11] are increasing with the decrease of noise data δ, which
means that the selection of regular parameters does not consistent with definition 1.1.
We modify the Dirichlet kernel and de la Vallée Poussin kernel of Ref.[10, 11], and find
that the modified Dirichlet operator and modified de la Vallée Poussin operator be-
longs to the identical approximation operator. As it turns out that the regularization
parameter which we propose, meets the need of definition 1.1.

The convolution method which was proposed firstly by Wei in Ref.[12], is related to
the mollification method, but there is an essential difference. The convolution method
aims at mollifying the equation but the mollification method aims at mollifying the
improper data. We note that the kernels which were used in the mollification method
and convolution method are consistent with identical approximation kernel. Therefore,
we present the following definition.

Definition 1.2. (see [13, 14]) Suppose that T is the measurement function in Rn,
parameter µ > 0 and operator Tµ(x) = µ−nT (x/µ). Let X ∈ Rn is the subset of the
all measurement functions. In a sense of convergence, for any f ∈ X, there hold

f ∗ Tµ → f, µ→ 0. (5)

Then T is called the identical approximation kernel in X, and the operator Tµ : f | →
f ∗ Tµ is called the identical approximation operator in X.

If a identical approximate operator is applied to mollify the equation or mollify
the improper data. We call the regular method that corresponding to this operator is
identical approximate regularization method.

Some choices for the identical approximation operators:

(1) The Gaussian identical approximation operator [15]:

Gµ(x) =
1

(µ
√
π)n

n∏
j=1

e−(
xj

µ
)2 . (6)

The Fourier transform Ĝµ(ξ) of Gµ(x) is

(2π)n/2Ĝµ(ξ) =

n∏
j=1

e−
µ2ξ2

4 .

(2) The Dirichlet identical approximation operator:

Dµ(x) =
1

πn

n∏
j=1

sin(xj/µ)

xj
. (7)

It’s Fourier transform is [16]:

(2π)n/2D̂µ(ξ) =

{
1, 4µ = {ξj |ξj | < 1/µ},
0, |ξ| ≥ 1/µ,
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(3) The de la Vallée Poussin identical approximation operator:

Vµ(x) = (
µ

π
)n

n∏
j=1

cos(xj/µ)− cos(2xj/µ)

x2
j

. (8)

It’s Fourier transform is [16]

(2π)
n

2 V̂µ =

n∏
j=1

λ(ξj),

where,

λ(ξj) =


1, |ξj | < 1/µ,

2− µξj , 1/µ < |ξj | ≤ 2/µ,

0, |ξj | > 2/µ.

Here, x = (x1, x2, · · · , xn), µ > 0 is regularization parameter.

Remark 1. Let T (x) denotes the identical approximate kernel, and Tµ(x) denotes
the identical approximate operator, then

∫
Rn T (x)dx = 1 and

∫
Rn Tµ(x)dx = 1 holds.

Adapting the Fourier transform respect to the variables (y, t) to problem (1), we
obtain

û(x, ω, η) = ĝ(ω, η) cosh(βx), (9)

where,

β :=
√
ω2 + iη =

√√
ω4 + η2 + ω2

2
+ isign(η)

√√
ω4 + η2 − ω2

2
.

Noting equality (9), the function cosh(µx) is unbounded when |ω| → ∞, |η| → ∞. So
problem (1) is severely ill-posed.

In the present paper, we are to develop an efficient and stable identical approximate
regularization method for the solution of the Cauchy problem associated with problem
(1).

The remainder of the paper is organized as follows: In section 2, we apply the
identical approximate regularization method to solve problem (1), and is devoted to
some stable estimates in 0 < x ≤ 1 under the assumption of a priori bound. The
efficiency of the method is demonstrated in section 3, where, together with a detailed
description of the algorithm, we present the results of two numerical experiments. A
summary and some conclusions are presented in section 4.

2. Identical approximate regularization method

Instead of solving the problem (1) with the data g(x, y), we will solve the following
problem with the (Vµ ∗ gδ)(x, y), where, gδ(x, y) is the noise data. We denote the
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solution of the following modified problem by uµ,δ, which satisfies the system:

uµ,δt = uµ,δxx + uµ,δyy , 0 < x < 1, y > 0, t > 0,

uµ,δ(0, y, t) = (Tµ ∗ gδ)(x, y), y ≥ 0, t ≥ 0,

uµ,δx (0, y, t) = 0, y ≥ 0, t ≥ 0,

uµ,δ(x, y, 0) = 0, 0 ≤ x ≤ 1, y ≥ 0,

uµ,δ(x, 0, t) = 0, 0 ≤ x ≤ 1, t ≥ 0,

uµ,δ(x, y, t)|y→∞ bounded, 0 ≤ x ≤ 1, t ≥ 0.

