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Abstract
This paper aims to solve the celebrated Fuzzy Fractional Differential Equations (FFDE) using an 
Artificial Neural Network (ANN) technique. Compared to the integer order differential equation, the 
proposed FFDE can better describe several real application problems of various physical systems. To 
accomplish the aforementioned aim, the error back propagation algorithm and a multi-layer feed forward 
neural architecture are utilized using the unsupervised learning in order to minimize the error function as 
well as the modification of the parameters such as weights and biases. By combining the initial conditions
with the ANN, output provides an appropriate approximate solution of the proposed FFDE. Then, two 
illustrative examples are solved to confirm the applicability of the concept as well as to demonstrate both 
the precision and effectiveness of the developed method. By comparing with some traditional methods, 
the obtained results reveals a close match that confirms both accuracy and correctness of the proposed 
method.
Keywords: Fuzzy Fractional Differential Equations (FFDE); Artificial Neural Network (ANN); Back 
propagation algorithm; Unsupervised learning.

1. Introduction
In recent decades, many engineering and scientific problems required the fuzzy fractional calculations, as 
they can model more accurately than the other expected systems. The real-world applications of FFDEs 
shortly have attracted a considerable attention in mathematics and in the scientific societies [1-4,8,22-25].
For instance, fuzzy fractional calculations have been developed to model nonlinear fluctuations in 
earthquakes, fluid dynamics, frequency dependent sampling behavior, many viscoelastic materials, 
statistical and continuum machines, colored Noise, solid mechanics, economics, signal processing the 
theory of control and dynamics of interactions between nanoparticles and layers. The reason for this is 
that it is well known as a realistic model of a physical phenomenon, which contains a dependency on a 
time constant and also a previous time history that can be successfully obtained by using fractional 
calculations. Mathematical formulas of many of the phenomena mentioned, contain differential equations 
with a degree of fractional or fuzzy fraction. The theory of fuzzy sets is a powerful method for modeling 
vague processes and mathematical information [27]. Here, it is worthwhile to mention that Chang and 
Zadeh [7] first developed the fuzzy concept, stating as the others jumped Dubois extended issue [9]. In 
the following, the Fuzzy Differential Equations (FDE) along with the initial value problem was 
demonstrated by Kalva and Seikkala [14].
  In last few years, on the other hand, various machine intelligence procedures in particular Artificial 
Neural Network (ANN) methods have been established as a powerful technique to solve a variety of real-
world problems because of its excellent learning capacity [11, 28]. ANN approach has attracted much 
consideration to its advantages such as learning, adaptive, error computation, fault-tolerance and, etc. 
Recently, many attentions have been paid to utilize ANN to solve ordinary [6,16], differential equations 
of fractional order [18] and fuzzy differential equations [10]. Qu and Liu [19] described the cosine basis 
functions as well as the neural network training along with adjustable parameters to solve single and the 
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systems of the coupled fractional order differential equations. Rostami and Jafarian [20] employed the 
combination of power series method and the ANN approach to handle higher order linear fractional 
differential equations. Sabouri et al. [21] employed the ability of neural networks for solving fractional 
order optimal control problems. In another study [13] Jafarian et al. have used combination of multi-layer 
ANN and the power series method to solve a class of fractional order initial value problems. In this 
investigation, the authors vested their effort to develop a multi-layer ANN model with unsupervised back 
propagation learning algorithm to solve the fuzzy fractional order initial value problems. In this way, the 
ANN approximate solution of FFDE is provided as the sum of two terms as follows: the first one meets 
the initial/boundary conditions, whereas the second part contains output of neural network including the 
adjustable parameters. In the following, the error back propagation principles (gradient descent 
procedure) and feed forward neural network model are implemented to modify the network parameters as 
well as to minimize the computed error function. After that, the obtained initial weights from input to 
hidden and then from hidden to output layer, are randomly determined. The approximate solution of the 
proposed FFDE using the neural network is achieved to be very practical, even though it depends on the 
ANN model concerning the considered individual. The structure of the paper encompasses the following 
sections:
In section two, the basic concepts are expressed. In section 3, the algorithm of proposed method for 
approximate solution of fuzzy fractional order initial value problem and error estimation are described. In 
section 4, numerical examples are presented, in section 5, the applied examples are presented, and finally,
in section 6, the conclusion is expressed.

