Literature Cited
Arad, Z., Mizrahi, T., Goldenberg, S., & Heller, J. (2010). Natural annual cycle of heat shock protein expression in land snails: Desert versus Mediterranean species of Sphincterochila. Journal of Experimental Biology . doi: 10.1242/jeb.047670
Bishop, T. R., Robertson, M. P., Van Rensburg, B. J., & Parr, C. L. (2017). Coping with the cold: minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecological Entomology . doi: 10.1111/een.12364
Breed, M. D., McGlynn, T. P., Stocker, E. M., & Klein, a. N. (1999). Thief workers and variation in nestmate recognition behavior in a ponerine ant, Ectatomma ruidum. Insectes Sociaux , 46 (4), 327–331. doi: 10.1007/s000400050153
Bujan, J., & Kaspari, M. (2017). Nutrition modifies critical thermal maximum of a dominant canopy ant. Journal of Insect Physiology . doi: 10.1016/j.jinsphys.2017.08.007
Bujan, J., Roeder, K. A., de Beurs, K., Weiser, M. D., & Kaspari, M. (2020). Thermal diversity of North American ant communities: Cold tolerance but not heat tolerance tracks ecosystem temperature.Global Ecology and Biogeography . doi: 10.1111/geb.13121
Bujan, J., Roeder, K. A., Yanoviak, S. P., & Kaspari, M. (2020). Seasonal plasticity of thermal tolerance in ants. Ecology . doi: 10.1002/ecy.3051
Cerdá, X., & Retana, J. (2000). Alternative strategies by thermophilic ants to cope with extreme heat: Individual versus colony level traits.Oikos . doi: 10.1034/j.1600-0706.2000.890117.x
Chick, L. D., Perez, A., & Diamond, S. E. (2017). Social dimensions of physiological responses to global climate change: What we can learn from ants (Hymenoptera: Formicidae). Myrmecological News .
Cook, C. N., & Breed, M. D. (2013). Social context influences the initiation and threshold of thermoregulatory behaviour in honeybees.Animal Behaviour . doi: 10.1016/j.anbehav.2013.05.021
Cook, C. N., Kaspar, R. E., Flaxman, S. M., & Breed, M. D. (2016). Rapidly changing environment modulates the thermoregulatory fanning response in honeybee groups. Animal Behaviour . doi: 10.1016/j.anbehav.2016.03.014
Del Toro, I., Ribbons, R. R., & Pelini, S. L. (2012). The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News .
Diamond, S. E., & Chick, L. D. (2018). The Janus of macrophysiology: Stronger effects of evolutionary history, but weaker effects of climate on upper thermal limits are reversed for lower thermal limits in ants.Current Zoology . doi: 10.1093/cz/zox072
Diamond, S. E., Chick, L., Perez, A., Strickler, S. A., & Martin, R. A. (2017). Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biological Journal of the Linnean Society ,121 (2), 248–257. doi: 10.1093/biolinnean/blw047
Diamond, S. E., Sorger, D. M., Hulcr, J., Pelini, S. L., Toro, I. Del, Hirsch, C., … Dunn, R. R. (2012). Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology , 18 (2), 448–456. doi: 10.1111/j.1365-2486.2011.02542.x
Esch, C., Jimenez, J. P., Peretz, C., Uno, H., & O’Donnell, S. (2017). Thermal tolerances differ between diurnal and nocturnal foragers in the ant Ectatomma ruidum. Insectes Sociaux . doi: 10.1007/s00040-017-0555-x
Feder, M. E., & Hofmann, G. E. (1999). Heat-Shock Proteins, Molecular Chaperones, and the Stress Tesponse: Evolutionary and Ecological Physiology. Annual Review of Physiology , 61 (1), 243–282. doi: 10.1146/annurev.physiol.61.1.243
Garcia-Robledo, C., Chuquillanqui, H., Kuprewicz, E. K., & Escobar-Sarria, F. (2018). Lower thermal tolerance in nocturnal than in diurnal ants: a challenge for nocturnal ectotherms facing global warming. Ecological Entomology . doi: 10.1111/een.12481
Gehring, W. J., & Wehner, R. (1995). Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert.Proceedings of the National Academy of Sciences , 92 (7), 2994 LP – 2998. Retrieved from http://www.pnas.org/content/92/7/2994.abstract
Guénard, B., & McGlynn, T. P. (2013). Intraspecific Thievery in the Ant Ectatomma ruidum is Mediated by Food Availability. Biotropica ,45 (4), 497–502. doi: 10.1111/btp.12031
Harrison, J. F., Woods, H. A., & Roberts, S. P. (2013). Ecological and Environmental Physiology of Insects. In Ecological and Environmental Physiology of Insects . doi: 10.1093/acprof:oso/9780199225941.001.0001
Helms Cahan, S., Nguyen, A. D., Stanton-Geddes, J., Penick, C. A., Hernáiz-Hernández, Y., DeMarco, B. B., & Gotelli, N. J. (2017). Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the ants Aphaenogaster picea and A. rudis. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology . doi: 10.1016/j.cbpa.2016.11.017
Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews of the Cambridge Philosophical Society . doi: 10.1017/S1464793105006767
Hou, C., Kaspari, M., Vander Zanden, H. B., & Gillooly, J. F. (2010). Energetic basis of colonial living in social insects. Proceedings of the National Academy of Sciences of the United States of America ,107 (8), 3634–3638. doi: 10.1073/pnas.0908071107
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Ipcc .
Jandt, J. M., Hunt, E. M., & McGlynn, T. P. (2015). Intraspecific Food-Robbing and Neighborhood Competition: Consequences for Anti- Robber Vigilance and Colony Productivity. Biotropica , in press.
Janowiecki, M., Clifton, E., Avalos, A., & Vargo, E. L. (2020). Upper thermal tolerance of tropical and temperate termite species (Isoptera: Rhinotermitidae, Termitidae): a test of the climate variability hypothesis in termites. Insectes Sociaux . doi: 10.1007/s00040-019-00727-7
Janzen, D. H. (1967). Why Mountain Passes are Higher in the Tropics.The American Naturalist . doi: 10.1086/282487
Jenkins, C. N., Sanders, N. J., Andersen, A. N., Arnan, X., Brühl, C. a., Cerda, X., … Dunn, R. R. (2011). Global diversity in light of climate change: the case of ants. Diversity and Distributions ,17 (4), 652–662. doi: 10.1111/j.1472-4642.2011.00770.x
Kaspar, R. E., Cook, C. N., & Breed, M. D. (2018). Experienced individuals influence the thermoregulatory fanning behaviour in honey bee colonies. Animal Behaviour . doi: 10.1016/j.anbehav.2018.06.004
Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. (2015). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology . doi: 10.1111/gcb.12750
Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America . doi: 10.1073/pnas.0808913106
Lazzari, C. R., & Insausti, T. C. (2008). Circadian rhythms in insects.