(10)

By similar method to solving problem (1), the solution of the problem (10) is:

ûµ,δ(x, ω, η) = ˆ(Tµ ∗ gδ)(ω, η) cosh(βx).

We need following lemma.

Lemma 2.1. ([17]) a ≥ b ≥ 0, x ≥ 0, σ = sign(η), η ∈ R, then we have

(1) | cosh(a+ iσb)| ≥
√

1−2e−
π
2

2 ea;
(2) | cosh(x(a+ iσb))| ≤ exa.

We will consider the following two identical approximate operators and their regu-
larization methods.

2.1. Dirichlet identical approximate operator and error estimates

If we take the identical approximate operator as the Dirichlet operator, we get the
error estimates as follows:

Theorem 2.2. Suppose that u(x, y, t) is the exact solution of problem (1), and
uµ,δ(x, y, t) is the regular solution of problem (1) with modifying data by Dirichlet iden-
tical approximate operator. Assumptions (2) and (3) are satisfied, then for 0 < x < d,
we have the following error estimate:

‖u− uµ,δ‖p ≤ 8Ece−
(1−x)√

2µ + δe2x/µ. (11)

If the regularization parameter is selected by

µ =
2

ln(E/δ)
, (12)

then for the sufficiently small δ, we have a convergence estimate

‖u− uµ,δ‖p ≤ 8cE1− 1−x
2
√

2 δ
1−x
2
√

2 + Exδ1−x, (13)

where, c = 2√
1−2e−

π
2

.
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Proof. According to the property of the integral, there is

‖u− uµ,δ‖2p =

9∑
k=1

∫ ∫
Dk

|û− ûµ,δ|2(1 + ω2 + η2)sdωdη

=

8∑
k=1

∫ ∫
Dk

|û|2(1 + ω2 + η2)sdωdη +

∫ ∫
D9

|û− ûµ,δ|2 cosh2(βx)(1 + ω2 + η2)sdωdη

=

8∑
k=1

∫ ∫
Dk

|P (x, ω, η)û|2(1 + ω2 + η2)sdωdη+∫ ∫
D9

| cos(βx)(ϕ̂− ϕ̂δ)|2(1 + ω2 + η2)sdωdη.

Here, for every Dk, k = 1, 2, · · · , 9 (see Figure 1,where α = 1/µ )

Fig. 1. For every Dk (k = 1, 2, · · · , 9)

D1 = (−∞,−1/µ)× (−∞,−1/µ), D2 = (−1/µ, 1/µ)× (−∞,−1/µ),

D3 = (1/µ,+∞)× (−∞,−1/µ), D4 = (1/µ,+∞)× (−1/µ, 1/µ),

D9 = (−1/µ, 1/µ)× (−1/µ, 1/µ), D8 = (−∞,−1/µ)× (−1/µ, 1/µ),

D7 = (−∞,−1/µ)× (1/µ,+∞), D6 = (−1/µ, 1/µ)× (1/µ,+∞),

D5 = (1/µ,+∞)× (1/µ,+∞).
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and equality

P (x, ω, η) =
cos(βx)

cosh(β)
(ω, η ∈ R),

where,

β =
√
ω2 + iη =

√√
ω4 + η2 + ω2

2
+ isign(η)

√√
ω4 + η2 − ω2

2
.

We have

‖u− uµ,δ‖2p ≤
8∑

k=1

(sup
Dk

|P (x, ω, η)|)2‖û(1, ·, ·)‖2p + δ2(sup
D9

| cos(βx)|)2.

In D1 = (−∞,−1/µ)× (−∞,−1/µ), by using Lemma 2.1, we have√√
ω4 + η2 + ω2

2
≥

√√
1/µ4 + 1/µ2 + 1/µ2

2
≥

√√
1/µ2 + 1/µ2

2
= 1/µ.

Then, in D1 there is,

P (x, ω, η) ≤ exa√
1−2e−

π
2

2 ea
= ce−(1−x)/µ,

where,

c =
2√

1− 2e−
π

2

, a =

√√
ω4 + η2 + ω2

2
.