2. Preliminaries 
In this section, some definitions are brought. Also, we suppose that the H-difference exist throughout the 
paper.
Denote RF= {u :Rn→ [0,1 ]∨usatisfies (i )−( iv )below } , where

(i) u is normal, i.e. there exists x∈Rn , such that u(x )=1.
(ii) u is fuzzy convex, i.e.

∀ x , y∈Rn∧λ∈ [0 ,1] , u( λx+(1−λ) y )≥min {u(x ) ,u ( y)}.
(iii) u is upper semi-continuous.
(iv) cl {s∈ Rn∨u (s)>0}, is compact in x∈Rn.
Then RF is called the space of fuzzy numbers.

The α-level set of a fuzzy number u∈RF ,0≤α ≤1 , denoted [u ]α={x∈Rn∨u(x )>α=[u (α ) ,u (α)]. 
Then from ( i ) to (iv ), it follows that the α-level set [u ]α is a closed interval for all α ∈ [0,1 ] . A triangular 

fuzzy number is defined as a fuzzy set in RF, that is specified by an ordered triple u (a ,b , c )∈R3with

a≤b≤c such that u (α )=a+(b−a)α  and u(α)=c−(c−b)α are the endpoints of α -level sets for all

α ∈ [0,1 ] .

Definition 2.1. Let  f :(a ,b)→RF is Hukuhara differentiable at x0∈(a ,b)⊆R  if for someh0>0 the 

Hukuhara difference f (x0+∆ x)−¿h f (x0) , f (x0)−¿h f (x0+∆ x ),¿¿ exist in RF for all  0<∆<h0 and if 

there exist an element f ' (x0)∈RF such that 

lim
∆ x→0+¿d∞¿¿

¿

and
lim

∆ x→0+¿d∞¿¿
¿

2



The fuzzy number valued function f ' (x0) is called the Hukuhara derivative of f  at x0, [5]. Recall that

U−¿hV=W ∈RF ¿ are defined on level sets, where [U ]α−¿h[V ]α=[W ]α¿  for all  0≤α≤1. By 

consideration of definition of the metric d∞, all the level set mappings [ f ( .)]α  are Hukuhara differentiable

at x0 with Hukuhara derivatives [ f ' (x0)]α for each 0≤α≤1, when f :(a ,b)→RF is Hukuhara 

differentiable at x0with Hukuhara derivative f ' (x0).

Theorem 2.2. Let f (x) be a fuzzy-valued function on (−∞,∞ ) and it is represented by

f (x ; α )=[ f (x ; α ) , f (x ;α)] for any fixed α ∈ [0 ,1]. Assume that ¿ f (x ; α)∨¿ and ¿ f (x ; α )∨¿ are 

Riemann integrable on (−∞,∞ ) for all α ∈ [0 ,1]. Then f (x) is improper fuzzy Riemann-integrable on

(−∞,∞) and the improper fuzzy Riemann integral is a fuzzy number. Furthermore, we have [26].

Definition 2.3. Suppose that f :V ⊆ R→RF is fuzzy-valued function with [ f (x )]α=[ f (x ;α ) , f (x ;α ) ]. If
the partial derivatives of f ( x ;α ) andf ( x ;α ) with respect to x∈R exist and the interval

[ f ' ( x ;α ) , f ' ( x ;α ) ] defines the α -level set of a fuzzy number for x∈R, α ∈ [0,1 ] . Then For

x∈R ,α ∈ [0,1 ] ,  f ( x ) is called differentiable and we write,

f ' ( x; α )=(f ' ( x ; α ) , f ' (x ;α ) ) .(2.3)

Definition 2.4. (See [18].) Let f : [0 , b]⊆R→Rbe continuous and Lebesque integrable real-valued 
function. The modified Riemann-Liouville fractional derivative of function f (x) of order ,0<¿1 , is 

denoted by Dβ f (x)mRL  and defined as:

D β f (x)mRL
=

1
Г (1−β)

d
dx

∫
0

x
f ( t )− f (0)

(x−t)β
dt ,0<β<1, x>0(2.4 )

The definition of modified Riemann-Liouville fuzzy fractional derivative based on an integration of 
Definition 2.4, H - difference, and H - derivative is introduced below.

Definition 2.5. Letf : [a ,b]⊆R→RF  be continuous and Lebesque integrable fuzzy-valued
function,

G ( x )=
1

Г (1−β )
∫
a

x

f ( t )
−¿h f (a)

( x−t )β
dt .¿ The function f (x) is modified Riemann-Liouville fuzzy fractional

differentiable of order 0<¿1at x0∈(a ,b) if there exists an element D β f (x0)∈RF
mRL  such that for h>0 

sufficiently near zero the following limit exists

lim
h→ 0

G (x0 )
−¿hG (x0+h )

−h
=G (x0−h )

−¿hG (x0 )

−h
= D β f (x0)
mRL

(2.5)¿¿

Or

lim
h→ 0

G (x0+h )
−¿hG (x0 )

h
=G (x0 )

−¿hG (x0−h )

h
= D β f (x0)
mRL

(2.6)¿¿

2.6. Multi-layer perceptron (MLP) 
A multi-layer perceptron (MLP) is a class of feedforward artificial neural network. An MLP consists of at
least three layers of nodes. Except for the input nodes, each node is a neuron that utilizes a nonlinear 
activation function. MLP uses a supervised learning technique so-called backpropagation for training. Its 
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multiple layers and non-linear activation distinguish MLP from a linear perceptron. Multi-layer networks 
use a variety of learning techniques, in which the most popular being back-propagation (BP), is based on 
the error correction learning rule. Therefore, to calculate the sensitivities for the different layers of 
neurons in the MLP network, the derivative of conversion neurons functions is required. To do so, those 
functions should be used that have derivative. One of these functions is the Sigmoid function defined as 

follows σ (n )=
1

1+e−n
. The output of this function values in the range [0, 1]. Moreover, it can be stated 

very well and very badly, as shown in Figure 1. 

Figure 1. shows a hyperbolic tangent function.

Theorem 2.7. (The World Approximation Builder)
The MLP network with one hidden layer with a sigmoid function (Hyperbolic tangent function) in the
middle layer and linear transformation functions in output layer are able to approximate all functions in
any degree of the integral of the square (see [12]). 

2.8.  Broyden Fletcher Goldfarb Shanno Teqnique (BFGs Teqnique)
To compute the value of some predefined error-function, the obtained output values are compared with 
the exact solution. By various techniques, the error is then fed back through the network. Using this 
information, the algorithm adjusts the weights of each connection in order to reduce the value of the error 
function by some small amount. After repeating this process for a sufficiently large number of training 
cycles, the network will usually converge to some state where the error of the calculations is small. In this
case, one would say that the network has learned a certain target function. To adjust weights properly, we 
should minimize the unconstrained optimization problem. To achieve this aim, some minimization 
techniques such as the steepest descent method and the conjugate gradient or Quasi-Newton methods can 
be employed. The Newton method is one of the important algorithms in nonlinear optimization. The main
disadvantage of the Newton method is that it is necessary to evaluate the second derivative matrix 
(Hessian matrix). Quasi-Newton methods were originally proposed by Davidon in 1959 and were later 
developed by Fletcher and Powell (1963). The most fundamental idea in Quasi-Newton methods is the 
requirement to calculate an approximation of the Hessian matrix. Here the Quasi-Newton BFGS method 
is used (see [15]).

3. Algorithm of approximate solution of fuzzy fractional order initial value problem and 
error estimation 
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In this section, the general formulation of ANN model is discussed for the proposed fuzzy fractional order
differential equation. In particular, structure of ANN model and the formulations for initial value 
fractional order fuzzy problems are incorporated in detail.