Similarly, in the domains D3, D5, D7, we can also obtain P (x, ω, η) ≤ ce−(1−x)/µ.
And

a =

√√
ω4 + η2 + ω2

2
≥

√√
0 + 1/µ2 + 0

2
=

1√
2µ
, (ω, η) ∈ D2,

consequently

P (x, ω, η) ≤ ce−(1−x)/
√

2µ, (ω, η) ∈ D2.

a =

√√
ω4 + η2 + ω2

2
≥

√√
0 + 1/µ4 + 1/µ2

2
= 1/µ, (ω, η) ∈ D4,

P (x, ω, η) ≤ ce−(1−x)/µ, (ω, η) ∈ D4;
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a ≤

√√
1/µ4 + 1/µ2 + 1/µ2

2
≤
√

1/µ+ 1/µ2 + 1/µ2

2
≤
√

1/µ+
√

1/µ, (ω, η) ∈ D9,

v(x, ω, η) = cosh(µx) ≤ exa ≤ ex(1/µ+
√

1/µ) ≤ ex(1/µ+
√

1/µ), (ω, η) ∈ D9.

By inequality
√
A+B <

√
A+
√
B (A > 0, B > 0) and the property of v(x, ω, η),

we have

‖u− uµ,δ‖p =

8∑
k=1

sup
Dk

|P (x, ω, η)|‖û(1, ·, ·)‖p + δ sup
D9

|v(x, ω, η)|

≤ 4Ece−
(1−x)
µ + 4Ece−

(1−x)√
2µ + δex(1/µ+

√
1/µ)

≤ 8Ece−
(1−x)√

2µ + δex(1/µ+
√

1/µ).

For
√

1/µ < 1/µ, (0 < µ < 1), then we have

‖u− uµ,δ‖p ≤ 8Ece−
(1−x)√

2µ + δe2x/µ.

If we take the regularization parameter as µ = 2
ln(E/δ) , the following estimate holds

‖u− uµ,δ‖p ≤ 8cE1− 1−x
2
√

2 δ
1−x
2
√

2 + Exδ1−x.

Theorem 2.3. Suppose that u(1, y, t) is the exact solution of problem (1), and
uµ,δ(1, y, t) is the regular solution of problem (1) with modifying data by Dirich-
let identical approximate operator. Assumptions (2) and (3) are satisfied, then with
µ = 4

ln(E/δ) , we have the following error estimate:

‖u(1, ·, ·)− uµ,δ(1, ·, ·)‖p ≤ 8E(
4

ln(E/δ)
)r−s + δ1/2E1/2 → 0, δ → 0+. (14)

Proof. Similar proof with the Theorem 2.2, we have

‖u(1, ·, ·)− uµ,δ(1, ·, ·)‖2p

=

9∑
k=1

∫ ∫
Dk

|û(1, ω, η)− ûµ,δ(1, ω, η)|2(1 + ω2 + η2)pdωdη

=

8∑
k=1

∫ ∫
Dk

|û(1, ω, η)|2(1 + ω2 + η2)pdωdη+∫ ∫
D9

|û(1, ω, η)− ûµ,δ(1, ω, η)|2(1 + ω2 + η2)pdωdη.
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Let

q(ω, η) =
1

(1 + ω2 + η2)
r−p
2

(ω, η ∈ R).

By the property of the integral, there is

‖u(1, ·, ·)− uµ,δ(1, ·, ·)‖2p

≤
8∑

k=1

(sup
Dk

|q(ω, η)|)2‖û(1, ·, ·)‖2p + δ2(sup
D9

|v(x, ω, η)|)2.

Here, Dk (k = 1, 2, · · · , 9) are same as Theorem 2.2.
By using the inequality

√
A+B + C <

√
A +

√
B +

√
C (A,B,C > 0) and the

monotonicity of function q(ω, η), we have

‖u(1, ·, ·)− uµ,δ(1, ·, ·)‖p

≤
8∑

k=1

sup
Dk

|q(ω, η)|‖û(1, ·, ·)‖p + δ sup
D9

|v(x, ω, η))|

≤ 8E

(1 + 1/µ2)
r−p
2

+ δe2/µ ( r > p ≥ 0).

If we choose the parameter µ = 4
ln(E/δ) , and use 1+1/µ2 > 1/µ2, then the convergence

estimate (14) can be arrive at.

Remark 2. When p = 0, the above results in the Sobolev space return to the con-
clusions of L2(R2) = H0(R2) space.