3.1. ANN formulation for fuzzy FFDE
Suppose a fuzzy fractional order initial value problem as follows:

{ D x
β

x0
~y ( x )=f (x ,~y ( x ) ) ,0<β ≤1 ,

¿~y (x0 )=~y0∈RF
(3.1)

Suppose ~yN (x , p)  denotes the approximate solution of ANN model with p which is a vector containing 
corresponding weights and x is the input data. The above FFDE is transformed into the following 
problem

D x
β

x0
~yN ( x , p )=f (x ,~yN ( x , p ) )(3.2)

The approximate solution ~yN ( x , p ) of feed forward neural network using the network parameters p may 
be described in the following form

~yN ( x , p )=
~
A (x )+F (x ,~Net (x , p ) )(3.3)

Here, it should be noted that the first term ~A ( x ) in right hand side does not contain adjustable parameters 

and satisfies only initial\boundary conditions, whereas the second term F (x ,~Net ( x , p ) ) contain the 

single output ~Net (x , p)of feed forward neural network using input x and vector containing the 
corresponding weights p. Here we propose a three layer ANN model with one input node x, one hidden 
layer consisting of k  number of nodes and one output node ~Net (x , p). The output ~N (x , p) can be 
expressed as follows:

~Net ( x , p )=∑
j=1

K
~v jσ (~z j ) ,

~z j=
~w j x+

~
b j ,K ∈N (3.4)

where ~w j denotes weight from input to jth hidden unit,~v j means the weight from jth hidden unit to 
output unit and finally 

~
b j refers to the bias for jth hidden node. The Sigmoid function, (σ ), is 

already described in Section 2.6. The General form of corresponding error function for the 
fractional order initial value problem may be created as

E ( x , p )=∑
i=1

h

( D x
β

x0
~yN ( xi , p )−f (x i ,~y N (x , p ) ))

2
, h∈N (3.5)

3.2. Error back propagation learning algorithm
The Error back propagation learning algorithm is employed to update the network parameters (weights) 
and for minimizing error function of the ANN. For FFDE we consider an unsupervised version of back 
propagation method. Here gradient descent method has been used for updating the parameters.

~w j
k+1

=~w j
k
+∆~w j

k
=~w j

k
+(−η

∂~E ( x ,Ω )
k

∂~w j
k )(3.6)
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~v j
k+1

=~v j
k
+∆~v j

k
=~v j

k
+(−η

∂~E ( x ,Ω)
k

∂~v j
k )(3.7)

where  is learning parameter, m is iteration step which is used to update the weights as usual in
ANN and ~E (x , p ) is the error function. Here, k  is the number of iterations

3.3 Formulation of fuzzy fractional order initial value problem for β ¿
Let us consider a FFDE of order β ¿

{ D x
β

x0
~y ( x )=f (x ,~y ( x ) ) ,

¿~y (x0 )=~y0∈RF
(3.8)

The approximate solution of ANN may be written as
~yN ( x , p )=~y0+ (x−x0 )

~
Net ( x , p )(3.9)

When x=x0, obtained approximate solution ~yN ( x , p ) can satisfy the initial condition. The error function 
is computed using relation (3.5).

3.4. Structure of multi-layer ANN model for FDE
In this subsection, a three layers ANN model is proposed for the problem at hand. Figure 2 illustrates the 
structure of neural network architecture including an input layer with single input node and a bias, one 
hidden layer having five hidden nodes and output layer consisting of one output node. In this network, the
initial weights of ~w jfrom input to hidden layer as well as ~v j from hidden to output layer, are randomly 
determined. 

Figure 2. Proposed Artificial neural network architecture

3.5 Computation of gradient for Fractional order initial value problem
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In this section, we differentiate ~E (x , p )  in order to minimize the error function ~E (x , p ) that is to update 
the network parameters (weights). As a result, regarding to their inputs, the gradient of network output is 
computed as follows. 

With the α−¿level set, the fractional derivatives (according to conformable fractional derivative) of
~
Net ( x , p ) with respect to input x is written as

D x
β~Net ( x , p )=[min (D x

β Net ( x , p ) ,D x
β Net ( x , p ) ) ,max (D x

βNet ( x , p ) ,D x
βNet ( x , p ) )](3.10)

Where

D x
β Net ( x , p )=v j σ

'
( z j )w j x

1−β ,

¿D x
βNet ( x , p )=v jσ

'
( z j )w j x

1−β .

Let (D x
β~Net ( x , p ) )=~Netr denotes the derivative of the network output with respect to its inputs.

regarding the other parameters, the derivative of 
~
Netr may be obtained as follows (based on the 

conformable fractional derivative rules):

(1 )
∂~Netr
∂~w j

=[min( ∂ Netr∂w j

,
∂ Netr
∂ w j

),max (
∂Net r
∂w j

,
∂Net r
∂w j

)] ,(3.11)
where
∂Net r
∂w j

=v j x
1−β

(σ
'
( z j )+σ

' '
( z j )w j x) ,

¿¿
∂Net r
∂w j

=v j x
1−β

(σ
'
( z j )+σ

' '
( z j )w j x ) .

(2 )
∂~Netr
∂~v j

=[min( ∂ Netr∂v j
,
∂ Netr
∂v j ) ,max (

∂Net r
∂v j

,
∂Net r
∂v j )] ,(3.12)

where
∂Net r
∂v j

=w j x
1−βσ ' ( z j ) ,

¿¿
∂Net r
∂v j

=w j x
1− βσ ' ( z j ) .

(3 )
∂~Net r
∂

~
b j

=[min( ∂ Netr∂b j
,
∂Netr
∂b j ) ,max(

∂ Netr
∂b j

,
∂ Netr
∂b j )] , (3.13)

where
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∂Net r
∂b j

=w j v j x
1−β σ ' ' ( z j )

¿¿
∂Net r
∂b j

=w j v j x
1−β σ ' ' ( z j )

Here

Net ( x , p )=∑
j=1

m

v jσ ( z j ) , z j=w j x+b j

From relation (3.9) we have (by differentiating)

D x
β

x0
~yN ( x )=[min (Dx

β yn ( x , p ) , Dx
β yn ( x , p ) ) ,max (D x

β yn ( x , p ) ,D x
β yn ( x , p ) )] ,(3.14)

where

D x
β

x0
yn (x )=(x−x0 )

1−β (Net ( x , p )+(x−x0 ) (D x
βNet (x , p ) ))

¿¿ D x
β

x0
yn (x )=(x−x0 )

1−β
(Net ( x , p )+(x−x0 ) (D x

β Net (x , p ) ))

After simplifying the above equation, we have

D x
β

x0
yn (x )=(x−x0 )

1−β (Net ( x , p )+(x−x0 ) (w j v j x
1− βφ' ( z j )))

¿¿ D x
β

x0
yn (x )=(x−x0 )

1−β (Net ( x , p )+(x−x0 ) (w j v j x
1−βφ' ( z j )))

4. Numerical Examples
To better understand the proposed method, these following informative example problems are included. 
Afterwards, the approximate results by ANN model are compared with analytical\existing numerical 
solution of each example in order to demonetarize the powerfulness of the proposed method.

Example 4.1. Let us consider a fractional fuzzy differential equation
¿

According to D2
~y ( x )(x )using the ANN method, the obtained approximate solution of the considered 

problem via α=0,0.2,0 .4,0 .5,0 .6,0.8,1 is reported in Tables 4.1.  In addition, Figure 3. shows the 
approximate answer.

Table 4.1. Approximation of yα  and yα  for Example 4.1.
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yα , yα                                                                                  x      

Figure 3. The approximate answer of Example 4.1.

Example 4.2. Let us consider a fractional fuzzy differential equation
¿

According to D1 [ y ]
z
(x)

c  using the ANN method, the obtained approximate solution of the considered 

problem via α=0,0.2,0 .4,0 .5,0 .6,0.8,1 is reported in Tables 4.2.  In addition, Figure 4. shows the 
approximate answer.

Table 4.2. Approximation of yα  and yα  for Example 4.2.