2.2. De la Vallée Poussin identical approximate operator and error
estimates

Theorem 2.4. Let u(x, y, t), uµ,δ(x, y, t) be the exact solution and the de la Vallée
Poussin regularization solution of 2D heat conduction problem (1), respectively. Sup-
pose that g is given approximately by gδ with (2) and bound ‖u(d, ·, ·)‖p ≤ E hold,
then with regularization parameter µ = 2

ln(E/δ) the following stability estimate holds

‖u− uµ,δ‖p ≤ 59cE1− 1−x
2
√

2 δ
1−x
2
√

2 + Exδ1−x. (15)

Here, C = 59E C1

C2
+ 36C1.
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Proof. According to the property of integral, there is

‖u− uµ,δ‖2p =

25∑
k=1

∫
Dk

|û− ûµ,δ|2(1 + ω2 + η2)sdωdη

=

16∑
k=1

∫
Dk

|û|2(1 + ω2 + η2)sdωdη +

25∑
k=17

∫
Dk

|û− ûµ,δ|2(1 + ω2 + η2)sdωdη

≤ E2
16∑
k=1

(sup
Dk

|A(ω, η)|)2 +

25∑
k=17

∫
Dk

|(ĝ − ˆ(Tµ ∗ gδ))B(ω, η)|2(1 + ω2 + η2)sdωdη.

Here, R2 =
25⋃
k=1

Dk (see Fig.2 , α = 1/µ).

Fig. 2. For every Dk (k = 1, 2, · · · , 25)

A(ω, η) =
cosh(βx)

cosh(β)
, B(ω, η) = cosh(βx), (ω, η ∈ R).
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and

25∑
k=17

∫
Dk

|(ĝ − ˆ(Tµ ∗ gδ))B(ω, η)|2(1 + ω2 + η2)sdωdη =∫
D17

|(ĝ − (2− µω)(2− µη)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D18

|(ĝ − (2− µη)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D19

|(ĝ − (2− µω)(2− µη)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D20

|(ĝ − (2− µω)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D21

|(ĝ − (2− µω)(2− µη)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D22

|(ĝ − (2− µη)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D23

|(ĝ − (2− µω)(2− µη)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D24

|(ĝ − (2− µω)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη+∫
D25

|(ĝ − ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη.

It is easy to get 9 < (2− µω)(2− µη) < 16 in

D17 = (−2/µ,−1/µ)× (−2/µ,−1/µ).

Taking into account the Minkowski inequality, we have

(

∫
D17

|(ĝ − (2− µω)(2− µη)ĝδ)B(ω, η)|2(1 + ω2 + η2)sdωdη)1/2

= ‖(ĝ − (2− µω)(2− µη)ĝδ)B(ω, η)(1 + ω2 + η2)s/2‖L2(D17)

≤ ‖ĝB(ω, η)(1 + ω2 + η2)s/2‖L2(D17) + 16‖(ĝδ − ĝ + ĝ)B(ω, η)(1 + ω2 + η2)s/2‖L2(D17)

≤ 17‖ĝB(ω, η)(1 + ω2 + η2)s/2‖L2(D17) + 16‖(ĝδ − ĝ)B(ω, η)(1 + ω2 + η2)s/2‖L2(D17)

≤ 17E sup
D17

|A(ω, η)|+ 16δ sup
D17

|B(ω, η)|

Similar with above method, we can obtain the other inequality in Dk(k = 18, · · · , 24).
Furthermore, if we take regular parameter µ = 2

ln(E/δ) , then we have

‖u− uµ,δ‖p ≤ 59cE1− 1−x
2
√

2 δ
1−x
2
√

2 + Exδ1−x. (16)

.

By similar methods, we have the following error estimate at boundary x = 1.
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Theorem 2.5. Let u(1, y, t) be the exact solution of Cauchy problem (1), and
uµ,δ(1, y, t) be the de la Vallée Poussin regular solution. Assumptions (2) and
‖u(1, ·, ·)‖r ≤ E, (r ≥ p > 0) hold, then with µ = 4

ln(E/δ) , the following stability

estimate holds

‖u(1, ·, ·)− uµ,δ(1, ·, ·)‖p ≤ 59E(
4

ln(E/δ)
)r−p + δ1/2E1/2 → 0, δ → 0+. (17)

3. Numerical experiments

In this section, we present two numerical examples to illustrate the effectiveness of the
identical approximate regularization method.

In the numerical examples, we select the discrete interval as [0, 10] × [0, 10], and
take N = 101, E = ‖u(1, ·, ·)‖2. the measurement data gδ(x, y) is obtained as follows

gδ(x, y) = g + ε(2randn(size(g))− 1),

where

g = (g(xi, yj))
T
N×N , xi =

20(i− 1)

N − 1
, yj =

10(j − 1)

N − 1
, (i, j = 1, 2, · · · , N).