9

yα yα

x  α

0 0.2 0.4 0.5 0.6 0.8 1 0 0.2 0.4 0.5 0.6 0.8 1

0 0.5 0.6 0.7 0.75 0.8 0.9 1 1.5 1.4 1.3 1.25 1.2 1.1 1

0.1 0.414 0.49
6

0.579 0.620 0.662 0.74
5

0.827 1.241 1.159 1.07
6

1.035 0.993 0.910 0.827

0.2 0.355 0.42
6

0.497 0.533 0.569 0.64
0

0.711 1.067 0.995 0.92
4

0.889 0.857 0.782 0.711

0.3 0.316 0.37
9

0.442 0.474 0.505 0.56
8

0.632 0.948 0.884 0.82
1

0.790 0.758 0.695 0.632

0.4 0.285 0.34
3

0.400 0.428 0.457 0.51
4

0.571 0.857 0.800 0.74
3

0.714 0.686 0.628 0.571

0.5 0.261 0.31
3

0.365 0.392 0.418 0.47
0

0.522 0.783 0.731 0.67
9

0.653 0.627 0.575 0.522

0.6 0.240 0.28
9

0.337 0.361 0.385 0.43
3

0.481 0.722 0.674 0.62
6

0.602 0.578 0.529 0.481

0.7 0.223 0.26
8

0.312 0.335 0.357 0.40
2

0.446 0.670 0.625 0.58
0

0.558 0.536 0.491 0.446

0.8 0.208 0.24
9

0.291 0.312 0.333 0.37
4

0.416 0.624 0.582 0.54
1

0.521 0.499 0.458 0.416

0.9 0.194 0.23
3

0.272 0.292 0.311 0.35
0

0.389 0.584 0.545 0.50
6

0.487 0.468 0.429 0.389

1 0.183 0.21
9

0.256 0.274 0.293 0.32
9

0.366 0.549 0.513 0.47
6

0.458 0.439 0.403 0.366

yα yα

x  α

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.5 0.6 0.7 0.8 0.9 1 1.5 1.35 1.25 1.15 1.05 1

0.
1

1.539
6

1.746
2

1.947
2

2.143
7

2.336
7

2.526
7

3.444
4

3.173
7

2.991
3

2.807
0

2.620
7

2.526
7

0.
2

3.142
1

3.465
7

3.777
1

4.079
0

4.373
2

4.660
9

6.029
9

5.629
1

5.357
7

5.082
4

4.802
6

4.660
9

0.
3

5.187
5

5.629
8

6.053
46

6.462
4

6.859
4

7.246
4

9.074
0

8.541
1

8.179
3

7.811
46

7.436
7

7.246
4

0.
4

7.685
9

8.253
7

8.796
1

9.318
5

9.824
5

10.31
69

12.63
11

11.95
80

11.50
03

11.03
42

10.55
86

10.31
69

0.
5

10.68
72

11.39
19

12.06
39

12.71
01

13.33
52

13.94
26

16.78
83

15.96
22

15.39
96

14.82
62

14.24
06

13.94
26

0.
6

14.25
80

15.11
45

15.93
04

16.71
39

17.47
11

18.20
62

21.64
17

20.64
56

19.96
67

19.27
43

18.56
65

18.20
62

0.
7

18.47
58

19.50
23

20.47
91

21.41
64

22.32
14

23.19
94

27.29
43

26.10
83

25.29
94

24.47
38

23.62
94

23.19
94

0.
8

23.42
85

24.64
62

25.80
38

26.91
39

27.98
50

29.02
34

33.85
90

32.45
97

31.50
48

30.52
97

29.53
19

29.02
34

0.
9

29.21
52

30.64
81

32.00
96

33.31
42

34.57
24

35.79
14

41.46
05

39.82
12

38.70
20

37.55
86

36.38
81

35.79
14

1 35.94
70

37.62
28

39.21
40

40.73
81

42.20
70

43.62
97

50.23
77

48.32
82

47.02
39

45.69
10

44.32
58

43.62
97



                                       yα , yα                                                                                  x      

Figure 4. The approximate answer of Example 4.2.

5. Conclusions
This paper presented a new approach to solve fractional order fuzzy differential equations by using 
artificial neural network model. In the following, the accuracy of the proposed method has been 
investigated by solving several FDEs. Besides, as the algorithm has been unsupervised, the error back 
propagation algorithm was exploited to minimize the error function. In this paper, the corresponding 
initial weights from input to hidden as well as from hidden to output, has been randomly specified. The 
obtained approximate solution was differentiable and closed. According to the tables and Figs., the 
approximate solution by ANN reveals that the results are accurately achieved. Ultimately, it can be 
concluded that the proposed ANN algorithm is computationally efficient, simple, and straight forward.
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