The error level δ is given by

δ = ‖g − gδ‖2 =

√√√√ 1

N ×N

N∑
i=1

N∑
j=1

(g(xi, yj)− gδ(xi, yj))2.

Let u and uµ,δ present the exact solution and identical approximation regularization
solution, respectively, and

rel(u) =
‖u− uµ,δ‖l2
‖u‖l2

denotes the relative error of the exact solution and identical approximation regulariza-
tion solution. rel(u)G presents the relative error of exact solution and Gaussian regular
solution, rel(u)Drel(u)P denote the relative error of the exact solution and Dirichlet,
de la Vallée Poussin identical approximate solutions, respectively. The regularization
parameter is determined by µ = 4/ ln(E/δ).

Example 3.1. Let g(y, t) = yt
25e
−(y−5)2−(t−5)2) be the exact data of problem (1).

To study the numerical stability of our identical approximation algorithm, we use
different noisy levels with δ = 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5 at x = 0.3.

Table 1. displays the relative error of the exact solution and three kinds identical
approximate solutions, respectively with different error levels δ.

We note that as the amount of noise in the data increases, the numerical solution
in examples 3.1 is tend to stable. Fig.3 shows the exact solution for example 3.1 at
x = 0.3 and x = 0.8. Fig. 4-5 displays the two kinds reconstructed solutions with
δ = 10−3, δ = 10−5, respectively. Fig.6-7 show the error between the exact solution
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and identical approximation solutions under condition δ = 10−3 with x = 0.3, x = 0.8,
respectively.

Table 1. The relative error at x = 0.3 for Example 3.1.

error level δ rel(u)G rel(u)D rel(u)P
1× 10−2 0.3566 0.3456 1.7985
1× 10−3 0.0660 0.0352 0.2639
1× 10−4 0.0479 0.0044 0.0383
1× 10−5 0.0384 8.9160E − 04 0.0064

(a) The exact solution at x = 0.3 (b) The exact solution at x = 0.8

Figure 3. Example 3.1: The exact solution (a) at x = 0.3 (b) at x = 0.8.

(a) Dirichlet regularization solution. (b) de la Vallée Poussin regularization
solution.

Figure 4. Example 3.1: The regularization solution at x = 0.3, δ = 10−3 (a) Dirichlet (b) de la Val-

lée Poussin.
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(a) Dirichlet regularization solution. (b) De la Vallée Poussin regularization
solution.

Figure 5. Example 3.1: The regularization solution at x = 0.3, δ = 10−5, (a) Dirichlet (b) de la Val-

lée Poussin.

(a) The error between exact solution and
Dirichlet regular solution.

(b) The error between exact solution and De
la Vallée Poussin regular solution.

Figure 6. Example 3.1: The error between exact solution and regularization solution at x = 0.3, δ = 10−3.
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(a) The error between exact solution and
Dirichlet regular solution.

(b) The error between exact solution and De
la Vallée Poussin regular solution.

Figure 7. Example 3.1: The error between exact solution and regularization solution at x = 0.8, δ = 10−5.

Example 3.2. Taking continuous but not smooth function

g(y, t) =

{
4− (y − 5)2 − (t− 5)2, (y − 5)2 + (t− 5)2 ≤ 4,

0, (y − 5)2 + (t− 5)2 > 4.

as the input data of problem (1).

Figure 8-9 display the numerical results of the example 3.2. Figures 8 shows the
exact data and Dirichlet regular solution at x = 0 with δ = 10−3, Figures 9 shows
Dirichlet regular solution and de la Vallee Poussin regular solution at x = 0.3 with
δ = 10−3. We can easily see that for not smooth function the proposed algorithm is
feasible and effective. In two examples we see that the methods which we adopt are

(a) The exact data. (b) The Dirichlet regularization solution at
δ = 10−3.

Figure 8. Example 3.2: The exact data and regular solution at x = 0.

15



(a) Dirichlet regularization solution. (b) De la Vallée Poussin regularization
solution.

Figure 9. Example 3.2: The comparison of the regular solution at x = 0.3, δ = 10−3.

stable and effect. Thereby, the stability of our proposed method is verified.

4. Conclusions

In this article, a new regularization method is proposed to solve the Cauchy problem
of two-dimensional heat conduction equation, and the stable approximate estimates
are obtained. Two numerical examples are investigated, the numerical examples do
verify the numerical stability of the presented method. Furthermore, the accuracy of
the procedure is quite acceptable.
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